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Abstract: This article has three aims. First it is shown that, in simple situations, an
exact procedure exists for implementing the calibration method of bootstrap interval
construction. The procedure helps reveal the relationships between the calibration,
bootstrap ¢ and bootstrap root methods, and identifies settings in which all three
methods yield the same result.

Secondly, a method of bootstrap interval construction is introduced which has
the nice property of requiring only one level of bootstrap resampling, but which
yields coverage error rates that are smaller than those obtained with the bootstrap
t method. The method depends on the calibration of an Edgeworth-corrected con-
fidence set, and its justification rests on Edgeworth expansions. Coverage error
rates of order O(n~/2) and order O(n~?) or smaller are obtained for one-sided and
two-sided intervals respectively.

Because of the proliferation of numerous techniques for interval construction
with different orders of asymptotic error rate, the practical problem of choosing
among candidate intervals is becoming increasingly important. The third aim of
this paper is to propose calibration as a method selection tool. It is shown that
when the candidate intervals are derived from Edgeworth-corrected statistics, the
calibration-selected interval possesses an asymptotic error rate equal to the best
among them. Simulation results indicate that the finite-sample properties of the
interval are also quite satisfactory.

Key words and phrases: Bootstrap root, confidence intervals, Edgeworth expansion,
pivot.

1. Introduction

The subject of this article is construction of nonparametric confidence in-
tervals with improved rates of convergence of coverage probabilities. Two basic
approaches are well known. One employs Edgeworth expansions to accelerate the
rate of convergence of a test statistic to asymptotic normality (Johnson (1978),
Hall (1983), Withers (1983), Abramovitch and Singh (1985)). The other re-
lies on bootstrapping. Specific bootstrap procedures include Efron’s percentile,
bias-corrected percentile, accelerated bias-corrected percentile, and bootstrap ¢
methods (Efron (1982, 1987)), Beran’s bootstrap root and prepivoting methods
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(Beran (1987, 1988)), and the author’s calibration method (Loh (1987, 1988)).

It is known (Abramovitch'and Singh (1985), Hall (1986)) that when the
Edgeworth expansion and bootstrap approaches are valid, the two can produce
intervals with the same asymptotic error rates. Therefore in practice, bootstrap
methods perform the Edgeworth corrections in a transparent but automatic fash-
ion via simulation, while methods based on Edgeworth expansions implement the
corrections analytically so that simulations are not required. Similarities exist
among bootstrap methods themselves. Efron’s bootstrap ¢ method is a special
case of Beran’s bootstrap root method with the root chosen to be the Student
t-statistic. And Beran’s prepivoting method can be motivated by the idea of
calibration (DiCiccio and Romano (1988)).

Theoretical comparisons of the asymptotic properties of Efron’s methods
(Hall (1983b)) have shown that for the estimation of smooth functions of vector
means, the bootstrap ¢ and accelerated bias-corrected percentile methods pro-
duce one-sided intervals with coverage error of order O(n~') compared to order
O(n‘ll 2) for the corresponding percentile and bias-corrected percentile intervals,
as the sample size n increases. In the case of two-sided equal-tailed intervals, the
coverage error is of order O(n~!) for these four methods. On the other hand, Loh
(1988) showed that a nonlinear approximation to the calibration method applied
to the ordinary t-interval yields coverage errors of order O(n~!) for one-sided
intervals and order O(n~?) for two-sided symmetric intervals. (An equal-tailed
nominal 100(1 — 2a)% interval for § takes the form [0 — £, + £;], where 6 is a
point estimate of 8 and the §; are chosen such that Pr(f < £;) and Pr(8 > &)
both converge to a as n increases. A symmetric interval at the same nominal level
takes the form [ —, 0+ ], where ( is chosen such that Pr(|d - 6| > ¢) converges
to 2a. The reader is referred to Hall (1988a), for an analysis of the differences
between equal-tailed and symmetric intervals.) It is shown in Section 2 that the
same error rates may be obtained with Beran’s bootstrap root and Efron’s boot-
strap t methods by appropriate choice of root; in fact, the calibration, bootstrap
root, and bootstrap ¢ intervals are identical. A practical method of performing
the calibration exactly is described, which requires no more bootstrapping than
the bootstrap root method.

