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S1  PROOF OF THEOREMS

In this supplementary material, we provide proofs for the theorems in the main manuscript, ad-
ditional details for computation, simulations and real data analysis. The labels of equations, figures,
tables, sections, and so on, in this supplementary material are all prefixed with “S” | for example, equa-
tions: (S1.1), (S1.2), - -+, and section S1.1. Those in the main manuscript are labeled using the original

index as in the main manuscript without prefix “S”.

S1 Proof of Theorems

S1.1  Proof of Theorem 1

Let Ek 1P Opt)( )C,gom) (t) denote the optimal representation of B(s,t) defined in |Luo and Qji| (2017)

2
1
o /0 (F { /X k(s)Cr(t)d }) dt| (S1.1)

1<k<K

that minimizes

where the minimization is over all possible square intergrable functions ¢y (s) and (i (¢) for 1 < k < K.

Theorem 1 in Luo and Qi (2017) characterizes go,(fpt)(s), 1 <k < K, as the solution to

max / / Jo(s')dsds’,  subject to / / Yo(s')dsds’ = 1,

and / / (s,8") cp§0pt)( "Ndsds' =0 forall 1<I<k-—1. (S1.2)

Comparing (2-1) to (ST.1), Sr, D4 ¢y (opt) (s )Dd2§(0pt (t) is an optimal representation of B(s,t). So the
D4 gi)k()p (s) satisfy the optimization problem (S1.2), which means that gb,gol’ t)(s) satisfies (2.2)). Part (a)
is proved.

Because Zszl D% qﬁ,(:p t)(s)DdQQ(cOp 2 (t) is an optimal representation of B (s, t), part (b) follows from
Theorem 1 in Luo and Qi (2017).

S1.2 Proof of Theorem 2

For convenience, we introduce some notations. For any 1, ¢ € L?[0,1], let {¢,)) = fo s)ds and

ol = \/{(o, 0) = \/fo #(s)2ds denote the inner product of ¢ and ¢ and the L?-norm of ¢, respectively.

Recall that ||-||2 denotes the I3 norm of a vector. For any square integrable kernel function K(s, s’), where

0 < s,s' <1, we can view it as an integral operator in L?[0,1], still denoted by K, such that for any
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S1.2  Proof of Theorem 2 S1  PROOF OF THEOREMS
¢ € L%0,1], (Ko)(s) = fol K(s,s')¢(s')ds' is a function in L2[0, 1]. Then fol fol o(s)K(s, s )(s)dsds' =

(¢, K1b). Moreover, if the function K(s', s) is symmetric, i.e., K(s,s') = K(¢', s), then the operator K is
also symmetric in the sense that (¢, Kv) = (K¢, ) = (¢, K¢). With these notations, the optimization
problem ([2.2)) in Theorem (1| can be expressed as

max (D¢, BD™ ¢)
subject to (D%, BDNg) =1, (DU, BDUGP)) =0, forall 1 <1<k -1,

which, for convenience, is rewritten as

(D% ¢, BD% ¢)
8T (DHg, mDhg)

subject to (D%, BDNg) =1, (DU, BDUHP)) =0, forall 1 <I<k— 1.

(S1.3)

When d; is a positive integer, the solution to (S1.3) is not unique. We choose a solution to (S1.3),
denoted by d),(:p t)(s), k > 1, and fix it in this proof. Let 013 be the maximum value of the objective
function in (S1.3) for any k& > 1. Similarly, the optimization problem (2.5)) can be written as

max — (D%, BD"g) (S1.4)
¢ (Dh¢,ZDNG) + Ao + AT|| D22

subject to (D¢, ED1g) =1, (DU¢, EDU¢) =0, forall 1 <I<k—1.

Let (Ek denote the solution to (S1.4) and 8,% denote the maximum value. Because A > 0, the solution to

(S1.4]) is unique up to a sign as long as 3,% is positive. We choose the sign of ngﬁk such that
(DN Gy, DN ) > 0, (S1.5)

We next provide some inequalities which will be used in our proof. The following lemma is Lemma

A.1 in the supplementary material of Luo and Qi (2017) and is provided here for readers’ convenience.

Lemma 1. Assume that E[||X||*] < oo and E[||¢]|?] < co. Then given any € > 0, for each n, there

exists an event Qo with P(Qn.e) > 1 — €, such that in Q, ., for any ¥, ¢ € L?[0,1], we have

(v,(B -~ B)o >] =i, )w (E-2)0)| < el 1K) <

NG v
Z/ (s X (s)lds {ei — ¢} <

where the constant cy depends on € but does not depend on n.

