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Abstract: This paper investigates the surprisingly wide and practicable class of

continuous distributions that have densities of the form 2g{t(x)} where g is the

density of a symmetric distribution and t is a suitable invertible transformation of

scale function which introduces skewness. Note the simplicity of the normalising

constant and its lack of dependence on the transformation function. It turns out

that the key requirement is that Π = t−1 satisfies Π(y)−Π(−y) = y for all y; Π thus

belongs to a class of functions that includes first iterated symmetric distribution

functions but is also much wider than that. Transformation of scale distributions

have a link with ‘skew-g’ densities of the form 2π(x)g(x), where π = Π′ is a skewing

function, by using Π to transform random variables. A particular case of the gen-

eral construction is the Cauchy-Schlömilch transformation recently introduced into

statistics by Baker (2008); another is the long extant family of ‘two-piece’ distri-

butions. Transformation of scale distributions have a number of further attractive

tractabilities, modality properties, explicit density-based asymmetry functions, a

beautiful Khintchine-type theorem and invariant entropy being chief amongst them.

Inferential questions are considered briefly.
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1. Introduction

The setting for this paper is that of parametric modelling using continuous

distributions with several, but not too many, parameters. Practical reasons for

interest in such distributions are the introduction of flexibility tempered by parsi-

mony, sometimes for understanding specific aspects of distributional shape such

as skewness or tail weight, but mostly to achieve robustness to these aspects

of distributional shape in estimating location and perhaps scale via statistical

modelling; see, for example, Azzalini and Genton (2008). I will concentrate in

this paper on univariate continuous distributions. This is nothing like as limit-

ing as it sounds since they often form the marginal and/or conditional random

components of more complex models acting, for simple example, as response dis-

tributions in regression, or having major roles in graphical models, hierarchical
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models, etc. Bayesian priors in multiparameter situations also often comprise well

chosen combinations of univariate marginals and conditionals. Some comments

on the multivariate case can nonetheless be found in Section 6.3.

A natural approach to providing wide families of univariate distributions

with familiar special cases yet asymmetric and possibly otherwise altered shape

characteristics is as follows. Start from a relatively simple symmetric ‘base’

distribution, such as the normal, and generate further distributions from it by, for

example, judicious use of an appropriate transformation function. To this end, let

g be a continuous univariate density function on support Sg ∋ 0 that is symmetric

about zero, and let t : Sf → D, where D ⊇ Sg, be a monotonically increasing

transformation function. This paper is concerned with particular families of

distributions derived from these components by what I call ‘transformation of

scale’. The distributions of interest have densities of the form

f(x) = 2g{t(x)}, x ∈ Sf , (1.1)

for appropriate t, chosen such that their inverses satisfy (2.1) below. The ‘trans-

formation of scale’ terminology is intended to convey the notion of ‘pulling g

about’ by transforming its point of evaluation x, as opposed to the more famil-

iar technique of transforming the random variable associated with g. The latter

results in distributions with densities of the form t′(x)g{t(x)} which are clearly

not equal to 2g{t(x)} in general.

Typically, in (1.1), g and t will each involve a shape parameter, that in

g controlling some aspect of kurtosis and that in t introducing and controlling

skewness. Location and scale parameters, µ ∈ R and σ > 0 when Sf = R or

just σ > 0 when Sf = R+, should be introduced for practical work in the usual

way via σ−1f(σ−1(x − µ)) or σ−1f(σ−1x), but can be set equal to 0 and 1,

respectively, for theoretical clarity. It is the location and/or scale parameters on

which much practical modelling work is focussed, in order to understand their

dependence on covariates.

The claim that the exceptionally simple form (1.1) is a density for symmetric

g and a certain range of choices of t is not entirely trivial. In general, a putative

density core of the form g{t(x)} might not be integrable and, when it is, will

typically require calculation of a new and likely complicated normalising constant.

However, the normalising constant in (1.1) is just twice that of g! In particular,

any parameters involved in t do not enter the normalising constant, simplifying

their estimation. Of course, by rescaling g to g2(x) = 2g(2x) and t to t1/2(x) =

t(x)/2, I could have written f(x) = g2(t1/2(x)), so that the coefficient would have

been 1. However, the choice of 2 makes the following development fit better with

related work.
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A trivial example of (1.1) is the specific scale shift t(x) = 2x, which is the

identity function scaled to match the choice of normalising constant. (This is

also the only example common to transformation of scale and transformation

of random variable, since t′(x) = 2 in this case.) Some tractable non-trivial

examples of other transformations of scale that also work in this way and influence

shape by introducing skewness are:

t1(x) = x− (
b

x
), b > 0, x ∈ R+ (1.2)

(Baker (2008));

t2(x) =
1

a
log(eax − 1), a > 0, x ∈ R+ (1.3)

(Jones (2010));

t3(x) =
(
2
√
cx− c

)
I (0 < x < c) + xI (x ≥ c) , c > 0, x ∈ R+; (1.4)

t4(x) = x (2−dx) I (dx<0)+
{
x− 1

2d
(1−

√
1+4dx)

}
I (dx≥0) , d∈R\{0}, (1.5)

with limd→0 t4(x) = 2x for all x ∈ R;

t5(x) = 2x
{ 1

1− α
I (x < 0) +

1

1 + α
I (x ≥ 0)

}
, − 1 < α < 1, x ∈ R, (1.6)

leading to the celebrated two-piece density (Fechner (1897), Fernández and Steel

(1998)) in essentially the parameterisation preferred, for example, in Mudholkar

and Hutson (2000), which the reader might also see for further references in the

case of normal g; and

t6(x) =
1

1− α2

{
2x−α

√
4x2 + 1− α2

}
, − 1 < α < 1, x ∈ R. (1.7)

That all these transformations of scale should work with no change to the

normalising constant seems, at first glance, little short of astonishing. In partic-

ular, that 2g{t1(x)}, x ∈ R+, is a valid density is a consequence, as observed

by Baker (2008), of the Schlömilch, or Cauchy-Schlömilch, transformation used

in the evaluation of certain definite integrals (Boros and Moll (2004, Sec. 13.2)).

