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Abstract: The non-parametric Bayes estimator with Dirichlet process prior of a

survival function based on right censored data was considered by Susarla and Van
Ryzin (1976) and many others. We obtain the non-parametric Bayes estimator of a

survival function when data are right, left or interval censored. The resulting Bayes

estimator with Dirichlet process prior has an explicit formula. In contrast, there is
no explicit formula known for the non-parametric maximum likelihood estimator

(NPMLE) with such data. In fact, we show that the NPMLE with doubly/interval

censored data cannot, in general, be the limit of Bayes estimators for any sequence

of priors. Several examples are given, showing that the NPMLE and the non-
parametric Bayes estimator may or may not be the same, even when the prior is

‘non-informative’.

Key words and phrases: Dirichlet process prior, non-informative prior, NPMLE,
square error loss.

1. Introduction, Notation and Preliminary

Suppose lifetimes X1, . . . ,Xn are non-negative and i.i.d. with a distribution
F (·). However, these lifetimes are subject to censoring. In the case of right
censoring, we only observe

Zi =




Xi, if Xi ≤ Ci,

Ci, if Xi > Ci,
and ∆i =




1, if Xi ≤ Ci,

0, if Xi > Ci,
(1.1)

where Ci are the (right) censoring times.
A generalization of right censoring is double censoring (Chang and Yang

(1987), Gu and Zhang (1993)). In the case of double censoring we only observe

Zi =




Xi, if Yi ≤ Xi ≤ Ci,

Ci, if Xi > Ci,

Yi, if Xi < Yi,

and ∆i =




1, if Yi ≤ Xi ≤ Ci,

0, if Xi > Ci,

2, if Xi < Yi.

(1.2)

Here (Ci, Yi), i = 1, . . . , n, are the left and right censoring times, with Ci >

Yi. Let the observations be arranged such that Z1, . . . , Zk are the uncensored
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observations, i.e., ∆1 = 1, . . . ,∆k = 1. Notice that (Z1, . . . , Zk) is (X1, . . . ,Xk),
while Zk+1, . . . , Zn are the (either right or left) censored observations.

In the Bayesian estimation of F (·), we need not make assumptions about the
distributions of the left and right censoring times Ci and Yi. The calculations
are conditioned on the observed censoring times. Thus the observations can be
described in three parts Z1, . . . , Zk where Xi = Zi; Zk+1, . . . , Zm where Xi > Zi;
and Zm+1, . . . , Zn, where Xi < Zi.

Next we discuss interval censored data. The current status data, or case
1 interval censored data, consist of an observed “inspection” time Ti and the
information whether Xi is larger than or less than Ti (the status of Xi, see
Huang and Wellner (1996)):

Ti , ∆i =




0, if Xi > Ti,

2, if Xi < Ti.

Usually the “inspection” times Ti are assumed i.i.d. Similar to the discussion
above, this i.i.d. assumption does not make a difference in the Bayesian analysis
and therefore the current status data is a special case of (1.2), where all the
observations are either left or right censored, i.e., k = 0.

In case 2 of interval censoring, we assume X1, . . . ,Xk are observed exactly
(k non-random, and possibly zero), and only the observations Xk+1, . . . ,Xn are
interval censored. Then we observe n−k intervals. With some abuse of notation,
they are denoted by [Lj, Zj) for j = k + 1, . . . , n. We know that Lj ≤ Xj < Zj .

Again notice that we do not need to make assumptions about the distribution
of Lj or Zj . Therefore this fits both case 2 and case k of interval censoring in
Huang and Wellner (1996). To make the notation consistent with the doubly
censored case, we let Z1 = X1, . . . , Zk = Xk for directly observable outcomes,
interval censored outcomes are [Lj, Zj) for j = k + 1, . . . , n. Notice that when
[Lj, Zj) = [a,∞), one has right censored data, and when [Lj, Zj) = [0, a), left
censored data.

In Bayesian analysis, the probability F (·) is random. We assume in this
paper that F (·) is distributed as a Dirichlet process with parameter α, a measure
on the real line. Under the Dirichlet process prior assumption, the probability
measure P (A) =

∫
A dF has the following property: given any partition of real

line A1, . . . , Au, the joint distribution of the random vector (P (A1), . . . , P (Au))
has a Dirichlet distribution with parameter given by α(A1), . . . , α(Au). For more
discussion and properties of Dirichlet process prior, see Ferguson (1973), Susarla
and Van Ryzin (1976) and Ferguson, Phadia and Tiwari (1993). Another pos-
sibility is to work with the cumulative hazard functions H(t). A beta process
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prior on the space of the cumulative hazard function was introduced by Hjort
(1990). While using a beta process prior for right censored data works well, it
has no advantage over the Dirichlet process prior for doubly/interval censored
data: the likelihood of the data does not simplify by using the hazard function
with doubly censored data.

