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Abstract: With various sources and large amounts of genomic and proteomic data

accumulating, the importance of integrative analyses of multiple sources of data has

been increasingly recognized. A natural approach is to combine multiple models,

each built on one source of data. A challenge however is to account for different

local information contents of different sources of data: the choice of the weight on

each candidate model (and thus each source of data) may depend on the input

for which a prediction is to be made, suggesting that the constant weights used in

most existing approaches may not be optimal. Here we propose an input-dependent

weighting (IDW) scheme with the weight being the probability of each model’s giv-

ing a correct prediction for the given input. The weights can be estimated based

on regression using training data. We apply IDW to discriminating human heart

failure etiology using two sources of gene expression data, and to gene function

prediction by a combined analysis of gene expression and protein-protein interac-

tion data. It is demonstrated that IDW may perform better than some standard

approaches. Input-dependent weights can be also adopted as a criterion for model

selection.

Key words and phrases: Classification, microarray data, model mixing, partial least

squares, prediction.

1. Introduction

We consider the problem of prediction in the presence of multiple mod-

els. There are two approaches: model selection and model combination/mixing

(Yang (2003)). In model selection, a model selection criterion measuring the

predictive performance of a model or the probability of its being the true model

is used to compare the models. Based on an estimate of the criterion using,

e.g., AIC (Akaike (1973)), BIC (Schwarz (1978)), cross-validation (CV) (Stone

(1974), Geisser (1975) and Efron (2004)), the bootstrap (Efron (1983), Efron

(1986) and Efron and Tibshirani (1997)), or some more recently developed adap-

tive model selection criteria (George and Foster (2000), Shen and Ye (2002) and

Shen, Huang and Ye (2004)), a “best” model is selected and then used in the
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subsequent analysis. A drawback of model selection is its instability (Breiman

(1996a)). In addition, one can argue that there is no single correct or best model

(Box (1980)). As an alternative, one may choose to combine multiple models,

usually by taking an equally or unequally weighted average of the outputs from

the candidate models; a key is how to choose the weights (see Ripley (1996) and

Hastie, Tibshirani and Friedman (2001) for reviews). Existing approaches in-

clude Bayesian model averaging (see Hoeting et al. (1999) for a review), stacking

(Wolpert (1992) and Breiman (1996b)), bagging (Breiman (1996c) and LeBlanc

and Tibshirani (1996)), random forests (Breiman (2001)), boosting (Freund and

Schapire (1997)), ARM (Yang (2001)) and using AIC/BIC as weights (Burnham

and Anderson (2002) and Hastie et al. (2001)). There have been discussions on

the choice between model selection and model mixing (e.g., Yang (2003), Yuan

and Yang (2003), Paik and Yang (2004) and Shen and Huang (2005)). The

general conclusion is that the choice depends on the application.

In a prediction problem, based on a given training dataset one first builds a

model, which can be either a selected model or a combination of multiple models.

Then for each case of a given test dataset, one predicts the response value using

the constructed model. In almost any of the existing approaches, a common fea-

ture is that neither the model selection criterion nor the weight in model mixing

depends on the test data. For example, AIC/BIC for a candidate model only

depends on the training data, not test data; the data-dependent penalty term

in adaptive model selection criteria (George and Foster (2000) and Shen and Ye

(2002)) also only depends on the training data; in BMA, the weight of each can-

didate model is the posterior probability of the model’s being correct or selected

given the training data, which again does not depend on test data. This can be a

problem in some applications. In our motivating example, we have datasets col-

lected from two independent institutions that are to be used to address the same

scientific question. Due to the heterogeneity of patient populations and different

study protocols, the datasets are quite different. It is possible that the datasets,

and hence the models based on them, cover different subspaces of the input space:

one works better in some subspace of the input while the other works better in

another subspace. For a given new input, depending on which subspace it falls

in or is closer to, we may choose to select or weight more on the corresponding

model. Therefore, we propose using test input-dependent weights, shortened as

input-dependent weights (IDWs) in the sequel, to select from or combine mul-

tiple models. An IDW for a candidate model is defined as the probability of

the model’s giving a correct prediction for a given input or, more generally, any

reasonable measure to quantify the predictive performance of the model for the

input. The weights can generally be estimated using regression techniques.
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2. Methods