My primary purpose here is to identify a wide class of functions t, through their

inverses Π= t−1, that afford densities of form (1.1); see Proposition 1 of Section

2. This yields a general approach to generating appropriate transformations of

scale, all of which are readily shown necessarily to introduce asymmetry.

There turns out to be a close link between the proposed construction and an

alternative, popular, methodology for generating families of distributions from

g, namely the ‘skew-g’ distributions arising from the seminal work of Azzalini

(1985). This is spelt out in Section 3.1. Simple and tractable versions of Π and

hence t are explored in Sections 3.2 to 3.5. Transformation of scale distributions
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have several other attractive and tractable properties which are explored in Sec-

tion 4. These characteristics include their modality properties, tailweight control,

skewness properties as understood through density-based asymmetry functions,

simple random variate generation, an especially attractive extended Khintchine

theorem, and invariance of entropy. Inferential questions are considered briefly in

Section 5. A discussion of the wider place of transformation of scale distributions

completes the paper in Section 6. This concentrates principally on the univariate

case but also briefly visits the cases of circular and multivariate distributions.

2. The Main Result

Proposition 1. Let Π : D → Sf be a piecewise differentiable monotone increas-

ing function with inverse t, where D ⊇ Sg ∋ 0. Suppose that

Π(y)−Π(−y) = y, for all y ∈ D. (2.1)

Then if g(x) is a density on Sg that is symmetric about zero, f(x) = 2g{t(x)}
= 2g{Π−1(x)} is a density on Sf .

Proof. Nonnegativity of f follows from that of g. It remains to show that∫
Sf

f(x)dx = 1. This is done here for differentiable Π for simplicity, with obvious

extension to the piecewise differentiable case. Making the substitution y = t(x)

and writing π(y) = Π′(y), which is positive for all y ∈ D,∫
Sf

f(x)dx = 2

∫
Sf

g{t(x)}dx = 2

∫
D
g(y)π(y)dy = 2

∫
Sg

g(y)π(y)dy.

That 2π(y)g(y) is a density and hence integrates to one is a standard result

readily shown via the evenness of g and the oddness of π − 1/2 as at (3.1) to

follow (Azzalini (1985), Wang, Boyer, and Genton (2004)).

Corollary 1. The only transformation t = Π−1 with Π satisfying (2.1) such that

f(x) = 2g{t(x)} is a symmetric density is t(x) = 2x.

Proof. Symmetry requires Π(y) = −Π(−y) for all y. Combining the latter with

(2.1) yields Π(y) = y/2.

3. Relationships With Earlier Work and Special Cases

3.1. Relationship with skew-g distributions

The substitution involved in the proof of Proposition 1 is equivalent to mak-

ing the transformation of random variable X = Π(Y ) where X follows the dis-

tribution with density (1.1), Y follows the distribution with density 2π(y)g(y)
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and π(y) = Π′(y). Note that (2.1) implies that

π(y) + π(−y) = 1, for all y ∈ D. (3.1)

The distribution of Y , with constraint (3.1), is precisely the general formulation

for skewing symmetric distributions pursued in Wang, Boyer, and Genton (2004).

Specialising from the most general case, if π is taken to be the distribution or

survival function of a distribution symmetric about zero, P say, then 2P (y)g(y)

is also a skew density function. And specialising a little more, a one-parameter

extension of g which allows skewness is afforded by taking P (y) = Q(λy), say,

where λ ∈ R and Q is the distribution function of a symmetric distribution with

no further shape parameters. This, the density 2Q(λy)g(y), is the celebrated

formulation of Azzalini (1985) in which Q is often taken to be the distribution

function G corresponding to g. An enormous literature has arisen on this kind

of skew-g model; see, for example, Azzalini (2005) and Genton (2004).

It can be argued, therefore, that transformations of scale work in the sense

of simplicity of normalising constant because they arise by appropriate transfor-

mation of the random variable associated with skew-g distributions, which have

the same simple normalising constant. The families of distributions with den-

sities of the forms 2g{Π−1(x)} and 2π(x)g(x) are, however, quite different and

competing/complementary; some comparison of the two is made in Section 6.1.

3.2. Special cases I: Sf = R+

When π is a distribution function, Π(y) =
∫ y
−∞ π(w)dw when the definite

integral exists and it is then called the first iterated distribution function (Bassan,

Denuit, and Scarsini (1999)). Integration by parts shows this Π(y) also to equal∫ y
−∞(y − w)π′(w)dw which, inter alia, is the numerator of the mean residual

life function associated with density π′. These distribution functions yield Π

with range Sf = R+. In particular, when D = R, a sufficient condition both for

existence of the definite integral and limy→−∞Π(y) = 0 is that π(y) = o(|y|−1) as

y → −∞; this retains all distributions with finite mean, that is, all distributions

except those with Cauchy-like tails and heavier. Precisely these Πs were utilised

in a quite different context in Jones (2008a).

What are good choices of distribution function π in this context? Few choices

of π are fully tractable in the sense of possessing explicit formulae both for

its integral Π and for the inverse of that integrated function, t = Π−1. For

example, the natural, and popular in terms of skew-g distributions, choice of

πN (y) = Φ(λy), the normal, N(0, 1/λ2), distribution function, yields ΠN (y) =

yΦ(λy) + λ−1ϕ(λy), where ϕ is the standard normal density, but this is not

explicitly invertible. This need not, however, be a total bar to employing t = Π−1
N

in (1.1).
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(a) (b)

Figure 1. Examples of the functions (a) πT and (b) ΠT belonging to the t(2)
distribution: b = 0.2 (dashed lines), b = 1 (solid lines), b = 5 (dot-dashed
lines).