Using squared error loss, Susarla and Van Ryzin (1976) obtained the Bayes
estimator for F (·) under a Dirichlet process prior when data are only subject
to right censoring. They also showed that when the weight parameter, α, of
the Dirichlet process prior approaches zero, the non-parametric Bayes estimator
reduces to the Kaplan-Meier estimator, the NPMLE. Some later papers studied
the consistency of the Bayes estimator (Susarla and Van Ryzin (1978)) and the
posterior distribution (Ghosh and Ramamoorthi (1995)). Huffer and Doss (1999)
used Monte Carlo methods to compute the nonparametric Bayes estimator.

We obtain the Bayes estimator of 1 − F (·) when data are subject to both
right and left censoring, or are subject to interval censoring. The large sample
properties of this Bayes estimator are not discussed here, though it is not unrea-
sonable to expect that it is consistent. However, we show that for any sequence
of priors the nonparametric Bayes estimators under squared error loss cannot
always converge to the corresponding NPMLE with doubly censored data. This
is a bit surprising since, in most cases, MLEs are limits of Bayes estimators.

The Bayes estimator we obtain is more complicated than those with only
right censored data, especially when there are many left censored or interval
censored observations. Nevertheless, it has an explicit formula that can be eas-
ily programmed. In contrast, the nonparametric maximum likelihood estimator
(NPMLE) in the case of doubly censored data or interval censored data does
not have an explicit formula and its computation requires an iterative method.
See Turnbull (1974), Chen and Zhou (2003) and Fay (1999). Besides, the Bayes
estimator is always uniquely defined while the NPMLE is often only defined up
to an equivalent class. This non-uniqueness of the NPMLE makes many impor-
tant statistics like the mean estimator difficult to define. The Bayes estimator
is also smoother than the NPMLE. On the other hand, there are consistency
results for the NPMLE (Gu and Zhang, (1993), Groeneboom and Wellner (1992)
and Huang and Wellner (1996)) but we know very little of the consistency of
the Bayes estimators beyond the right censored, R1 data case. In fact, R. Pruitt
gave an example of an inconsistent Bayes estimator with Dirichlet process prior
for right censored data in R2.

To minimize the amount of new notation, we follow Susarla and Van Ryzin’s
(1976), hereafter SV, and we use their convention that all observations are posi-
tive. Obviously we can extend this to the case where observations have support
in (−∞,∞) without much difficulty.
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2. Bayes Estimator with Right, Left/Interval Censored Observations

The Bayes estimator of 1 − F (·) under squared error loss of SV is the con-
ditional expectation of 1 − F given all the observations. Similar to SV the con-
ditional expectation is computed in two steps: first, given all the uncensored
observations we find the conditional distribution of 1 − F ; second, given all the
censored observations we compute the conditional expectation, where the distri-
bution of those lifetimes before censoring is given in the first step.

The following theorem specifies the conditional distribution of F (·) given all
the uncensored observations, which accomplishes the first step.

Theorem 1. The posterior distribution of the random probability measure P

given (∆1 = 1, Z1), . . . , (∆k = 1, Zk) is the Dirichlet process with parameter
β = α +

∑k
i=1 δZi , where δa is a unit measure on the point a.

Proof. The proof of this theorem is similar to SV (1976) and Ferguson (1973).
We only sketch the proof for the doubly censored case. Furthermore, we only
give those calculations that differ from the proof of Theorem 4 of SV (1976), the
rest of the proof is the same as theirs and is not repeated here.

From (1) of Chang (1990), the probability of (∆ = 1,X = u) is (SC(u) −
SY (u))dP (X ≤ u) = dG(u), say. Recall the marginal distribution of X is
α(u)/α(R+). We compute∫

[∆=1,Z∈A]
D(·|α(B1) + δu(B1), . . . , α(Bl) + δu(Bl))dG(u)

=
∫
[u∈A]

D(·|α(B1) + δu(B1), . . . , α(Bl) + δu(Bl))(SC(u) − SY (u))d
α(u)

α(R+)

=
l∑

j=1

D(y1, . . . , yl|α(j)
1 , . . . , α

(j)
l )

∫
[u∈A∩Bj ]

(SC(u) − SY (u))d
α(u)

α(R+)
.