2.1. Input-dependent weights

Suppose we have M candidate models f1, . . . , fM that can be built based on

a given training dataset (Xi, Yi), with Xi = (x1i, . . . , xpi)
T for i = 1, . . . , n. Our

goal is to predict the response Y ∗ for a new input X∗.

For concreteness, we first consider the classification problem where the re-

sponse is Yi = 0 or 1, and the output of each fitted model f̂m(Xi) is either 0

or 1. In most existing approaches to model mixing, the output from combining

models is

f̂G(X∗) = 1

{
M∑

m=1

wmf̂m(X∗)

M∑

m=1

wm > c

}
,

where c is a cut-off value used to dichotomize the output, and the wm’s are

constant weights, independent of the input X∗. In general, wm can be some

(estimated) predictive performance measure, averaged over the input space for

model fm, such as AIC/BIC.

In contrast to constant weights, we propose using input-dependent weights

(IDWs) wm(X∗), leading to the output

f̂IDW (X∗) = 1

{
M∑

m=1

wm(X∗)f̂m(X∗)

M∑

m=1

wm(X∗) > c

}
, (2.1)

where the weight

wm(X∗) = π̂(X∗; fm)

is an estimate of π(X∗; fm), the probability of model fm’s giving a correct pre-

diction for X∗, which can be estimated using the training data.

In our example, because we have a much larger number of predictor variables

than the sample size (i.e., p >> n), we propose using a linear model to estimate

wm(X∗). Specifically, for each model fm, we create a binary response variable

Zim for i = 1, . . . , n, and then fit a linear model

E(Zim) = π(X; fm) = γ0m + γT
mXi with Zim = 1{Yi = f̂m(Xi)} (2.2)

using partial least squares (PLS) (Wold et al. (1984)) with training data (Xi, Zim)

for i = 1, . . . , n, obtaining estimates γ̂0m and γ̂m for the unknown regression
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parameters, where γ0m is a scalar and γm is a p × 1 vector. The IDW for model

fm at an input X∗ is

wm(X∗) = γ̂0m + γ̂T
mX∗,

and constant weights can be regarded as the special case γ̂m = 0.

Since wm(X∗) is an estimate of a probability and there is no guarantee

that the output of the linear model will be between 0 and 1, we may want to

truncate wm(X∗) at 0 or 1 if it is smaller than 0 or larger than 1. Alternatively,

one may want to use logistic regression (or its penalized form to account for

p >> n) or other more flexible models to obtain better probability estimates.

In addition, rather than using training outputs as proposed here to estimate

γ0m and γm, one may want to use some form of predictive outputs to construct

Zim. For example, using leave-one-out cross-validation (LOOCV), we build f̂
(−i)
m

using the training data after deleting the ith observation (Xi, Yi), and define

Zim = 1{Yi = f̂
(−i)
m (Xi)}. Then we can proceed as before. Although LOOCV

is computationally more demanding, it may be necessary to use LOOCV when

the candidate models over-fit training data to different degrees. In our latter

example, the candidate models are built on different sources of data using the

same type of classifier, and adopting (2.2) will not become an issue.

The IDW method can be applied equally to classification or regression where

the output of each model is numerical. For example, in classification, the output

of a classifier can be a probability. Then we can adopt

f̂IDW (X∗) =

M∑

m=1

wm(X∗)f̂m(X∗)

M∑

m=1

wm(X∗)

, (2.3)

which is the final output for regression, and may need to be dichotomized by

comparing to a cut-off value, e.g., c = 1/2, in classification.