Bootstrap intervals with even smaller coverage error rates are possible if
bootstrapping is iterated. Their main problem is computational cost. When
restricted to one level of bootstrapping, the best two-sided interval at this point
(in terms of coverage error) seems to be the symmetric interval produced by
either the bootstrap root or calibration methods. One criticism of the two-
sided symmetric interval is that its end-points are always equidistant from é
and therefore it does not reflect the skewness in the empirical cdf. The two-
sided accelerated bias-corrected percentile interval has end-points that are not
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necessarily symmetric about é, but it does not have as small a coverage error
rate. A bootstrap proceduré that yields asymmetric two-sided intervals with
error rates of order O(n~?) is proposed in Section 3. It requires only one level
of bootstrap sampling, and gives one-sided intervals with error rates of order
O(n=3/2),

Section 2 describes how calibration can be carried out without any approxi-
mation, in the context of estimating the mean of a distribution with the ¢-interval,
and demonstrates its equivalence to the bootstrap root method. The new boot-
strap recipe is derived and its asymptotic properties studied in Section 3 for
one-term Edgeworth-corrected confidence bounds in the more general context
of estimating a smooth function of vector means. Extensions to higher-order
Edgeworth corrections are considered in Section 4.

Because of the proliferation of numerous techniques for interval construction
with different orders of asymptotic error rate, the practical problem of choosing
among candidate intervals is becoming increasingly important. A method of
interval selection based on calibration is proposed in Section 5. It is shown
for example, that when the candidate intervals are derived from Edgeworth-
corrected statistics, the calibration-selected interval possesses an asymptotic er-
ror rate equal to the best among them. Simulation results indicate that the
finite-sample properties of the interval are also quite satisfactory. Section 6 con-
cludes the article with some remarks.

2. Calibration of the Normal-Theory Interval

Consider estimation of the mean, § = §(F), of a distribution F using the

nominal 100a% one-sided normal-theory interval
Il(qlo)rm(a) = (~00, 0+ n71%52,]

based on a random sample X = (X3,...,Xy,) of n observations from F, where
62 is the usual unbiased estimate of variance and z, = ®~!(a), with & the
standard normal cdf. If F is a normal distribution and = is large, the coverage
probability, r(a), of Ifqlo)m(a) will be close to a. For other distributions, (o)
could be far from a. The idea of calibration is simply to replace a in I 1) (a)

Norm
with another value, o' say, such that the estimated coverage, #(a’), of the new

interval Iﬁlo)rm(a' ) satisfies #(a’') = a. In most applications the estimation will
be carried out by bootstrap sampling via Monte Carlo simulation.

At first sight, this procedure appears impractical, as it suggests a potentially
infinite search for o', with each candidate value requiring its own set of bootstrap
samples. For this reason, solutions based on linear interpolation (Loh (1987)) and
smooth nonlinear approximation (Loh (1988)) have been suggested. The latter
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was shown to give one-sided intervals with error rates as good as the bootstrap
t and the accelerated bias-corrected percentile methods, and two-sided intervals

with error rates an order of magnitude smaller than that of other equal-tailed
intervals.

2.1. Exact calibration

In the present context a’ can be obtained with just one set of B, say, boot-
strap samples instead of infinitely many, as follows. For each i = 1,...,B, let
X; = (X§,.-.,X};) denote the ith bootstrap sample from the empirical dis-
tribution. Let 87 = 6(X?), 67 = &(X}), and denote the value of the t-statistic
computed from the ith bootstrap sample by t; = nl/2(67 — 6)/5?. Finally let

-

fi=1-3(:). W

It is easy to see that the interval I{* (o) based on the ith bootstrap sample

X <“Norm
will contain @ if and only if a9 > §; and that o' is just the a-quantile of the set