On the other hand,

P{P (Bi) ≤ yi, i = 1, . . . , l; ∆ = 1, Z ∈ A)}
=
∫ ∞

u=0
P{P (Bi) ≤ yi, i = 1, . . . , l; X ∈ [u, u + du) ∩ A}(SC(u) − SY (u))

=
l∑

j=1

∫
α(Bj ∩ A ∩ [u, u + du)

α(R+)
(SC(u) − SY (u))D(y1, . . . , yl|α(j)

1 , . . . , α
(j)
l )

=
l∑

j=1

D(y1, . . . , yl|α(j)
1 , . . . , α

(j)
l )

∫
Bj∩A

SC(u) − SY (u)
α(R+)

dα(u) ,

which is same as above.
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Now, the conditional expectation of 1 − F (u) = P [u,∞) is computed given
the remaining n − k − 1 censored observations: Zk+1,∆k+1, . . . , Zn,∆n in the
doubly censored case; [Lk+1, Zk+1), . . . , [Ln, Zn) in the interval censored case.
Notice the original Xk+1, . . . ,Xn is now a random sample from a Dirichlet process
with parameter β. Let Eβ denote the expectation with respect to this Dirichlet
process.

2.1. Bayes estimator with one interval/left censored observation

To fix ideas and enhance readability, we first present in detail the Bayes
estimator with many right censored observations but only one interval censored
observation, denoted by [Lw, Zw). (If Lw = 0 then this is left censored.) The
general case with many interval/left censored observations will be given later.

As in SV Corollary 1, the conditional expectation, Eβ, of 1 − F (u) =
P [u,∞) = P (X ≥ u) given all the right censored data and one interval cen-
sored observation is

ŜD(u) =
Eβ{P [u,∞)P [Lw, Zw)

∏
right-censored P [Zi,∞)}

Eβ{P [Lw, Zw)
∏

right-censored P [Zi,∞)} .

This is also the desired Bayes estimator of 1−F (u). We abbreviate the subscript
of right-censored to r − c and left-censored to l − c and interval-censored to i − c.
Straightforward calculation yields

ŜD(u) =
EβP [u,∞){P [Lw ,∞) − P [Zw,∞)}∏r−c P [Zi,∞)

Eβ{P [Lw,∞) − P [Zw,∞)}∏r−c P [Zi,∞)

=
Eβ{P [u,∞)P [Lw,∞)

∏
r−cP [Zi,∞)}−Eβ{P [u,∞)P [Zw,∞)

∏
r−cP [Zi,∞)}

Eβ{P [Lw,∞)
∏

r−cP [Zi,∞)}−Eβ{P [Zw,∞)
∏

r−cP [Zi,∞)}
=

Eβ − Eβ

Eβ − Eβ
.

The last four expectations are all of the same type and can be computed explicitly
by the Lemma below.

Given a set of positive numbers 0 < ak+1 < ak+2 < · · · < am < ∞,
consider the partition of R+ into intervals [0, ak+1), [ak+1, ak+2), . . . , [am,∞).
By Theorem 1 the random vector P [0, ak+1), P [ak+1, ak+2), . . . P [am,∞) has a
Dirichlet distribution with parameter vector (βk+1, . . . , βm+1) where βk+1 =
β[0, ak+1), . . . , βm+1 = β[am,∞). The measure β is given as before by β =
α +

∑
uncensored δZi .

Lemma 1. (Susarla and Van Ryzin) With the notation above, we have

Eβ

m∏
i=k+1

P [ai,∞) =
m−k−1∏

i=0

(
i +

∑i
j=0 βm+1−j

i + β(R+)

)
=

m−k−1∏
i=0

(
i + β[am−i,∞)

i + β(R+)

)
.
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Proof. This is essentially Lemma 2 (a) of SV (1976) with some extra simplifi-
cations.

When α(R+) = 0 the expression on the right hand side of Lemma 1 is
still well defined unless there are no uncensored observations in the sample. In
Example 2 of Section 3, there are no uncensored observation in the sample and
we do not discuss the limit of the Bayes estimator as α(R+) → 0 there.