Accordingly, we can define Zim = L(Yi, f̂m(Xi)) or Zim = L(Yi, f̂
(−i)
m (Xi)),

where L(y, ŷ) is a minus loss function for an observed response y and its pre-

dicted value ŷ. For example, in regression, it can be negative squared error:

L(y, ŷ) = −(y − ŷ)2, or other robust (minus) loss functions. More generally, we

may adopt any criterion L((Xi, Yi); fm) that is (nearly) to be maximized un-

der each candidate model fm. For example, if there is an exact or approximate

likelihood for each model fm, it is natural to define Zim = L((Xi, Yi); f̂m) or

Zim = L((Xi, Yi); f̂
(−i)
m ), the (predicted) log-likelihood value at (Xi, Yi) under

the fitted model f̂m or f̂
(−i)
m . The argument for the choice between f̂m or f̂

(−i)
m

is the same as before.
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The weights can be also used as a criterion for model selection: we select

the model fm0
with the largest weight wm0

(X∗) = max1≤m≤M wm(X∗) and then

use its output f̂m0
(X∗) as the final prediction for X∗. Note that if we use the

weights as a model selection criterion, using the constant weights will always

select the same model for all the test data, whereas using IDWs may choose

different models for different X∗
i .

Because we are going to use PLS, NSC and RF as the models in our main

example, we review them briefly.

2.2. Partial least squares (PLS)

We use Y and X = (x1, . . . , xp)
T as generic notation to represent a binary

response variable and a vector of p input variables. We code the response as Y = 1

for class 1 and Y = 0 for class 2. Given a training dataset {(Xi, Yi) : i = 1, . . . , n},
n iid copies of (X,Y ), the goal is to fit a linear model of Y on X. When n < p,

the commonly used ordinary least squares (OLS) may not work well, and partial

least squares (PLS) was proposed as an alternative (Wold et al (1984)). Rather

than regressing Y on xj ’s, PLS first identifies a sequence of linear combinations

of (x1, . . . , xp), zj = αT
j X for j = 1, . . . , q, then regresses Y on Z = (z1, . . . , zq).

Usually we have q << p and q < n, and hence OLS can be used to obtain

ŶPLS = β0 +

q∑

j=1

βjzj

with β’s as OLS estimates. The choice of αj is key, and it turns out that

αj = argmaxαCov(y,Xα)

with the constraints ||α|| = 1, αT
l Sα = 0 for l = 1, . . . , j − 1, where y =

(Y1, . . . , Yn)T is the vector of observed Yi’s (in the training data), X = (X1, . . .,

Xn)T is the design matrix (i.e., matrix of observed Xi’s), and S is the sample

covariance matrix of Xi’s (Frank and Friedman (1993)).

Simple algorithms exist to fit a PLS model (e.g., Hastie et al. (2001)). In

practice, the number of linear components q has to be chosen, typically by CV.

Note that the class label (1/0) for the response Y is binary, but it is treated

as numerical and the estimate Ŷ could be any real number. To predict the class

of a new sample, if the estimated response Ŷ is greater than a threshold, e.g.,

1/2, then we classify it into class 1; otherwise, class 2. There have been increasing

applications of PLS to prediction with gene expression profiles (e.g., Nguyen and

Rocke (2002), Hawkins et al. (2003), Huang and Pan (2003), Boulesteix (2004),

Huang et al. (2004), Li and Gui (2004) and Tan et al. (2004)).
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2.3. Nearest shrunken centroids (NSC)

Nearest shrunken centroids (NSC) was proposed for sample classifications

with gene expression data when p >> n (Tibshirani et al. (2002)). It combines

the idea of a diagonalized linear discriminant analysis (DLDA) (e.g., McLachlan

(1992) and Hastie et al. (2001)) with that of parameter shrinkage. For a K-class

problem, suppose that x̄jk is the sample mean of predictor j in class k of the

training data, s2
j is the pooled sample variance of predictor j of the training

data, and πk is the prior probability of class k. The DLDA rule for a new sample

X∗ = (x∗
1, . . . , x

∗
p)

T is

δk(X
∗) =

p∑

j=1

(x∗
j − x̄jk)

2

s2
j

− 2 log πk.