{B1,.-- ,BB}.
In the case of the 100(1 ~ 2a)% two-sided interval
1y

N (1-2a)=[0+n"267 12, 6+ n 25712 4,

define

Bi=1-9(|t7]) (2)
and take a’ to be the 2a-quantile of {[;1, e ,[;B}-

2.2. Equivalence to the bootstrap root method

It is unnecessary to perform the inversions in (1) and (2), because 2z, instead
of o' is the quantity needed in the computation of the desired interval. In the
one-sided case, zn is the a-quantile of the set of t}’s, and in the two-sided case,
21 o is the (1—2a)-quantile of the set of |t}|’s. Therefore the calibration method
gives exactly the same intervals as Beran’s bootstrap root method if the root is
taken to be t and |t| in the one-sided and two-sided case respectively. It now
follows from known properties of the bootstrap ¢ interval (Hall (1988b)) that the
calibrated one- and two-sided intervals possess coverage errors of order O(n™1)
and order O(n~?) respectively. These rates may be compared with rates of order
O(n~1/?) and order O(n~1) for the one- and two-sided normal-theory interval.

3. Calibration of One-Term Edgeworth-Corrected Confidence Sets for
Functions of Vector Means
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Because calibration reduces the coverage error rate of an interval, we may
apply it on an interval which has an initial error rate better than that of the
classical normal-theory interval. A convenient candidate is that based on the
one-term Edgeworth-corrected interval. In the case of estimating the mean, this
is known as the Johnson t-interval (Johnson (1978))

IJohn(a) = ("007 éJ(a)]’

where
65(c) = 64 n~126{zo + n"1/2}(222 + 1)/6}

and where A = n~16~3 3°(X; — X)? is the sample standardized skewness. The
one- and two-sided equal-tailed Johnson intervals have coverage errors of the
same order, namely O(n~1). We show in this section that the calibrated one-term
Edgeworth-corrected one- and two-sided equal-tailed intervals typically have cov-
erage errors of order O(n~3/2) and order O(n~2) respectively. Another advantage

of the interval [0;(a),0(1 — a)] is that it is not necessarily symmetrical about
6. ‘

3.1. Edgeworth expansions

To analyze the method more generally, suppose the data consist of a random
sample of d-vectors Y3,...,Y,. Let p = E(Y;) and Y = o' ¥} | V;, and
suppose that the parameter 8 is related to y through the relation § = f(u) for
some differentiable function f. Let § = f(?) and suppose it has asymptotic
variance n~'o?, where 0? = g(u) for another differentiable function g. Let
8% = g(Y') be the estimate of 2. This framework encompasses the estimation of
means, variances, correlations, and functions of them.

Assume that the studentized statistic n'/26~1(8 — @) possesses the Edge-
worth expansion

Pr{n'/2671(0 - 0) < 2} = ¥(z) + zu:n—"ﬂq,.(z)qs(z) + O (n~(+1/2)

i=1

for some v > 2, where $'(z) = ¢(z), and ¢; is a polynomial of degree 3i — 1 such
that odd/even indexed polynomials are even/odd functions, respectively (Hall

(1988b)). Suppose that a given confidence bound é(a) admits an expansion of
the form

3
é(a) = é + n“1/26.{2a + Zn—iﬂgi(za)} + Op(n"5/2),

=1
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where s; and s3 are even polynomials and s; is an odd polynomial all of whose
coefficients are functions of population moments, and where 3; is defined to be
8; with population moments replaced by sample moments. It is known (Hall
(1988b), section 4.5) that under these assumptions, the interval (—oco,f(a)] has
coverage probability 7(a) given by

(@) = o+ 072 51(z0) ~ @ (7)) ~ 0" [gsaza)za

+1(2a) {6 (70) — 01(72) 70} — da(2a) — s2(20) + u] $(z)
+ 072 r(22)¢(20) + O(n7?). ®3)
Here r is an even polynomial and u, (independent of n) is defined by
E[n'?671(0 - 6) x n**{31(2a) — $1(2a)}] = ua + O(n™1).

Therefore the two-sided interval [f(a),d(1 — a)] has coverage probability
1
T(1—a)-7(a) = 12a—2n""1 [53%(zl_a)z1_<,+31(zl_a){q'l(zl_a)—ql(zl_a)zl_o,}

—@2(z1-a) — 82(21-0) + ul—azl—a] #(z1-a) + O(n72).