On the whole real line, two symmetric distributions stand out as being espe-

cially tractable in this kind of respect. These are the t distribution on two degrees

of freedom, t(2), and the logistic distribution; they have distribution functions,

suitably scaled, given by

πT (y) =
1

2

{
1 +

y√
4b+ y2

}
and πL(y) =

eay

1 + eay
,

respectively, a, b > 0. I first found the tractable nature of these distribution

functions to be advantageous in Jones (2004), and then even more so because

of their explicit first iterated distribution functions in Jones (2008a). They star

again here because those first iterated distribution functions are also explicitly

invertible:

• for the t(2) distribution, ΠT (y)=(1/2)(y+
√

4b+y2) so that Π−1
T (x)=x−(b/x),

that is, Π−1
T (x) = t1(x) given at (1.2). The remarkable t(2) distribution (Jones

(2002a)) strikes again: the t(2) distribution turns out to be at the heart of

why the Cauchy-Schlömilch transformation works! πT and ΠT are shown in

Figure 1;

• for the logistic distribution, ΠL(y) = a−1 log(1+eay) which leads to Π−1
L (x) =

a−1 log(eax − 1): the logistic distribution therefore leads precisely to the al-

ternative transformation of scale of Jones (2010), Π−1
L (x) = t2(x) given at

(1.3).

Symmetric distributions on finite support also lead to distributions on R+. In

fact, they result in transformations of scale that are defined by separate formulae

above and below some threshold value. A tractable example corresponds to the



DISTRIBUTIONS BY TRANSFORMING SCALE 755

uniform distribution on (−c, c) which leads to transformation of scale t3 given

at (1.4). One has to be careful with finite support π to ensure that Π is then

applied only with g on support Sg ⊆ D.

Yet other examples, not shown here, can be constructed by taking π to be

non-monotonic. But such πs typically introduce multimodality in a way that,

to this author at least, is far less meaningful and interpretable than employing

finite mixtures of unimodal components.

3.3. Relationship with self-inverse functions

The special cases of transformation of scale that result in distributions on

R+ were also the subject, from a much less well understood standpoint, of Jones

(2010). Above, I claimed that t(x) in (1.1) equals Π−1(x) where Π(y)−Π(−y) = y

for all y ∈ D and here I constrain D = R and Π such that limy→−∞Π(y) = 0. But

in Jones (2010), I claimed that t(x) should have the form x−s(x) where s : R+ →
R+ is an onto monotone decreasing function that is self-inverse i.e. s{s(x)} = x

or s−1(x) = s(x). Here is a demonstration that these two formulations are

equivalent. Write s(x) = x− t(x) for x = Π(y) > 0 and y ∈ D. Then,

s{s(x)} = x

⇔ s(x)− t{s(x)} = s(x) + t(x)

⇔ t(x) = −t{x− t(x)}
⇔ t{Π(y)} = −t[Π(y)− t{Π(y)}]
⇔ − y = t{Π(y)− y}
⇔ Π(−y) = Π(y)− y.

The essential equivalence between inverse first iterated distribution functions

of most symmetric distributions, and some extensions thereof, and self-inverse

functions would appear to be new. It means that examples of one can, of course,

be used to generate examples of the other. For example, from the special cases

in Section 3.2, the inverse iterated t(2) distribution function leads to the self-

inverse function b/x, while the inverse iterated logistic distribution function leads

to the self-inverse function −a−1 log(1 − e−ax). Likewise, self-inverse functions

(e.g. Jones (2010), Kucerovsky, Marchand, and Small (2005)) can be used to

generate symmetric distributions. However, it seems to be easier to first think

of symmetric distribution functions and to then work out their equivalent self-

inverse functions than to first think of self-inverse functions and to then work

back to their equivalent symmetric distribution functions. Moreover, the Π−1

formulation is more general than the self-inverse formulation, as the following

section bears witness.
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3.4. Special cases II: Sf = R

Suppose that D = R and, for sufficiently large y, π(y) > π(−y) where

π = Π′. If for y → −∞, π(y) tends to zero as, or more slowly than, |y|−1

then f(x) = 2g{Π−1(x)} will be a valid density on the whole of R. The precise

manner in which π — which we hereafter take to be monotone — behaves for

minus large y influences the weight of the left-hand tail of f which, in turn,

induces positive skewness; see Sections 4.2 and 4.3. The densities f(−x), x ∈ R,
are all available too by changing the transformation from the inverse of Π(y)

to the inverse of −Π(−y) = y − Π(y). They have negative skewness and can

be thought of as emanating from π being the survival function counterpart of a

distribution function.

A natural distribution to consider with Cauchy-like tails is, of course, the

Cauchy distribution itself. It can readily be seen that for the Cauchy distribution

with signed scale parameter d ∈ R\{0},

ΠC(y) =
1

2

[
y +

1

π

{
2y tan−1(dy)− 1

d
log(1 + d2y2)

}]
, y ∈ R,

and limd→0ΠC(y) = y/2. Following Azzalini (1985), the device of allowing d to

take positive and negative values within π is used to accommodate both distri-

bution and survival function versions at once. However, Π−1
C is not explicitly

available.

A more tractable alternative that corresponds to a heavy-tailed density on R
results in transformation t4 given at (1.5). This corresponds to the very heavy-

tailed distribution with density

d

4 (1 + d|y|)3/2
, y ∈ R, (3.2)

for d > 0. Both distribution and survival functions for π are accommodated if

d ∈ R\{0}, in which case

πD(y) = I(dy > 0)− sgn(dy)

2
√

1 + |dy|
, y ∈ R,

and the corresponding Π function, which has the explicit inverse t4, is given by

ΠD(y) = yI(dy > 0) +
1

d

(
1−

√
1 + |dy|

)
, y ∈ R, (3.3)

and limd→0ΠD(y) = y/2 by appropriate choice of constant of integration. πD
and Πd are shown for some values of d in Figure 2.
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(a) (b)

Figure 2. Examples of the functions (a) π and (b) ΠD belonging to the
distribution with density (3.2): d = 5 (dashed lines), d = 1 (solid lines),
d = −2 (dot-dashed lines).