Define

djk =
x̄jk − x̄j

mksj

with mk =

√
1

nk

− 1

n
,

where nk is the number of training samples in class k, and x̄j is the overall

sample mean of predictor j of the training data. By definition we have x̄jk =

x̄j + mksjdjk. Let d′jk = sign(djk)(|djk| − ∆)+ for all j and k, where a+ =

max(a, 0) for any number a, and ∆ is the shrinkage parameter to be chosen by

CV. Substituting x̄jk in the DLDA rule by x̄′
jk = x̄j − mksjd

′
jk, we obtain an

NSC rule

δ′k(X
∗) =

p∑

j=1

(x∗
j − x̄′

jk)
2

s2
j

− 2 log πk.

The new sample X∗ is assigned to class k0 = argminkδ
′
k(x

∗).

Note that if d′jk = 0, then x̄′
jk = x̄j , and predictor j is unused in the clas-

sification. This is in contrast to PLS, where each predictor is used in the final

model.

2.4. Random forest (RF)

A random forest (RF) (Breiman (2001)) is an ensemble of classification trees

(Breiman et al. (1984) and Zhang and Singer (1999)). It is designed to improve

over a single classification tree. There are two random aspects that help generate

multiple classification trees in RF. First, a bootstrap sample is repeatedly drawn

from the original training data and used to build a classification tree. Second, in

building a classification tree, rather than using the best splitting variable (i.e.,

gene here) from all the available variables at each node, it chooses the best from

a small random subset of all the variables. Each tree is grown to maximum size

and no pruning is pursued. To predict the class for a new sample, the sample
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is applied to each tree and each tree votes by giving its prediction, then the

majority vote is taken as the final prediction for the sample.

3. Main Example

3.1. Data

Our example concerns the use of gene expression profiles to discriminate

heart failure etiology, which is important to guide appropriate therapy and de-

termine prognosis for successful treatment. We have two datasets, called Min-

nesota (MN) data and PGA data, containing gene expression profiles of heart

failure patients collected at the University of Minnesota and the Harvard Uni-

versity, respectively (Hall et al. (2004) and PGA (2004)). The two studies used

Affymetrix HG-U133A chips containing ∼22,000 probe sets and HG-U133 plus 2

chips containing 54,675 probe sets respectively. The gene expression levels were

summarized using Affymetrix Microarray Suite (MAS 5.0).

The patients were divided into two classes according to the underlying heart

failure etiology, ischemic versus idiopathic. In the MN data, there were 10 pa-

tients in ischemic class and 13 in idiopathic class; for the PGA data, there were

11 and 14 in the two classes.

In order to combine the datasets, we matched the probe sets on a HG-U133

plus 2 chip with those on a HG-U133A chip. Only six probe sets on the HG-

U133A chip could not be found on a HG-U133 plus 2 chip. Hence we used the

remaining 22,277 probe sets in the following analyses with both datasets. To

make the gene chips comparable to each other, we standardized the expression

levels on each array by centering them at median 0 and scaling them by their

interquartile range.

In previous work (Huang et al. (2005)), it was found that with any of five

types of classifiers, including partial least squares (PLS), nearest shrunken cen-

troids (NSC), and random forest (RF), it was much more difficult to predict the

heart failure etiology for the MN data than for the PGA data, probably due to

the heterogeneity of the study populations and the different gene chip platforms

used. Using the first two components of a PLS model fitted to the combined

data, Figure 3.1 shows the MN data points well separated from the PGA data,

suggesting some inherent difference between the two datasets. As we show later,

a model built using either the PGA data or the combined data may still not work

well for the MN data. It seems reasonable that, for the purpose of prediction

for a given test sample, depending on which study populations the test sample

is closer to, we should weigh more on the model built using the corresponding

data; this is exactly the idea of IDW. We use the data to demonstrate the good

performance of our proposed IDW.
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Figure 3.1. PLS plot for the MN data and PGA data. IS and ID refer to

ischemic class and idiopathic class respectively.