Remark. It is clear from the definition of β that when α(R+) → 0, β is integer
valued. This implies that the expectation in Lemma 1 has a rational number
value (finite product of rational numbers) as α(R+) → 0.

2.2. Many interval/left censored observations

When the data contain many interval and many right censored observations,
the Bayes estimator of 1 − F (u) = P (X ≥ u) given all the data (censored or
uncensored) is

ŜD(u) =
Eβ{P [u,∞)

∏
i−c P [Lw, Zw)

∏
r−c P [Zi,∞)}

Eβ{
∏

i−c P [Lw, Zw)
∏

r−c P [Zi,∞)} . (2.1)

When data contains many left and many right censored observations, the
Bayes estimator of 1 − F (u) is

ŜD(u) =
Eβ{P [u,∞)

∏
l−c[1 − P [Zw,∞)]

∏
r−c P [Zi,∞)}

Eβ{
∏

l−c[1 − P [Zw,∞)]
∏

r−c P [Zi,∞)} . (2.2)

Because left censored observation is a special case of interval censored ob-
servation as pointed out in the previous section, we only present in detail below
the Bayes estimator with many interval/right censored observations.

Let us recall the identity
m∏

i=1

(bi − ai) =
∑

y1 · · · ym , (2.3)

where yi is either bi or −ai and the summation is over all possible 2m choices. The
integer m is defined as m = #{i−c} = number of interval censored observations.

By using (2.3), we can write
∏

i−c P [Lw, Zw) =
∏

i−c{P [Lw,∞)−P [Zw,∞)}
=
∑

P1 · · ·Pm, where each Pw is either P [Lw,∞) or −P [Zw,∞), and the sum-
mation is over all 2m different choices.

To make the expression more specific we introduce some notation. Define
vectors ξ = (ξ1, . . . , ξm) where each ξi = either 0 or 1. Given m interval censored
observations, [Li, Zi), we define 2m sets of numbers {ci(ξ), i = 1, . . . ,m} where
ci(ξ) = Li if ξi = 0 otherwise ci(ξ) = Zi. With each set {ci(ξ), i = 1, . . . m},
associate a sign: if the set contains an even number of Zi’s then the sign is
positive, if the set contains odd number of Zi’s the sign is negative.
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With these definition we can write
∏

i−c P [Lw, Zw) =
∑

P1 · · ·Pm =
∑

ξ ±∏m
i=1 P [ci(ξ),∞), where the summation is over all 2m different ξ’s, and ± is the

associated sign.
Finally, we define new sets of numbers by adding r (r = #{r − c}) right

censored observations Z1, . . . , Zr to {ci(ξ), i = 1, . . . ,m}: {bj(ξ), j = 1, . . . ,m +
r} = {ci(ξ), i = 1, . . . ,m}⋃{Z1, . . . , Zr}. For any sets of real numbers b1, . . . , bk,
we denote by b(−1), . . . , b(−k) the reversely ordered numbers (descending). So,
b+
(−i)(ξ), i = 1, . . . ,m + r is a set of m + r numbers ordered from largest to

smallest.
With these sets of numbers defined, the denominator of (2.1) can be written

as

∑
Eβ

(
P1 . . . Pm ×

∏
r−c

P [Zi,∞)
)

=
∑
ξ

(
±

m+r∏
i=1

i − 1 + β[b+
(−i)(ξ),∞)

i − 1 + β(R+)

)
,

where the summation is over 2m different ξ’s. We can similarly compute the
numerator of (2.1) except there is one more term, P [u,∞), included with the right
censored observations. Define {b+

j (ξ)} = {ci(ξ), i = 1, . . . ,m}⋃{Z1, . . . , Zr, u}.
Theorem 2. The nonparametric Bayes estimator of the survival function S(u) =
1−F (u) with right censored and interval censored data under a Dirichlet process
prior is

ŜD(u) =
∑

Eβ

{
P1 . . . Pm ×∏r−c P [Zi,∞) × P [u,∞)

}
∑

Eβ

{
P1 . . . Pm ×∏r−c P [Zi,∞)

} ,

=

∑
ξ

(−1)
∑

ξs

m+r+1∏
i=1

i − 1 + β[b+
(−i)(ξ),∞)

i − 1 + β(R+)

∑
ξ

(−1)
∑

ξs

m+r∏
i=1

i − 1 + β[b(−i)(ξ),∞)
i − 1 + β(R+)

. (2.4)

The sums in (2.4) are over all 2m possible ξ’s.