\F

[Tt < (SL.6)

waH



S1.2  Proof of Theorem 2 S1  PROOF OF THEOREMS

In the rest of this proof, all the calculations are performed in the event €2, .. Hence, the inequalities

in Lemma |1 always hold. The following equalities follow from the constraints in and ( -

<Dd1¢> opt) EDdl ¢l(€0Pt)> =1, <Dd1 ¢(Opt)’ 2Dd1 d)(opt)) =0,

(DN, EDNgy) =1, (DN, EDNG) =0, Yk #L (SL.7)

By the form of (S1.3]), Ddlqﬁg)p ") is indeed the generalized eigengfunction of B, so we have

BDU ") = g2mDh o (S1.8)
for any k > 1. We define two vectors zi = (2%, » Znk) . and 2 = (Z1g, -, Znk) |, Where
1
s = / Xi(s) DD (s)ds, B = / [Xi(s) — X (5)]| D% gy (s)ds. (SL.9)
0

The key step of our proof is to prove the following claim by induction.

Claim: In Q, , for any 1 < k < K, we have

I96l* < Hyeao |ID?0kl|* < Hiz,  [IDM 0] < Hia

~ Hy, L. Hy, ~ o Hy,
GE—oil < T2 Slm—mli < T2 IDRG - DRETP < ,
- op)e g~ o H,
(D% Gy — D) (DN, — Db gl )y < RS
NG
—~ o o H
(DU gy, — DU, 5(DN gy — DBy < TET (S1.10)

vn'
where Hy | ~ Hyr are constants only depending on ¢, C, Cy, ¢, C;, 0%, | b5, (opt) Il HD2<Z>,(€0pt)||,
”f(()pt | and ]]D2€£Opt)||, 1 <k < K, but not on n.
We provide the detailed proof for the claim when £ = 1. The induction step for k£ > 1 is similar

and more tedious. So we skip it.

e Prove the claim for k = 1.

We split the proof into several steps.
Step 1: Provide upper bounds for ||$1||, HDdlthH and |\D2<;A51H.
We notice that the objective function in (S1.3)) is scale-invariant in the sense that if we replace ¢(s)

by c¢(s), where ¢ is any scalar constant, the value of the objective function in (S1.3) is unchanged.



S1.2  Proof of Theorem 2 S1  PROOF OF THEOREMS

Since qbgOp " is a solution to (S1.3) with £ = 1, we have

(D61, BD" ) _ (Dh6\™) BDH ™)

z < = o2, S1.11
(D4, EDN Gy (D) sipagly ! (8111
which implies that
(D161, BDU 1) < 03 (D% §1, SDN ¢y). (S1.12)
Similarly, because ¢1 is a solution to (S1.4) with k& = 1, we have
Dd1 (opt) ]§Dd1 (opt)
\Do L BDUOL ) (S1.13)

(DA g™, ZDHGT) + AL 2+ A7 D201 2
(D%, BDY ¢y)

(DU61, ED%G1) + N1 |2+ Ar|| D261 |
(D61, BDU61) + (D6, (B — B)DUgy)

L+ A@1]12 + Ar[[ D262
<U%<Ddl¢17 %Ddl¢1> i %[Ddlqsl”Q (due to and Lemma (1)

L4+ A1]12 + Ar|[ D26
o} (D1, DM G1) + 0} (DM oy, (B~ B)DN ) + || DN |2
L+ A1 ]2 + A7[[ D26 |2

ot + TRIDAGIP + S D% 6P

<52 =

(due to the third equality in (S1.7))

\/E ~ ~
L4+ A@1]? + AT[| D¢ |2

2 ~
_ b+ R IDh G
L+ Al ]2 + M| D26 |12
On the other hand,

(due to the first equality in (S1.7) and Lemma (1

<Dd1¢gopt)7]§Dd1¢gopt)>
<Dd1¢§0pt)7 ﬁDd1¢gopt)> + )\H(bgopt)HQ + AT"D2¢§Opt)‘|2

<Dd1 qbgopt)’ BD% ¢§opt)> + <Dd1 qbgopt), (]§ - B)Ddl ¢gopt)>
<Dd1 ¢§0pt), S D ¢gopt)> + <Dd1 ¢§Opt), (i _ Z)Dd1¢§opt)> 4 )\”(bgopt) 12 + )\THD2¢§Opt) 2
N <Dd1¢gopt),BDd1¢gopt)> _ %HDdlgbgopt)”g
= <Dd1¢§opt)7 2Dd1¢gopt)> + %HDdld)gopt) 12+ )\H¢§Opt)||2 i )\T”D2¢§Opt)||2

(due to Lemma [T))

t
of — D™

- o p P (S1.14)
L G D™ 2 + A2 + Al D2y |
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where the last equality is due to the first constraint in (S1.6) and gbgoP ") is its solution. Combining
(S1.13) and (S1.14)), we obtain the following inequality,

t) 1+o0? N
o} — | DB |2 _ ot SRS

- - —— < — —. (S1.15)
]| DAY |2 4 A2 + A7 D2¢{ |2 T 1+ N n 2 + A D21 2
Rearranging it, we obtain the following equality,
. opt opt .
1602 [A - DD Mr?] +0F = DR P D*
(1+0%)co 0 opt) opt opt
= I |k DU+ AP + A D
1 + 071 )C o O O]
<UDy glor 2y 22 + ofAr DO (51.16)

7

The following lemma follows from the Gagliardo—Nirenberg interpolation inequality in a bounded region.
Lemma 2. If ¢(s) is a function in [0, 1] with continuous second derivative, then we have

ID% 2 < erlg]2 + eal| D20, (81.17)
for any 0 < dy < 2, where ¢ and cy are two positive constants not depending on (s).