3.2. Evaluation methods

For the purpose of comparison, in addition to the IDW method, we con-

sidered four more methods. The first three used the MN data alone, the PGA

data alone, or the combined MN and PGA data to build a classifier, denoted

as classifiers MN, PGA or MN+PGA, respectively. Two methods were used to

combine the two base classifiers (i.e., MN and PGA), a simple average method

and our proposed IDW. The simple average method weighted each of the two

classifiers equally, implying that the combined model went with the decision that

took the two classifiers with equal probability. Hence, if the two base classifiers

give different predictions, the (expected) error of the combined model is 1/2. In

the IDW method, the weights wm(X∗), m = 1 or 2, were calculated for any test

input X∗, and the output of the combined model was the same as that of the

classifier whose weight was larger. Note that if we use constant weights, because

we only have two candidate classifiers to combine, it means that the decision is

the model with the better overall performance.

We conducted three experiments. In the first, two candidate classifiers f1

and f2 were the nearest shrunken centroids (NSC) models built using the MN



INPUT-DEPENDENT WEIGHTS TO CHOOSE MODEL 531

and PGA data, respectively. In the second, we used PLS to build two classifiers

f1 and f2 using the MN and PGA data, respectively, while in the third, RFs

were used as the base classifiers f1 and f2. In each experiment, as in (2.2), PLS

was used to fit a linear model, with all the predictors included, to estimate the

probability of having a correct prediction under each fitted model f1 or f2 using

the training data; if the output f̃m(Xi) of a base classifiers fm is not binary, such

as when PLS is used, we dichotomize the output as f̂m(Xi) = 1(f̃m(Xi) > 1/2).

There were two ways to combine the candidate models when their output

was numerical, as described earlier. For example, suppose f̃m was the output of

PLS model m, m = 1 or 2. We truncated f̃m at 0 or 1 if f̃m < 0 or f̃m > 1.

Then, applying f̂m = 1(f̃m > c) or f̂m = f̃m to (2.1) or (2.3), respectively, re-

sulted in one of the two implementations of the IDW method, called IDW-discrete

and IDW-continuous, respectively. Similarly, using weights w1 = w2 = 1/2 in

(2.1) and (2.3), we obtained two implementations of the simple average method,

simple-discrete and simple-continuous. On the other hand, if the output of can-

didate models was binary, as in NSC, we always went with (2.1). All the results

reported in Table 3.1 were based on implementing (2.1). Note that, because we

only had two candidate models, IDW-discrete was equivalent to selecting the

model with the larger weight.

For each experiment, we explored three ways of using the data. In Case (i),

we used all the 22,277 genes as predictor variables. In Case (ii), we used only

the 100 genes whose t-statistics had the largest absolute values to compare the

two classes using the combined data. Finally, in Case (iii), we used the 100 genes

whose t-statistics had the largest absolute values to compare the two classes using

only the MN data.

Gene selection here was mainly for the purpose of perturbing the data. For

example, gene selection in Case (iii) was designed to favor classifier MN so that

it would work much better than classifier PGA for MN data, whereas classifier

PGA would be better than classifier MN for PGA data, an interesting situation

for the purpose of model selection or model mixing. In particular, we would like

to investigate whether in this case our proposed IDW method could adaptively

choose the better classifier depending on the input.

It is well-known that selecting genes using all the samples leads to a biased

estimate of prediction error rate in the subsequent CV (Ambroise and McLachlan

(2002) and Simon et al. (2003)). However, our goal was not to estimate the

prediction error rate per se, but to compare the methods. Gene selection in Case

(ii) did not favor any method and hence it was still fair to compare the methods;

gene selection in Case (iii) favored classifier MN, which however, as to be shown

later, was defeated by the IDW method.
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Due to the small sample size, we used leave-one-out cross-validation (LOOCV)

to estimate the number of prediction errors for each method. After submitting

this article, we became aware of a new cross-validation method that works better

than LOOCV for small samples and may be more appropriate here (Fu, Carroll

and Wang (2005)).