Admittedly the two summations above involves 2m terms when there are m

interval censored observations. Also, in the summations, there are both positive
and negative terms that will cancel to a large extend. Rounding errors will be
magnified if we use (2.4) directly. Our purpose here is to show that an explicit
formula exists for the Bayes estimator. Simplifications/alternative formulae are
desirable and will be pursued in the future.

Remark. From Lemma 1 and Theorem 2, we can infer that the limit of the
Bayes estimator (2.4) when the α measure approaches zero is a step function,
at least for u < maximum observed value. This is because all the Eβ involved
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will be step functions according to Lemma 1. We can also infer that when the
α measure approaches zero, the Bayes estimator (2.4) is a rational, since the Eβ

involved are all rational.

3. Examples

The examples presented here are hand-calculated or are obtained by using
software we developed (Example 2 and the NPMLE in Example 1). We pay
close attention to the limit of the Bayes estimator when α → 0 in the Dirichlet
prior (non-informative prior), and compare the estimator with the NPMLE. The
software used here are packaged as R (http://www.r-project.org/) packages and
can be found at http://www.ms.uky.edu/∼mai/splus/library/. The software for
computing NPMLE is also available at this site.

To minimize additional notation, we recycle the notation used by SV as much
as possible. Assume Z(k+1), . . . , Z(m) are the ordered, distinct censored (both
right and left/interval) times among the sample (1.1). Assume there are no ties
among the left/interval and right censored observations (but ties within right
censored observations are allowed). At each censored observation Z(i), k + 1 ≤
i ≤ m, let λi be the number of right censored observations that equal Z(i). Thus
if there are two right censored observations equal to Z(i), then λi = 2. If Z(j)

is a left censored observation then λj = 0. To make the notation consistent, we
define Z(k) = 0 and Z(m+1) = ∞.

Let N(u) be the number of uncensored and right censored observations that
are larger then or equal to u, i.e., N(u) =

∑
j: ∆j=1 I[Zj≥u] +

∑m
i=k+1 λiI[Z(i)≥u] ,

and let N+(u) = N(u+).
We reproduce SV’s Bayes estimator (based only on the uncensored and right

censored observations of the sample (1.1)) in a slightly modified form: For Z(l) ≤
u < Z(l+1) with k ≤ l ≤ m + 1,

Ŝ(u) =
α(u,∞) + N+(u)
α(R+) + N+(0)

×
l∏

j=k+1

{
α[Z(j),∞) + N(Z(j))

α[Z(j),∞) + N(Z(j)) − λj

}
. (3.1)

We have changed two things: we added the nodes Z(j) for left/interval censored
observations, though with zero λj ’s; n is replaced by N+(0).

Example 1. Here is an example with one left censored observation and four
right censored observations. These are the data used by SV (1976) but with an
added left censored observation at Z = 4.

The ordered observations with their censoring indicators are listed below in
Table 1.

Table 1. Data with one left and four right censored observations.
Z ′

is : 0.8 1.0 2.7 3.1 4 5.4 7.0 9.2 12.1
∆ : 1 0 0 1 2 1 0 1 0
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Let the Bayes estimator of SV based only on uncensored and right censored
observations be Ŝ(u), i.e., as defined in (3.1). Our estimator that takes into
account one left censored observation can be written as follows. For u > Zleft =
4, after tedious but straightforward simplification we get

ŜD(u) = Ŝ(u)×
α[0,1)+1

α(R+)+9
+

α[1,2.7)

α[1,∞)+7
× α[1,∞)+8

α(R+)+9
+

α[2.7,4)+1

α[2.7,∞)+6
× α[1,∞)+8

α(R+)+9
× α[2.7,∞)+7

α[1,∞)+7

α[0,1)+1

α(R+)+8
+

α[1,2.7)

α[1,∞)+6
× α[1,∞)+7

α(R+)+8
+

α[2.7,4)+1

α[2.7,∞)+5
× α[1,∞)+7

α(R+)+8
× α[2.7,∞)+6

α[1,∞)+6

.

For u in other time intervals, the estimator can be similarly expressed as the
product of Ŝ(u) and some other term, the details are omitted. The plot of the
Bayes estimator is given in Figure 1.
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Figure 1. Plot for Example 1.