3.5. An interesting class

The need for very heavy-tailed distributions to act as π is obviated, and all

other symmetric distribution functions, R say, brought back into the reckoning,

if distribution functions are replaced by monotone functions tending to nonzero

constants between zero and one. The latter are conveniently parametrised as

(1− α)/2 and (1 + α)/2 for some −1 < α < 1 as y → −∞ and ∞, respectively.

That is, take

π(y) =
1

2
(1− α) + αR(y), y ∈ R,

and hence

ΠP (y) =
1

2
(1− α)y + αΠR(y), y ∈ R. (3.4)

Here, any scale parameter in R is set to a fixed value and its previous role

of controlling skewness is transferred to α. Notice that α = 0 corresponds to

ΠP (y) = 1/2 for all y ∈ R while α = 1 and α = −1, if allowed, would correspond

to π = R and 1−R, respectively. The sense in which α is a skewness parameter

will be explored in Section 4.3.

The most extreme case of this construction in terms of choice of R is to set

πTP (y) =
(1− α)

2
I(y < 0) +

(1 + α)

2
I(y ≥ 0), − 1 < α < 1,

which leads to the two-piece density, which is based on transformation t5 given at

(1.6). As implied by the references given in the Introduction, this is an especially

important and well-established special case of the methodology of this paper.
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(a) (b)

(c)

Figure 3. Examples of the functions (a) πS , (b) ΠS (both given by (3.5))
and (c) density (3.6) when g = ϕ: α = 0.6 (dashed lines), α = 0.3 (solid
lines), α = −0.6 (dot-dashed lines) .

It is the abrupt step in πTP at y = 0 that causes the transformation of
scale density derived from it to exhibit its two-piece nature; in fact, the two-

piece density consists of differently scaled versions of the left- and right-hand

halves of g joined in a continuous fashion at zero. Amelioration of the step in
πTP by utilising a smooth, non-degenerate, R leads to other transformations of

scale of which a tractable one is given by t6 at (1.7): this corresponds to setting

R(y) = πT (y) with b = 1/4, that is, once more, the t distribution on 2 degrees of
freedom. The corresponding π and Π functions, called πS and ΠS , respectively,

are graphed in Figure 3(a),(b) for certain choices of α. Their formulae are simply

πS(y) =
1

2

(
1 +

αy√
1 + y2

)
, ΠS(y) =

1

2

(
y + α

√
1 + y2

)
, y ∈ R. (3.5)

The function ΠS and its inverse given at (1.7) are closely related to the “sinh-
arcsinh transformation” introduced in the context of transforming random vari-
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ables in Jones and Pewsey (2009). Explicitly, in the transformation of scale case,

if one rescales the distribution fS(x) = 2g{t6(x)} by the factor 2/
√
1− α2, the

rescaled density is√
1− α2 g

{
1√

1− α2
(x−α

√
1 + x2)

}
=

1

cosh ϵ
g
[
sinh{sinh−1(x)−ϵ}

]
, (3.6)

where ϵ = tanh−1 α.

Alternatively, use of general b in πT used as R within ΠP leads, for suitably

small b > 0, to explicit smoothed approximations to the two-piece density.

The distributions of this subsection potentially have the greatest practical

relevance on R: densities (3.6) are graphed when g is the standard normal density,

ϕ, in Figure 3(c).

4. Attractive Properties of Transformation of Scale

I have already stressed the simplicity of the normalising constant in (1.1)

relative to the difficulty of obtaining the normalising constant in models of the

form g{t(x)} in general, and the fact that the normalising constant does not

depend on any parameters involved in t= Π−1. Model (1.1) has other attractive

properties, the most striking of which are described here; see Jones (2010) for

more when Sf = R+.

4.1. Modality

As a ‘pulling about’ of the density g2(x) = 2g(2x), the density at (1.1) takes

precisely the same values as g2 in precisely the same order, just occurring at

a different ‘rate’ (determined by t = Π−1). Immediately, then, the density at

(1.1) has the same modality as g2 and hence g and, in particular, unimodal g

leads to unimodal f . Moreover, since the mode of unimodal g is at 0, the mode of

unimodal f is explicitly given by x0 = Π(0). For example, the modes of unimodal

distributions using transformations of scale t1, . . . , t6 are
√
b, (log 2)/a, c/4, 1/d,

0 and α/2, respectively. Few families of distributions outside the transformation

of scale class have such immediate and explicit modality properties.

4.2. Tails

For clarity in this subsection, consider tail behaviour in the case that π(y) >

π(−y) for sufficiently large y, that is, for transformations related to distribution

functions rather than survival functions. Of course, tails are switched in the

other case when t(−x) replaces t(x).

First, consider the cases corresponding to limy→−∞ π(y) = 0. Since then

Π−1(x) ∼ x as x → ∞, f(x) = 2g(Π−1(x)) retains the same right-hand tail
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behaviour as g(x). These transformations of scale otherwise work by lightening

the left-hand tail of f relative to that of g, to the point of restricting the range of

f to positive values of x, and then to controlling its behaviour at and near zero,

as described below.

When Sf = R+, f(0) = 0. The precise order of contact of f to the horizontal

axis as x → 0 is controlled by the left-hand tail behaviour of π: the heavier its

tail, up to but not including the O(|y|−1) restriction mentioned in Section 3.2,

the lighter the contact of f . For example, for π functions with O(|y|−τ ) left-hand

tail, τ > 1, f(x) ∼ 2g(x−1/(τ−1)) as x → 0.

When Sf = R:

• π functions with O(|y|−1) left-hand tail make Π(|y|) ∼ − log |y| as y → −∞,

so that the left-hand tail of f(x) = 2g(Π−1(x)) decreases as g(e−x), which is

very much lighter than the original left-hand tail of g;

• π functions with O(|y|−τ ) left-hand tail, 0 < τ < 1, make the left-hand tail

of f decrease as g{|x|1/(1−τ)} which is also lighter than the original left-hand

tail of g but not so light as g(e−x). The closer is τ to 1, the lighter the tail of

f .