3.3. Implementation

PLS, NSC and RF are implemented, respectively, in packages pls.pcr, pamr

and randomForest in R (Ihaka and Gentleman (1996)), and are easy to use. With

a given training dataset, 5-fold CV was used to select the number of components

in PLS and the shrinkage parameter in NSC; otherwise, default parameter values

of the R functions were used. For example, a RF was built with 500 classifica-

tion trees, in which a random subset of {x1, . . . , xp} with size
√

p were used as

candidate splitting variables at each node.

3.4. Experiment 1

The results for Experiment 1 (and other two experiments) are summarized

in Table 3.1. In Case (i), first, it seems that no method except IDW works well

for the MN data, giving high misclassification error rates. Second, classifier PGA

and IDW have good predictive performance for the PGA data. Third, neither

classifier MN+PGA nor the simple average method works well for either MN

or PGA data. Fourth, impressively, IDW always works best or nearly best, for

either dataset.

In Case (ii), any method works (almost) equally well for the PGA data, and

equally poorly for the MN data.

The conclusions in Case (iii) are similar to those in Case (i), except that

classifier MN works much better for the MN data than it does in Case (i). Again

IDW always works best or nearly best, for either dataset. Note the terrible

performance of the classifier MN+PGA.

3.5. Experiment 2

First, we dichotomized the output of a PLS model using the cut-off value

c = 1/2. Similar conclusions can be drawn as those for Experiment 1.

It may be argued that a Receiver Operating Characteristic (ROC) plot pro-

vides a more complete picture than the number of overall prediction errors. In-

creasing the cut-off value c gradually from 0 to 1, we obtain various numbers of

false positives and false negatives, from which a ROC curve can be drawn and

then used to measure the performance of any method.
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Table 3.1. LOOCV errors (#Err) in three experiments (Exp 1–3), where

NSC, PLS and RF were used as a base classifier. #MN was the frequency

with which the MN classifier was selected by IDW, among which the number

of misclassification errors (#Err) was also given.

#Err of Method Chosen by IDW

Exp Data MN PGA MN+PGA simple IDW #MN #Err

MN data 8 10 11 9 6 18 5

Case (i) PGA data 11 5 9 8 5 2 1

Both 19 15 20 17 11 20 6
MN data 10 10 9 10 10 19 7

1 Case (ii) PGA data 2 3 3 2.5 2 19 2

Both 12 13 12 12.5 12 38 9

MN data 5 11 9 8 6 16 5
Case (iii) PGA data 11 3 11 7 3 6 1

Both 16 14 20 15 9 22 6

MN data 9 11 13 10 10 17 6

Case (i) PGA data 12 3 4 7.5 3 0 0

Both 21 14 17 17.5 13 17 6

MN data 7 8 6 7.5 7 21 6
2 Case (ii) PGA data 1 1 2 1 1 18 0

Both 8 9 8 8.5 8 39 6

MN data 3 14 4 8.5 5 19 3

Case (iii) PGA data 16 3 6 9.5 3 0 0

Both 19 17 10 18 8 19 3

MN data 9 11 10 10 9 22 9
Case (i) PGA data 11 1 2 6 1 1 0

Both 20 12 12 16 10 23 9

MN data 6 4 7 5 5 17 3

3 Case (ii) PGA data 4 1 1 2.5 1 8 1

Both 10 5 8 7.5 6 25 4
MN data 3 15 3 9 5 21 3

Case (iii) PGA data 11 2 3 6.5 2 5 1

Both data 14 17 6 15.5 7 26 4

The ROC curves of the methods for the three cases were checked; the one

for case (iii) is presented in Figure 3.2. The conclusions in Case (i) are: first,

classifier MN is the worst; second, classifier PGA is among the best, along with

IDW, followed by the simple average method; third, classifier MN+PGA is not

good. In Case (ii), all the methods perform well. In Case (iii): first, classifier

MN is the worst, followed by classifier PGA; second, IDW works best, followed

by classifier MN+PGA, then the simple average method. These conclusions are

in agreement with that drawn from Table 3.1.
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Figure 3.2. ROC curves for Experiment 2 Case (iii): using top 100 genes

selected from the MN data.