Next we compute the limit of the Bayes estimator. When α → 0, the SV
estimator, Ŝ(u), has as a limit the Kaplan-Meier estimator SKM . For 9.2 ≤ u <
12.1, the limit of our estimator is SKM × (70/81) = (7/8) × (4/5) × (3/4) ×
(1/2)× (70/81) = 0.2268519. For u in other intervals the limit can be computed
similarly.

We plot the estimator with α(u,∞) = B exp(−θu). The plot shows estima-
tors for B = 8, θ = 0.12 and B = 0.001, θ = 0.12. The latter is indistinguishable
in appearance with the limit just calculated.

Computation of the NPMLE for doubly censored data can be done by EM
type iteration (see Turnbull (1974) and Chen and Zhou (2003)). For the data in
Table 1 we obtain the values in Table 2:

Table 2. NPMLE and limit of Bayes estimator for data in Table 1.

t 0−0.8 0.8−3.1 3.1−5.4 5.4−9.2 9.2−12.1
NPMLE 1 0.8457284 0.6028477 0.4521358 0.2260679

Limit Bayes 1 0.8425926 0.6049383 0.4537037 0.2268519
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The differences between the NPMLE and the limit of the nonparametric
Bayes estimator are small but real. The likelihood of the distribution in Table
2 is larger than those of the limit of the Bayes estimator: 3.70674 × 10−5 vs.
3.704924 × 10−5.

Example 2. We took the first ten observations from the breast cosmesis data
with radiation of Finkelstein and Wolfe, as reported by Fay (1999). Out of the
ten, there are four right censored observations, four interval censored observations
and two left censored observations (i.e., interval censored with left-ends as 0).
Data: [45,∞), [6, 10), [0, 7), [46,∞), [46,∞), [7, 16), [17,∞), [7, 14), [37, 44), [0, 8).

We computed the nonparametric Bayes estimator with α(u,∞)=B exp(−θu).
The resulting estimator with B = 8 and θ = 0.3 is computed using the software
we developed and is plotted in Figure 2.
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Figure 2. Plot for Example 2.

In the following two examples, the Bayes estimators are obtained with for-
mula (2.4) and then we let α(R+) → 0 to obtain the limit. The NPMLE’s are
also calculated, not by software but analytically.

Example 3. Here we took a small example with one left and one right censored
observation. The NPMLE and the limit of the non-parametric Bayes estimator
turn out to be exactly the same.

Table 4. Data with one left and one right censored observation.

Z ′
is : Z(1) Z(2) Z(3) Z(4) Z(5)

∆ : 1 0 2 1 1

Jump of 1 − F̂ (u) 0.4 0 0 0.3 0.3
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Example 4. The order of two censoring indicators in the above table are
switched and the NPMLE is different from the limit of Bayes estimator. The limit
of Bayes estimator is not self-consistent either. To calculate the NPMLE, we first
note for this data the NPMLE F (·) has only three jumps at Z(1), Z(3) and Z(5).
Denote the jumps size by p1, p2, p3. By symmetry we must have p1 = p3. Using
the constraint

∑
pi = 1, we can reduce the likelihood, L = p1(p2 + p3)p2(p1 +

p2)p3, to a function of p2 only. Straightforward calculation shows that p2 =
√

5/5
maximizes the likelihood. Therefore p1 = p3 = (5 −√

5)/10, which is the entry
0.2763932 in the table.

Z ′
is : Z(1) Z(2) Z(3) Z(4) Z(5)

∆ : 1 0 1 2 1

Jump of limit Bayes 0.28000 0 0.44000 0 0.28000
Jump of NPMLE 0.2763932 0 0.4472136 0 0.2763932

Remark. Example 4 shows that with positive probability, the NPMLE 1− F̂ (·)
for doubly/interval censored data can take irrational values. A closer look at the
example provides some insight as why the estimators are different, as described
in the next section.

Remark. Example 3 and 4 reveal two different situations. The difference is that
left and right censored data overlap (right censored observation is smaller then
the left censored observation) in Example 4. The overlap in Example 3 is not
real, since there is no probability mass inside the overlap.

4. Limit of Bayes and NPMLE

In this section we formally summarize some results concerning the limit of
the Bayes estimator and the NPMLE in the doubly/interval censored data case.
The argument below is valid for any prior, not just the Dirichlet process prior.