• heavier left-hand tails of f arise when limy→−∞ π(y) = (1−α)/2 is a nonzero

constant as in Section 3.5. In fact, π functions with constant limits retain

the orders of magnitude of both of g’s tails. The tails of f still differ from

each other when α ̸= 0, but by being rescaled by different scaling factors

in the ratio (1 − α) : (1 + α). In this respect, these transformation of scale

distributions all behave like their two-piece special case.

The left-hand tail behaviour described above is illustrated in the case that

g has simple exponential tails, g(x) ∼ e−|x| as x → ±∞, as, for example, in the

Laplace and logistic distributions, in Figure 4. There, the cases of a non-zero

limit of π and of τ = 1/2, 2 and 5 are illustrated, corresponding to tails of f going

as 2 times exp(−|x|), exp(−x2), exp(−1/x) and exp(−1/x1/4), respectively.

The differences between the left- and right-hand tails of f are responsible for

its skewness which is investigated further in the next subsection.

4.3. Skewness

Unimodal transformation of scale distributions lend themselves admirably

to investigation via the density-based asymmetry function of Avérous, Fougères,

and Meste (1996), Boshnakov (2007), Critchley and Jones (2008), and O’Hagan

(1994, Sec. 2.6). This asymmetry function arises by comparing, in a suitably

scaled way, the distances from the mode of a unimodal distribution to the points

to its left and to its right at which the density function has the same level. See

Figure 1 of Critchley and Jones (2008) for graphical illustration. Write xL(p) and
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Figure 4. Left-hand tails of transformation of scale densities based on g
with simple exponential tails and, from the left, a non-zero limit of π and of
τ = 1/2, 5 and 2, respectively.

xR(p) for the left- and right-hand solutions of f(x) = pf(x0), where x0 is the

mode of unimodal f . Then, in general, the density-based asymmetry function is

given by

γ(p) ≡ xR(p)− 2x0 + xL(p)

xR(p)− xL(p)
, 0 < p < 1.

Now write gR(y) = g(y)I(y > 0) for the ‘right-hand half’ of g, and take

cg(p) = g−1
R {pg(0)} > 0.

This function is typically explicitly available for simple symmetric g; for example,

when g = ϕ, the standard normal density, cg(p) = ϕ−1
R (p/

√
2π) =

√
2(− log p).

Then, it can easily be seen that, as well as x0 = Π(0), we have xR(p) = Π{cg(p)}
and xL(p) = Π{−cg(p)} = Π{cg(p)} − cg(p) so that, for transformation of scale

distributions,

γ(p) =
2

cg(p)
[Π{cg(p)} −Π(0)]− 1, 0 < p < 1. (4.1)

Since π and cg(p) are both typically explicitly available, transformation of scale

distributions afford explicit mathematical formulae for γ(p) through (4.1). Such

tractability of density-based asymmetry functions has previously been singularly

lacking in the literature. Indeed, it was the quest for distributions with tractable

density-based asymmetry functions that initially inspired the current work.

Now concentrate on increasing π. Then, γ(p) > 0 for all 0 < p < 1 because

Π(y) − 2Π(0) + Π(−y) is an increasing function of y for all y > 0, and hence

is positive for all y > 0. That is, transformation of scale based on increasing π

induces positive skew in f in this quite strong sense.
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(a) (b)

Figure 5. Asymmetry functions γ(p) when (a) Π = ΠD given by (3.3) and,
in order of increasing amount of skewness, d = −1, 0.1, 0.5, 1, 2.5, 10, and
(b) Π = ΠS given by (3.5) and, in order of increasing amount of skewness,
α = −0.6,−0.3, 0.05, 0.3, 0.6, 0.9.

Next, let π involve a scale parameter λ > 0 so that π is written π(λx) as in

Azzalini (1985) and Π becomes λ−1Π(λx). Then,

∂γ(p)

∂λ
=

2

λ2cg(p)
[λcg(p)π{λcg(p)}+Π(0)−Π{λcg(p)}] .

The quantity in square brackets is an increasing function of λcg(p) and, since

its value at 0 is 0, is consequently positive. Therefore, density-based asymmetry

increases with increasing λ > 0. This applies to transformations t1, . . . , t4 when

λ = 1/2b1/2, a, 1/c, and d, respectively. See Jones (2010, Figures 4 and 5) for

graphs of asymmetry functions when Π corresponds to transformations t1 and

t2, and Figure 5(a) in this paper when Π = ΠD given at (3.3) so that Π−1
D = t4.

On the other hand, the two-piece distribution associated with t5 has the spe-

cial property of constant density-based asymmetry (Boshnakov (2007), Critchley

and Jones (2008)); in fact, γ(p) = α for all p. Moreover, the asymmetry function

associated with all transformations of scale of the form (3.4) is

γ(p) = α

(
2

cg(p)
[ΠR{cg(p)} −ΠR(0)]− 1

)
,

which is simply α times the asymmetry function associated with ΠR. This is a

very explicit sense in which α acts as a skewness parameter in densities (1.1) based

on transformations (3.4). The example of the asymmetry function associated

with ΠS given by (3.5) is shown in Figure 5(b).

Both frames of Figure 5 show asymmetry functions that are fairly ‘flat’ as p

varies, implying skewness that arises from a consistent ‘widening’ of the densities
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to the right at all heights, as opposed to skewness induced, for example, by a

heavier tail to the right than to the left.