3.2. One-sided intervals
3.2.1. Theoretical results

Let 6;(c) denote the one-term Edgeworth-corrected nominal 100a% upper
confidence bound

b1(a) = 0+ 07?6 {ze + n 2 §1(2a)}-
According to (3), its coverage probability 7;(a) has the expansion
mi(a) =a~- nt {921(2a) + va2a }d(2a) + O(n-3/2), (4)

where ¢;1(z) = 1(2)gi(z) — (1/2)z¢}(z) — ¢2(z). Let o’ be the calibrated value
of a such that #;(a') = a. From (4)

a=da - n_l{qn(za:) + ot 2o } (2 ) + Op("_sn)
and so we have through a Taylor expansion

o' = a+ 1" {§n(2) + Gaza}$(2a) + Op(n—a/z)- (5)
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Therefore
Zar = za + (a — a)(dzq/da) + -
= 2o + 07 {21 (2a) + Blaza} + Op(n3/?)
and the 100a% calibrated confidence bound is given by
61(a') = 6+ 17 261z0 + 0721 (20) + 0" Hdn1 (%) + Gaza}] + Op(n ™).

Equation (3) shows that the coverage probability m1(a’) of the interval (-0, 6 ()]
converges to a at a rate of order O(n=3/2),

3.2.2. Exact calibration

In practice, o' is obtained as follows. For the ith bootstrap sample, compute
67 and 6;, and let z = zsl),zgz) (a:gl) < z$2)) be the solutions of the quadratic
equation

6 + 7oz + 07120 ()} = 4,

where éii) () is G1(z) computed from the ith bootstrap sample. Then, depending

on the sign of the coefficient of the z2-term in é{i)(x), the solution set of the
inequality

07 + 07 2o {z + 07126 (2)} > 0 (6)
is either
{z < 2"} u{z > V) (7)
or
=i <z <2}, (8)

If (7) occurs, define ¢; = 1, ygl) = -1, y£2) = 1. Otherwise, if (8) is realized,

define ¢; = 0, ygl) =1, y?’ = —1. In either case, let C = Ef_.l ¢; and define the
function

B
we)= B[+ X (ufP1Ce 2 o) 440 2 o)

=1

It is clear that for any z, h(z) is the proportion of i’s for which inequality (6)

holds. Let (a; < --- < azp) denote the set of ordered {zgl),z?);i =1,...,B}
and define the calibrated level as

o' = min{h(a;):j=1,...,2B}.
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3.2.3. Approximate calibration

1

An easier way to obtain the same asymptotic coverage error rate is to use a
nonlinear approximation of a' as follows. Given a, obtain the bootstrap estimate
of my(a):

#1(a) = a - n-! {G21(za) + ﬁaza}¢(za) + Op(n—S/Z).

Let 9 be a strictly increasing function on the unit interval with unbounded range
and first derivative 9’, and let § denote the ezcess of the bootstrap coverage over
the nominal level on the 1-scale. That is, let

6 = P{#1(a)} - ¥(a)
= —n"Hd21(2a) + Gaza}d(2a)¥ (@) + Op(n~3/).
Further let o* be the approximate value of o' given by
a* = ¢ {y(a) - 8}
= 7 (@) + 27 {G21(2a) + TaZa} (2o )V (@)] + Op(n~3/?)
= a+ n 7 {§21(2a) + Gaza}P(2a) + 0p(n3/?).

Because of the similarity between this expansion and that in (5), it may be
verified that the calibrated confidence bound 6;(a*) has coverage probability
mi(a*) = a 4+ O(n~3/%).

3.3. Two-sided intervals

The coverage probability of the nominal 100(1—2a)% interval [0, (@), §; (1—a)]
possesses the expansion

(1 —a) = m(a) =1 - 2a - 2n g1 (21-0a) + W1-a21-a}#(21-a) + O(n %),

because ¢9; is an odd polynomial and u, = u3_o. It is more difficult to obtain
an exact calibrated value of a in this case. Instead, we propose an approximation
and show that it suffices.