Theorem 3. Suppose a sequence of priors πv; v = 1, 2, . . ., is such that the (non-
parametric) Bayes estimators 1− F̂v(·) under squared error loss, converge to the
Kaplan-Meier estimator whenever the data has only right censoring. Then this
same sequence of Bayes estimators cannot converge, in general, to the NPMLE
for interval/doubly censored data.

Proof. The Bayes estimator under squared error loss can be written as

1 − F̂v(u) =
EπP [u,∞)LF (data)

EπLF (data)
,

where LF (data) is the likelihood of the data when its distribution is F . The
assumption of the Theorem for right censored data says that, as v → ∞, we
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always have

Eπ{P [u,∞)
∏
r−c

P [xi,∞)
∏

uncensor

P ({xj})}

Eπ

∏
r−c

P [xi,∞)
∏

uncensor

P ({xj})}
→ 1 − FK−M (u) . (4.1)

Notice the Kaplan-Meier estimator, FK−M (u), is always rational valued.
Now we look at a particular sample configuration with just one left censored

observation, for example the data in Example 4. The Bayes estimator for these
data can be written as

EπP [u,∞)P ({Z1})P [Z2,∞)P ({Z3})P [0, Z4)P ({Z5})
EπP ({Z1})P [Z2,∞)P ({Z3})P [0, Z4)P ({Z5}) .

Let us use the notation P (Z) = P ({Z}), and P (Z+) = P [Z,∞). Write P [0, Z4)
= 1 − P [Z4,∞) = 1 − P (Z+

4 ) and expand to get

=
EπP (Z1)P (Z3)P (Z5)P (Z+

2 )P (u+)−EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (Z+

4 )P (u+)
EπP (Z1)P (Z3)P (Z5)P (Z+

2 )−EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (Z+

4 )
.

(4.2)
If we divide the numerator of (4.2) by EπP (Z1)P (Z3)P (Z5)P (Z+

2 )P (u+)
then, as v → ∞, the numerator will converge to the limit 1 − [1 − F ∗

K−M(Z4)]
according to (4.1). Here the Kaplan-Meier estimator is based on three uncensored
observations: Z1, Z3, Z5 and two right censored observations, Z2 and u.

Similarly, if we divide the denominator of (4.2) by EP (Z1)P (Z3)P (Z5)P (Z+
2 )

then it has the limit 1 − [1 − F ∗∗
K−M(Z4)], where the Kaplan-Meier estimator

is based on three uncensored observations, Z1, Z3, Z5 and one right censored
observation Z2.

In other words, multiply (4.2) by

EπP (Z1)P (Z3)P (Z5)P (Z+
2 )

EπP (Z1)P (Z3)P (Z5)P (Z+
2 )P (u+)

(4.3)

to produce a rational limit. The factor (4.3) itself has a rational limit as v → ∞
( = [1 − F ∗∗

K−M (u)]−1). This implies that the limit of (4.2), as v → ∞, is

F ∗
K−M(Z4)

F ∗∗
K−M(Z4)

× [1 − F ∗∗
K−M (u)] .

But that cannot be the NPMLE as Example 4 shows the NPMLE is irrational.
This also serves as the proof for the interval censored case, since the left

censored observation is just [0, Z(4)) interval censored.
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Corollary 1. There is no sequence of priors, πv such that the resulting sequence
of Bayes estimators under squared error loss, 1 − Fv(·), always converges to the
NPMLE in the interval/doubly censored data case.

Proof. Suppose, to the contrary, there is such a sequence of priors. Since right
censoring is a special case of double/interval censoring (zero left censoring or all
intervals are of the form [ai,∞)), this sequence of estimators must converge to
the Kaplan-Meier estimator with such data. But by Theorem 3, such sequence
cannot converge to the NPMLE for doubly/interval censored data case in general.

5. Discussion

The formula (2.4) has 2m terms when there are m interval censored obser-
vations. While we do not have a formal proof that the computation of the Bayes
estimator cannot be reduced to polynomial order, it is not hard to see that the
computation is equivalent to

∫
· · ·
∫ ∏

j

(
j∑

r=1

xr)
∏
j

(1 −
j∑

r=1

xr)(1 −
∑

xj)βm
∏

x
βj

j

∏
dxj

on the region xj > 0 and
∑

xj ≤ 1.

Remark. The irrational value of NPMLE with doubly censored data also im-
plies that the EM algorithm, if started from the Kaplan-Meier estimator, cannot
converge in a finite number of steps in general.
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