The scalar skewness measure most naturally associated with density-based

asymmetry (Critchley and Jones (2008)) is that of Arnold and Groeneveld (1995):

γ = 1− 2F (x0) where F is the distribution function associated with unimodal f

and x0 is again the mode. In fact, because

γ = f(x0)

∫ 1

0
γ(p){xR(p)− xL(p)}dp ∝

∫ 1

0
γ(p)cg(p)dp

and, in the case of transformation of scale (3.4), γ(p) is directly proportional to

α, then so is γ. We also readily find that, in general,

F (x0) = 1− 2

∫ ∞

0
π(y)g(y)dy so that γ = 4

∫ ∞

0
π(y)g(y)dy − 1.

Note that this is not the same as the Arnold–Groeneveld measure associated with

skew-g density 2π(y)g(y).

It is also the case that, in the classical van Zwet (1964) sense, density (1.1)

is more positively skewed than the density 2π(y)g(y) whenever π is increasing

because the transformation between the two, X = Π(Y ), is convex.

On R, the most positively skewed version of f when π is a scaled distribution

function is the half-g density 2g(y)I(y > 0), but when Π is of the form (3.4) it is

2g{Π−1
R (y)}.
More on the skewness properties of transformation of scale distributions may

be found in Fujisawa and Abe (2012).

4.4. Random variate generation

If a random variable A from the underlying symmetric distribution with

density g is available, then a random variable X ∼ 2g{Π−1(x)} can be obtained

from A with the help of an independent uniform (0,1) random variable, U . In

fact, simply take

X = Π(A)−A I{U > π(A)}. (4.2)

This is because Y ∼ 2π(y)g(y) can be obtained as A I{U ≤ π(A)} − A I{U >

π(A)} (Wang, Boyer, and Genton (2004, p.1262)). X = Π(Y ) and Π(−y) =

Π(y)− y.

4.5. An extended Khintchine theorem

On R, X ∼ g for unimodal g, with mode at zero, if and only if X has

a representation as a uniform scale mixture of the following form: X ∼ UZ

where U ∼ U(0, 1) and Z ∼ fZ where fZ(z) = −zg′(z), z ∈ R, and U and Z
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are independent. This is Khintchine’s theorem (Dharmadhikari and Joag-Dev

(1988, Sec. 1.2), Feller (1971), Jones (2002b), Khintchine (1938), Shepp (1962)).

Mudholkar and Wang (2007) proved a Khintchine-type theorem for unimodal

R-symmetric densities; R-symmetric densities are densities, fR, of R, say, on

support R+ such that, for some θ > 0, fR(r) = fR(θ/r) for all r > 0. See also

Chaubey, Mudholkar, and Jones (2010), where R-symmetric distributions were

identified with Cauchy-Schlömilch transformation of scale distributions, that is,

using (1.2). Their development can be extended, as is done in the web-appendix,

to prove the following simple and elegant extension of the Khintchine theorem

for general unimodal distributions of type (1.1).

Proposition 2. X ∼ f where f is of form (1.1) and is unimodal if and only if

X ∼ UZ +Π(Z)− Z (4.3)

where U ∼ U(0, 1), Z ∼ −zg′(z), z ∈ R, and U and Z are independent.

Note that this theorem reduces immediately to the usual Khintchine theorem

for symmetric unimodal g when Π(Z) = Z and, after a little more work, to the

result in Chaubey, Mudholkar, and Jones (2010) when Π(Z) = ΠT (Z).

Formula (4.3) provides an alternative means of random variate generation

from f to that in (4.2) when f is unimodal.

4.6. Entropy

Transformation of scale densities stay close to their symmetric density roots

in the sense that certain properties of f are inherited directly from g. One such is

modality (Section 4.1). Another is entropy, a recent statistical overview of which

is provided in Ebrahimi, Soofi, and Soyer (2010). The Shannon entropy, S(f), of

a continuous density, f , is given by −
∫
Sf

f(x) log{f(x)}dx; the Rényi entropy is

Rρ(f) = (1− ρ)−1 log
∫
Sf

fρ(x)dx, ρ > 0, ρ ̸= 1.

Proposition 3. Let g2 be the rescaled version g2(x) = 2g(2x) of g(x), and let E

denote either the Shannon entropy S or the Rényi entropy Rρ. Then

E(f) = E(g)− log 2 = E(g2).

The proof of Proposition 3 for the Shannon entropy can be found in the

web-appendix, while that for the Rényi entropy is completely omitted.

5. On Maximum Likelihood Estimation

Let X1, . . . , Xn ∈ R be a random sample assumed to come from the location-

scale version of (1.1) with support R, namely the distribution with density

2σ−1g
(
Π−1

λ (σ−1(x− µ)); ν
)

(5.1)
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where µ ∈ R is the location parameter, σ > 0 is the scale parameter and, for

concreteness, ν is a shape parameter associated with g and λ is a skewness

parameter that forms part of Π = Πλ. (When the data are nonnegative, µ can

usually be left out.)

5.1. Expected information matrix

Generically, write ιθ1θ2 for the element of the expected information matrix

associated with θ1 and θ2, divided by n. In this section, a prime denotes dif-

ferentiation with respect to x, and superscripts ν and λ denote differentiation

with respect to each of those parameters. For example, (log g)′λ(x) denotes

∂2(log g(x))/∂x∂λ. By way of shorthand, the arguments of integrands will be

omitted. Also, hats over parameters will denote their maximum likelihood esti-

mators.

Then, it turns out that, after a certain amount of manipulation,

ιµµ =
2

σ2

{∫
Π′′

(Π′)2
g′ −

∫
1

Π′ (log g)
′′g

}
,

ιµσ =
2

σ2

{∫
Π′′Π

(Π′)2
g′ −

∫
Π

Π′ (log g)
′′g

}
,

ιµλ = − 2

σ

{∫ (
Πλ

Π′

)′

g′ +

∫
Πλ

Π′ (log g)
′′g

}
,

ιµν = 0,

ισσ =
1

σ2
+

2

σ2

{∫
Π′′Π2

(Π′)2
g′ −

∫
Π2

Π′ (log g)
′′g

}
,

ισλ = − 2

σ

{∫ (
Πλ

Π′

)′

Πg′ +

∫
ΠλΠ

Π′ (log g)′′g

}
,

ισν =
2

σ

∫
Π(log g)′νg =

1

σ

∫
x(log g)′νg,

ιλλ = −2

{∫ (
Πλ

Π′

)λ

Πλg′ +

∫
(Πλ)2

Π′ (log g)′′g

}
,

ιλν = 0,

ινν = −2

∫
Π′(log g)ννg = −

∫
(log g)ννg.