The bootstrap coverage probability has the expansion
1?1(1 - a) - 1?1(0:) =1-2a- 2n_1{d21(z1_a) + ﬁl_azl_a}qb(zl_a) + Op(‘n—2).
Let

§ = Pl - o)  1(e)} — $(1 - 20)
= —273_1{621(31—01) + '&l—azl—oz}‘ﬁ(zl—a)"/’l(l - 2(1) + Op(n—z),
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and define the approximate calibrated value

1-20* = ¥~ {y(1 - 2a) — 6§}
=1-2a+2n " {gu(21-0) + U1-aZi—a}P(z1-a) + 0,(n72).
Then

a® = a - 1" (21-a) + t-a21-a}$(z1-a) + Op(n~2)
= a+n"{§n(z) + aZa}P(7a) + Op(n™?)

and

Za* = 2o + n~! {QZI(Za) + '&aza} + Op(n—z)’

which implies that

01(a”) = 6+ 17126 [z + 072G (20) + 2 {d21 (20) + fiaza)
+ 173§ (2a){d21(7a) + Baza}] + Op(n~572),

It follows from (3) that the calibrated interval [f;(a*),0;(1 — a*)] has coverage
probability

m(l—a")-m(a*)=1~2a+0(n"?).

3.4. A small simulation experiment

A simulation experiment was performed to examine the relevance of the
asymptotic results for finite sample sizes. Three sample sizes (n = 10,25,50)
were used with each of two distributions (normal and exponential) to compare
the following intervals for the one-sample mean problem: (i) normal-theory, (i1)
Johnson ¢, (iii) bootstrap t, (iv) approximate calibrated normal-theory, and (v)
approximate calibrated Johnson t. The 1-function used in the approximate cal-
ibration was the inverse normal cumulative distribution function. The value of
a was 0.05 in all experiments, giving nominal 95% one-sided and 90% two-sided
intervals. Five thousand Monte Carlo iterations were employed in each experi-
ment, with each iteration utilizing five hundred bootstraps. This gave estimated
standard errors of about 0.005 for the coverage probabilities. In the case of
two-sided intervals, estimated average interval lengths were also computed.

The following observations are evident from the results given in Table 1.

1. The incorrect use of the 2, factor instead of ¢, in the normal-theory interval

is obvious in the case of the normal distribution with small n.
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Table 1. Estimated coverage probabilities of intervals; simulation standard errors about
0.005; average interval lengths in parentheses; y-function was inverse normal cdf.

Normal distribution

Method

{nterval Sa¥nple Normal Johnson Bootstraptor Approx. calib. Approx. calib.
ype size .

theory t exact calib. ¢ normal-theory Johnson t
95% n=10 937 933 .951 .947 940
left-closed n = 25 .949 949 .953 .953 952
right-open n = 50 .946 947 .952 948 947
95% n=10 938 .938 .956 .948 945
left-open n =25 943 942 .948 948 947
right-closed n = 50 945 945 947 .945 944
90% n = 10 |.875(1.02) .871(1.02) .914(1.18) .904(1.13) .891(1.10)

2-sided  n = 25|.891(0.65) .891(0.65) .906(0.68)  .906(0.68)  .899(0.67)

n = 50 |.891(0.46) .892(0.46) .896(0.47)  .896(0.47)  .895(0.47)

Exponential distribution

95% n=10 976 .954 992 .968 944
left-closed n =25 973 947 .989 .951 944
right-open n = 50 974 951 .989 .949 .948
95% n =10 844 872 .827 .889 901
left-open n =25 .886 919 .859 927 .936
right-closed n = 50 911 933 .888 .936 944
90% n = 10 |.820(0.95) .826(0.95) .879(1.44) .859(1.13) .853(1.09)

2sided  n =25|.859(0.64) .866(0.64) .888(0.73)  .882(0.69)  .886(0.68)

n = 50 |.885(0.46) .885(0.46) .896(0.48)  .895(0.48)  .895(0.47)

2.

The faster rate of convergence of the one-sided Johnson ¢ intervals over
that of the corresponding one-sided normal-theory intervals is apparent in
the case of the exponential distribution. (The two-sided normal-theory and
Johnson t intervals have coverage error rates of the same order.)

. When the distribution is normal, the results for the bootstrap ¢, approximate

calibrated normal-theory, and approximate calibrated Johnson t are similar;
they are indistinguishable (within simulation error) from the results for the
non-bootstrap intervals for n = 25 or 50, and are marginally superior to the
latter only for n = 10.