3.6. Experiment 3

It is interesting to compare IDW with MN+PGA when the base classifier

is an ensemble method, such as RF, which can better capture local features of

inputs. Such a data-adaptive base classifier may automatically take account of

the heterogeneity of the population, rendering model selection or model mix-

ing largely unnecessary. However, an ensemble itself can be regarded as model

mixing.

As shown in Table 3.1, MN+PGA with a RF as a base classifier has a much

improved performance, but IDW is still among the best. Furthermore, in some

applications where different base classifers are needed, as discussed elsewhere for

gene function prediction with gene expression data and protein-protein interac-

tion data (Xiao and Pan (2005)), popular ensemble methods, such as bagging,

boosting and RF, cannot be directly applied, while the idea of IDW can.

3.7. Summary

Table 3.1 also gives frequencies with which IDW selected the MN classifier

over the PGA classifier and the corresponding misclassification errors. In gen-

eral, if the MN or the PGA classifier performs clearly better than the other,
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IDW is more likely to select the winner. In summary, based on the predictive

performance of the methods, IDW is often the leader.

4. Another Example

To partially demonstrate the generality and flexibility of IDW, we briefly con-

sider an application to gene function prediction by combining two base classifiers

built with gene expression data and protein-protein interaction data, respectively

(Xiao and Pan (2005)).

Following Xiao and Pan (2005), we used the yeast data to predict 73 gene

functions: for any given training data, base classifiers f1 and f2 were built using

the two types of data; for any gene j and gene functional category F , f1 and

f2 gave confidence votes on gene j’s having function F , V1(j, F ) and V2(j, F )

respectively. To combine the two base classifiers, we used a logistic regression

model

Logit[π(j, F )] = w0 + w1V1(j, F ) + w2V2(j, F ),

where π(j, F ) was the true probability of gene j’s having function F , and wj ’s

were constant weights to be estimated. Note that w1 = 0 or w2 = 0 corresponds

to using only one source of data. The approaches taken in Xiao and Pan (2005)

are similar to the ones described above.

To account for differing sensitivities and specificities of the base models for

different functional categories, we consider a simplified implementation of IDW.

Specifically, we used a logistic regression model

Logit[π(j, F )] = w0,F + w1,F V1(j, F ) + w2,F V2(j, F ),

where the weights depended on a functional category F , an attribute of the input.

We used 10-fold CV to evaluate the methods. Specifically, we first used

training data to build two base classifiers, obtained their confidence votes and

then fitted the two logistic regression models to estimate the weights. Second, for

each gene j and function F in the test data (i.e., left-out data un-used in training),

from the fitted logistic regression models we obtained the estimated probability

π̂(j, F ). Third, for any threshold value c, if π̂(j, F ) > c, we classified gene j into

functional category F ; otherwise, no prediction was made. By changing c we

obtained various sensitivities and specificities of the methods. The results of using

only one source of data and of combining the two sources of data using constant

weights and using IDW are presented as ROC plots in Figure 4.1, from which it

can be seen clearly that (i) combining the two sources of the data improves over

using only one source of data and (ii) IDW outperforms the standard method

with constant weights.