In the above, there is no dependence on µ whilst the submatrix associated

with µ and σ has elements proportional to σ−2, that associated with λ and ν

has elements independent of σ, and the remainder are proportional to σ−1. A

relatively unusual feature of four-parameter models that we have here is the

existence of two zero elements, namely the elements associating ν̂ with each of µ̂
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and λ̂. These zeroes arise because of the evenness of g and Πλ and the oddness of

(log g)′ν . The second formulae for ισν and ινν arise from the properties of Π; the

information matrix elements associated with ν̂ are, therefore, all independent of

Π.

What requirements are there on Π and its derivatives for further zeroes to

appear in the information matrix? Since g and (log g)′′ are even and (log g)′ is

odd, and given that Π should not depend on g, ιµσ = 0 requires Π/Π′ to be

an odd function and Π′′Π/(Π′)2 to be an even function. Since, in addition, Πλ

is even and Π′λ is odd, these requirements also result in ισλ = 0. Now from

Π(x) − Π(−x) = x, Π′(x) + Π′(−x) = 1 and hence Π′′(x) = Π′′(−x), the first

requirement translates, via −(Π/Π′)(x) = (Π/Π′)(−x) = (Π(x)−x)/(1−Π′(x)),

to

xΠ′(x) = Π(x). (5.2)

Since this leads to xΠ′′(x) = 0, the second requirement is also satisfied. Equa-

tion (5.2) is satisfied only if Π is piecewise constant. The only one parameter

transformation of this type corresponds precisely to transformation t5 and the

two-piece distribution. The achievement of these four zeroes in the expected

information matrix implies an attractive asymptotic independence between the

location-skewness pair of parameters {µ, λ} and the scale-tail pair of parame-

ters {σ, ν}. This is the only known four-parameter family of distributions on R
with this property (Jones and Anaya-Izquierdo (2011)). Further four-parameter

distributions on R with a high level of parameter orthogonality, within the trans-

formation of scale class as well as without, therefore remain elusive.

The specific property of some skew-g distributions that their expected in-

formation matrices are singular at parameter configurations corresponding to

symmetry (e.g., Ley and Paindaveine (2011)) does not seem to arise for trans-

formation of scale distributions (or other skew-symmetric distributions).

5.2. A small simulation study

In order to check that maximum likelihood estimation is practicable, a small

simulation study was run. Using the random variate generation algorithm given

in Section 4.4, 10, 000 samples of sizes n = 100 and n = 500 were generated from

transformation of scale distributions with density (3.6) with added location and

scale parameters as at (5.1); and with g = ϕ, µ = 0, σ = 1 and α = 0.25, 0.5, 0.75.

Table 1 shows the bias, mean squared error (MSE) and 95% confidence interval

(CI) coverage of each of µ̂, σ̂ and α̂. The confidence intervals are those obtained

by inverting the observed information matrix. Standard errors of estimated biases

and MSEs are given in brackets.

Briefly, biases and mean squared errors are generally small, with the expected

improvement as n increases. Where biases are significant, they are consistently
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Table 1. Simulation Results for Maximum Likelihood Estimation of Param-
eters of Location-Scale Form of Distribution With Density (3.6).

bias (s.e.) MSE (s.e.) 95% CI coverage
n = 100, α = 0.25
µ̂ -0.0121 (0.0040) 0.1617 (0.0026) 0.927
σ̂ -0.0388 (0.0011) 0.0132 (0.0005) 0.941
α̂ 0.0093 (0.0020) 0.0395 (0.0007) 0.925
n = 100, α = 0.5
µ̂ -0.0413 (0.0043) 0.1900 (0.0029) 0.923
σ̂ -0.0704 (0.0020) 0.0442 (0.0014) 0.954
α̂ 0.0237 (0.0019) 0.0361 (0.0006) 0.911
n = 100, α = 0.75
µ̂ -0.0759 (0.0048) 0.2403 (0.0032) 0.855
σ̂ -0.2066 (0.0041) 0.2097 (0.0034) 0.852
α̂ 0.0349 (0.0016) 0.0261 (0.0003) 0.818
n = 500, α = 0.25
µ̂ -0.0006 (0.0016) 0.0262 (0.0004) 0.947
σ̂ -0.0063 (0.0004) 0.0015 (0.0000) 0.953
α̂ 0.0010 (0.0008) 0.0061 (0.0001) 0.950
n = 500, α = 0.5
µ̂ -0.0049 (0.0017) 0.0305 (0.0004) 0.944
σ̂ -0.0094 (0.0006) 0.0035 (0.0001) 0.950
α̂ 0.0032 (0.0007) 0.0056 (0.0001) 0.940
n = 500, α = 0.75
µ̂ -0.0161 (0.0020) 0.0422 (0.0006) 0.942
σ̂ -0.0270 (0.0012) 0.0158 (0.0004) 0.956
α̂ 0.0066 (0.0006) 0.0042 (0.0001) 0.936

negative for estimation of µ and σ and positive for estimation of α. Estimation
quality decreases as (positive) α increases. Confidence interval coverage is good,
if slightly low, when n = 100 and α = 0.25, 0.5 but deteriorates somewhat when
n = 100 and α = 0.75; by the time n = 500, CI coverage is very good for all
tested values of α.

Many further inferential issues such as possible alternative parameter esti-
mation methods for small n, methodology for specification of elements of the
model, especially Π, and robustness to misspecification thereof, are important
topics for future work. Two examples of the application of transformation of
scale models to data can be found in Fujisawa and Abe (2012).