When the distribution is exponential, however, the approximate calibrated
one-sided intervals appear to be quite a bit better than the one-sided boot-
strap t. The superiority of the approximate calibrated Johnson t may be
due to its faster rate of convergence. The superiority of the one-sided ap-
proximate calibrated normal-theory over the one-sided bootstrap ¢ (which is
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the same as the exact calibrated normal-theory) may be because use of the
y-function produced a smoother bootstrap.

. The better coverage of the two-sided bootstrap t (compared to its one-sided

relatives) is easily explained: its coverage probability has the expansion (Hall
(1988b), p. 948)

wstun(l — @) — msTup(a)
=1-2a—(1/3)n7 (k- 3X?/2)51_4(222_, + 1)d(21-a) + O(n~3/?),
where A and & are the standardized skewness and kurtosis. The O(n~!) term
vanishes for the exponential distribution because x — 3A2/2 = 0. Therefore

in this special case the two-sided bootstrap ¢ interval incurs an error rate of
order O(n~=3/%) instead of order O(n™1).

. Somewhat surprisingly, the bootstrap ¢ method had the longest average

interval length for small samples. Whether or not this is an artifact of the
choice of distributions remains to be seen.

4. Higher-Order Edgeworth Corrections

The ability of the approximate calibration technique to improve the rate

of convergence of coverage probabilities is not restricted to one-term Edgeworth
corrections, but works more generally. We briefly explain why this is so in this
section, for the one-sided case.

It is known that under weak conditions (Withers (1983), p. 585) there exist

polynomials s;(z), ¢ = 1,2,..., with coefficients that are functions of moments
such that for each v > 1 the Edgeworth—corrected statistic

@) = 0+ n 15z + 305, (2,)) ©

i=1

possesses the expansion

m(a) =Pr{f, <0} =a- n 2 P(20)8041(20) + O(n~ (172,

This implies that

Let

f(a) =a-— n'”/2¢(za)3u+1(za)'+ Op(n—(u-f-l)/z).

§ = p{#u(a)} - ¥(e)
= =072 §(2a)8s41(2a)¥'(2a) + Op(n=(+1)/2)
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and define the approximate value

RO
= ") + 72 $(2a)du41(2a )W (@) + Op(n~F1/2))
=a+ 17" (20)3,41(2a) + Op(n'("+1)/2).

Then

b,(a*) =6+ n'1/2&{za' + zu:n‘i/zés(za-)}

=1

=0+ n'lﬁc“r{za + Zn“/zég(za)} 4+ 0, (n~(v+D/2),

i=1

It follows that the coverage probability 7%(a) of the interval (—o0,8,(a*)] has
the expansion

m,(a) = a— n—(v+1)/2¢(za)8y+2(za) + O(n—(v+2)/2),

which implies that the error is one order of magnitude smaller than the uncali-
brated interval.

5. Calibration for Interval Selection

Suppose that {I,,,(a),... ,In,.,(a)} is a set of confidence intervals for a
parameter @ such that for each i = 1,... ,k, the coverage probability =, (a) of
I, ..() converges to a at rate of order O(n~%/%) as n — oo. Further suppose
that »; < --- < v;. The interval with the best convergence rate is clearly I, ,, (a).
Because the coverage error for a giveﬂ sample size n typically depends on other
quantities such as population moments, the interval with the smallest error is not
necessarily I, ,, (a). Empirical evidence given in Hall (1983) for the estimation
of a nonparametric mean shows for example that intervals based on high-order
Edgeworth expansions may be unstable for small n, causing overcorrection and
hence increase of coverage error with increase in the number of Edgeworth terms.

In view of the fact that 7,,(«) may be estimated by the bootstrap estimate
#y,(a) for each i, it is natural to consider the following procedure for choosing
among the intervals: Select the interval I, ;(a); where ¥ is the value of v; such
that |#,,(a) — a| is minimized for ¢ = 1,... ,k. It is not difficult to show that
this “calibration-selected” interval has a coverage error rate equal to that of the
best interval I, ,, (o). We will illustrate this for the special case when

L (@) = (—00,0,,(a)], i=1,2,...,k,
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where 8, () is given in (9). Then

7?”& (a) Fa - n:V‘/2¢(za)§ui+1(za) + Op(n—(yi+1)/2)

= o — 0" (20)80,41(20) + o(n~%/?) as.,

and hence the coverage error of I, ;(a) converges to zero at the same rate as
that of I, ,, ().