536 WE PAN, GUANGHUA XIAO AND XIAOHONG HUANG

PSfrag replacements

PLS component 1
PLS component 3

-1.2

-1.0

-0.8

-0.6

-1.5

-1.0

-0.5

0
.0

0.0

1

2

3

4

LVAD IS

LVAD ID

PGA IS

PGA ID

MN

PGA

MN+PGA

simple–continuous

IDW–continuous

IDW–discrete
0
.2

0.2

0
.4

0.4

0
.6

0.6

0
.8

0.8

1
.0

1.0

1-Specificity1-Specificity

S
en

si
ti
v
it
y

S
en

si
ti
v
it
y

0.0000 0.0010 0.0020

0
.0

0
0
.0

5
0
.1

0
0
.1

5

constant
GE data

GE data

PPI data

PPI data

constant

IDW

IDW

Figure 4.1. ROC curves for gene function prediction. The right panel is an

enlarged part of the left one.

5. Discussion

This study was mainly motivated from the consideration of how to combine

multiple models for multiple sources of data in computational biology, though

the idea is general and equally applicable to combining models with a single

source of data. Recent advances in high-throughput biotechnologies have gener-

ated large amounts, and various types, of genomic and proteomic data, such as

DNA sequences, gene expression profiles, DNA-protein interactions and protein-

protein interactions. It has been increasingly recognized that, in contrast to most

standard approaches of analyzing a single source of data, a more powerful ap-

proach is to conduct integrative analyses of multiple sources of data. However,

challenges remain. One of them is how to take account of the heterogeneity of

the multiple sources of data and their varying sensitivities and specificities. In

our main example, we have considered predicting the heart failure etiology using

gene expression profiles collected from different patient populations and using

different platforms of gene chips. Our other example concerned gene function

prediction using gene expression data and protein-protein interaction data; the

two sources of data have different information contents for different gene func-

tional categories. The common approach of taking constant weights on multiple

models built with individual sources of data is presumably suboptimal. Here
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we have proposed an input-dependent weighting scheme, which can automati-

cally select or weight more on the sources of data having higher sensitivities and

specificities for a given input. In addition, because different sources of data may

have different formats, different types of models may be needed. Our proposed

IDW method has flexibility in allowing different types of candidate models to be

combined.

The idea of using data-dependent weights to combine models has appeared

in the literature. The best known is probably hierarchical mixtures of experts

(HME) (Jordan and Jacobs (1994)). HME requires specifying each candidate

model and data-dependent weights in some parametric forms, then estimating

all the parameters in a single EM algorithm. Although it is neat to have a uni-

fied framework under maximum likelihood, HME loses the flexibility of allowing

different types of candidate models, which may be necessary for different types of

genomic and proteomic data. Furthermore, some non-likelihood based models,

such as boosting, random forests, support vector machines (Vapnik (1998) and

Lin et al. (2002)) and Psi-learning (Shen et al. (2003)), which are gaining popu-

larity due to their good performance, may not be easily incorporated into HME.

In addition, due to the well-known slow convergence of EM, it may not be compu-

tationally practical to fit HME for large datasets. Maclin (1998) considered using

input-dependent weights to combine multiple models, but only in the context of

boosting. Several authors have briefly mentioned that input-dependent weights

can be used in stacking (Ripley (1996, p.66) and Hastie et al. (2001, p.253)), but

no details are provided.

We emphasize that, in addition to combining models, IDW can be also used

as a criterion for model selection, as illustrated in our example. In this paper, we

propose using an estimated probability of making a correct prediction for a given

input as a weight for a candidate model, but other measures on the predictivity

of the model can be used. For example, if each candidate model is fitted using

maximum likelihood, we can use the (predictive) log likelihood of the given input

under a fitted candidate model as its weight. It has the same motivation as that

of AIC, which is an asymptotically unbiased estimate of the expected predictive

log likelihood. Of course, the main difference remains as before: our proposed

weight depends on an input whereas AIC does not. Because a constant weight

is usually an estimate of the average predictive performance of a model over its

input space, whereas an IDW estimates the predictive performance of the model

at a given input, the estimation of IDW, including the choice of a model such as

(2.2), is in general more challenging. Further explorations and evaluations of the

IDW method and its alternative implementations may be worthwhile.
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