6. Discussion

6.1. Comparison

So, where do distributions with densities given by (1.1) potentially fit rel-
ative to competing existing general strategies for generating general families of
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distributions based on symmetric density g and skewing functions t or equiva-

lently Π? Here, I am thinking principally of the Azzalini-type skew-g model of

the form utilised in Sections 2 and 3.1, and transformation of random variable

models based on densities of the form 2t′(x)g{t(x)}. Also relevant is the very

special transformation of scale distribution that is the two-piece distribution. Yet

other important competitors, such as that espoused by Ferreira and Steel (2006),

are not considered here.

On R, transformation of scale distributions seem to have some tractability

advantages, listed here. Given unimodal g, they are immediately unimodal with

explicit mode, whereas skew-g and transformation of random variable models are

not necessarily so; both the latter often are unimodal, but this has to be checked

on a case-by-case basis. See Section 3.2 of Azzalini and Regoli (2012) for what

can be said in general in the skew-g case. Relatedly, only the transformation of

scale approach yields such a beautiful Khintchine-type theorem. Also, only the

transformation of scale approach is amenable to explicit density-based asymmetry

analysis. And only the transformation of scale approach provides a way to alter

skewness aspects of the density g without affecting the entropy of the distribution.

On the other hand, it is only the two-piece and transformation of random

variable approaches that yield straightforward distribution and quantile func-

tions in terms of those of g. The transformation of random variable approach,

by its very nature, is especially well suited to skewness analysis by the classical

transformation-based approach of van Zwet (1964). In what might also be con-

sidered a slender advantage, both transformation of scale and transformation of

random variable distributions afford skew distributions, including the two-piece,

whose tails have the same asymptotic order as those of g. This is not always

true of skew-g distributions, for which typically only one tail remains the same

as the corresponding tail of g. That all said, transformation of scale is probably

the weakest of the three main competitors considered here in terms of plausible

underlying physical generation processes.

In a different direction, as discussed in Section 5, transformation of scale,

like many competing approaches, appears not to have any of the difficulties with

maximum likelihood inference associated with the skew-g distribution. It has

been argued elsewhere (Jones (2008b), rejoinder) that two-piece distributions

are at least broadly comparable to skew-g distributions in general, and that the

likelihood fitting considerations of Jones and Anaya-Izquierdo (2011) give it a

slight edge.

On R+, the transformation of scale distributions compete only, amongst

the above classes, with transformation of random variable models. When

t(x) = log(x), the latter are the important class of log-symmetric distributions

(Lawless (2003), Seshadri (1965)). They are natural competitors/complements
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to the R-symmetric distributions (Mudholkar and Wang (2007)) as discussed in

Chaubey, Mudholkar, and Jones (2010) and Jones (2008c), which are none other

than transformation of scale distributions using t1(x) (Baker (2008), Chaubey,

Mudholkar, and Jones (2010).

6.2. Other domains

The general approach also works on other domains and, at least in one case,

with real practical promise. In Jones and Pewsey (2012), a similar approach

affords a transformation of scale family of distributions which appears to be

amongst the best four-parameter unimodal families of distributions on the circle.

Retaining unimodality whilst ‘skewing’, which is trivial in this approach, seems

especially difficult for many other approaches on the circle.

6.3. Multivariate considerations

Finally, some brief words on the multivariate case. A natural approach is

to apply marginal transformations Xi = Πi(Yi) to an Azzalini-type multivariate

skew-g distribution (e.g., Azzalini and Capitanio (2003), Azzalini (2005)) with

marginals 2πi(y)g(y), i = 1, . . . , d. This is explored in Jones (2014). How-

ever, ‘most natural’ does not necessarily correspond to ‘most useful’. If all

marginals being of transformation of scale type remains the focus, a general

purpose methodology, most obviously copulas (e.g., Nelsen (2010)), can be em-

ployed. In higher dimensions, this has the added advantage of being able to

cope with a variety of marginals of different type both within and without the

transformation of scale class. If marginals of original variables are secondary, a

multivariate distribution might be based on a general linear transformation of

independent transformation of scale components (Ferreira and Steel (2007)). Ex-

panding t(x) in (1.1) to t(x1, . . . , xd) results in distributions defined by contour

shape (Fernández, Osiewalski, and Steel (1995), Arnold, Castillo, and Sarabia

(2008)), but choosing t(x1, . . . , xd) to retain a simple normalising constant is a

challenge. See Section 1 of Jones (2014) for a slightly fuller discussion.

Acknowledgement

I am very grateful to the Editor, Associate Editor and two referees for their

encouraging comments, and for prompting a beneficial expansion of the article.

References

Arnold, B. C., Castillo, E. and Sarabia, J. M. (2008). Multivariate distributions defined in terms
of contours. J. Statist. Plann. Inference 138, 4158-4171.

Arnold, B. C. and Groeneveld, R. A. (1995). Measuring skewness with respect to the mode.
Amer. Statist. 49, 34-38.



770 M. C. JONES

Avérous, J., Fougères, A. L. and Meste, M. (1996). Tailweight with respect to the mode for

unimodal distributions. Statist. Probab. Lett. 28, 367-373.

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist.

12, 171-178.

Azzalini, A. (2005). The skew-normal distribution and related multivariate families (with dis-

cussion). Scand. J. Statist. 32, 159-200.

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry

with emphasis on a multivariate skew t distribution. J. Roy. Statist. Soc. Ser. B 65, 367-

389.

Azzalini, A. and Genton, M. G. (2008). Robust likelihood methods based on the skew-t and

related distributions. Internat. Statist. Rev. 76, 106-129.

Azzalini, A. and Regoli, G. (2012). Some properties of skew-symmetric distributions. Ann. Inst.

Statist. Math. 64, 857-879.

Baker, R. (2008). Probabilistic applications of the Schlömilch transformation. Commun. Statist.
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