Table 2 contains the results from a simulation experiment on the finite-
sample performance of the calibration-selected interval for estimating the popu-
lation mean. The interval I, ,, is the uncorrected (normal-theory) interval and
I, ., and I, ,, are the first two Edgeworth-corrected intervals, respectively. The
two distributions employed are the normal and exponential. All the intervals are
left-open, right-closed 95% intervals (see Hall (1983), Section 3, for the formulas).
Each simulation employed five thousand replications, with I, ; computed from
five hundred bootstraps in each replicate. This gave simulation standard errors
of the coverage probabilities around 0.005. The results show that the coverage
probability of the calibration-selected interval is always within one simulation
standard error of that of the best interval.

Table 2. Coverage probabilities of three 95% Edgeworth-corrected and one calibration-

selected one-sided intervals based on 500 bootstraps; simulation standard errors about
0.005.

Interval Normal Exponential
n=10 n=25 n=50|n=10 n=25 n=>50
I, 0939 0944 0.944 | 0.847 0.890 0.907
I, ., 0.940 0.942 0.944 | 0.871 0915 0.933
I vy 0.932 0.944 0945 | 0864 0919 0.938
I.; 0.939 0945 0944 | 0.868 0.917 0.934

6. Concluding Remarks

1. We showed that the bootstrap root and calibration methods give identical
answers when the root is the t-statistic and the interval to be calibrated is
the normal-theory (or, equivalently, the t) interval. This equivalence breaks
down in more complicated situations such as calibration of Edgeworth-
corrected intervals where the necessary root is neither obvious nor easy to
compute. Calibration, on the other hand, is a fairly straightforward and
automatic procedure. Further, the bootstrap root method appears to be
restricted to those problems that permit solutions in the form of t-intervals.
The calibration method is more general. For example, it works just as well
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(perfectly) in the classical problem of nonparametric estimation of a popu-
lation median using an interval based on order statistics (Loh (1987)).

. There is another method of applying an Edgeworth correction to a t-statis-

tic that does not depend on z,. In the case that 6 is the mean of F and ¢ is
the Student ¢-statistic, Abramovitch and Singh (1985) obtained the one-term
corrected statistic

t1 =t+n"252t +1)/6 (10)

where J is the sample standardized skewness, and showed that under weak
regularity conditions, Pr(#; < z) = &(z)+ O(n~1). Although the bootstrap
root method may be applied with ¢; as root to obtain a confidence set
with coverage error converging to zero at the same rate as that obtained
by calibrating the interval based on él(a), the result is not necessarily a
contiguous interval. This is because (10) is a quadratic function of ¢, and
there is no guarantee that a contiguous interval for 4 results from inverting
confidence sets of the form (—oo,t;] or {z; < ¢; < z;}. On the other
hand, calibrating an interval always produces an interval. (Abramovitch and
Singh (1985) also give statistics with higher-order corrections than (10) that
induce confidence sets with smaller error rates, but the preceding remark still
applies since the confidence sets typically consist of several disjoint pieces.)

. Although we have demonstrated the improvements attainable through cali-

bration of Edgeworth-corrected intervals, it should be emphasized that the
application of our method is quite independent of the availability of Edge-
worth expansions. If such an expansion is already known (such as when the
parameter to be estimated is a function of vector means), then the calibra-
tion method should of course take advantage of it. In those problems where
Edgeworth expansions are unknown or would require much effort to derive,
it may be sufficient to apply the calibration method to the normal-theory
interval (with any convenient estimate of standard error, including the jack-
knife if necessary). The rate of convergence of the resultirig interval will still
be faster than the uncalibrated interval.

. The use of calibration as a method of interval selection is another applica-

tion of the bootstrap idea that holds promise as a potentially powerful and
automatic procedure when more than one interval is available and the user
is afraid of choosing the worst one for a given sample size. The calibration-
selected interval as described here can provide a solution for this problem.

Besides being natural, it retains the best asymptotic error rate among the
intervals.
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