By (S1.17)), the left side of (S1.16)) can be bounded from below as follows

I [rot = SENDHGTIR + (0 = DA PG
- pug, e L+ S IDh R - NP+ ar| Do (SL.18)
>161? [Aa% - j%AHDdlas%”p“nﬂ + (03 - %HD%&"”)||2>ATHD2$1||2
e O N R o e P e R el
Gl {rot = SAD o - (“jﬁ“ L DA A+ e P
HID* [ {Aro? = Sar Dt o) - (”"ﬁ)“ L Dt A + Al D}
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Combining (S1.16]) and (S1.18]), we obtain
(14 0%)coer [

22 2 © dy 4(opt) 2
— O\ Ip% _
16 {r0t = Snlpa7) - S @

-~ Co opt (1+U2)6062
HID* | {Aro? — Dar| g - BT

o opt opt opt
<ot I + a0 + atar| D01

& o o o
Lt D5 P + N + ar| Do P |

o opt opt opt
Lt Db o2 4 Ao+ Al D%}

cocC o e o
<ot |22 | 1671 4 0| T2 4 xe | D% (S1.19)

where the last inequality follows form Lemma (I} Set A = C/y/n and ¢, < 7 < C, where C, ¢; and C;

are constants not depending on n, and require that
C > (1+07)coca/oi, C > (1407)coca/(T07).

Then when n is large enough, the terms in the two curly brackets on the left side of are both
positive and have order 1/4/n, and the right hand side is equal to 1/y/n multiplied by a constant as

g(’p " (s) is a fixed function. Hence we obtain the first two inequalities below in , and the third
inequality in follows from the first two and Lemma

61> < Hip,  [D?61|* < Hig, [[D"61]* < Hig,, (51.20)

where Hy 1, Hy12 and Hy 4, are all constants only depending on ¢, C, ¢, Cr, gom)(s), D% (ﬁg()pt) and not
depending on n. In the following, we will use Cs1, Cas, Cs, (31, - - -, to denote constants only depending
on ¢y, C,cr,Cr, gom)(s), Ddlgﬁg()pt) and not depending on n.

Before we move on to the next step, let us take a close look at the constant H; . By (S1.19), we

have
<02 opt (€015 opt
Hiy = U% [%ﬂL)\} H@bgp)Hz—l-J% [%4.)\7-} ||D2¢§p)”2
, Aro? — Lo Tl D% (Opt)HQ _ m 1 4+ <o || Ddi (opt) 12 1 ’ (Opt)HQ D2 (Opt)HZ .
0L~ n 7| ) NG \/E” o1 |1 || D?*¢;

Since \ has the order 1/4/n, when n is large, the denominator of the right hand side of the above equation
is dominated by the first term A\7o? —(14+0%)coca//n. Because A = C/y/n and ¢, < 7 < Cy, if we require
the lower bound ¢, of T to satisfy ¢, > 2(1 + 03)coca/(Co?), then we have Ao — (1 + 0%)coca/v/n >
ATo?/2. Hence, when n is large and ¢, > 2(1 + 0?)coca/(Ca?), we have

w1911 + 0t |22 + Ar) 102%™

. ot [
1D < Hro  — e
Aro2 — Utoi)cocs
1 vn
1 reocr 0 CcoC2 o
< - [—C +1} loi™ 1% + [Tc + 1] D26\ |12, (S1.21)
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which are used in Section to explain why our method is not apt to over-smoothing.

Step 2: Provide an upper bound for |57 — o}

By the first two lines in (S1.13|), we have

D%, BDH
52 = - (D% 1, BDU ) _ (51.22)
(D461, BDU 1) + Mo + A D2 |
<Dd1 (b(Opt)’ ]§Dd1 ¢§opt)>
(D™, 2Dd1¢<°p“> + MBI + Ar| D262
of — &I DH ™|
> on) (oD ) (due to (S1.14)
L Sl DA g |2 4 Mg 2 + A D26 |12
1+o07)c o o, o
: g tod)e | s o121 20| 2 + o3| D22
- 01 - o O O
L G IDB ™2 + A2 + A D2y |
(1+02)CO o o o Co1
>of - (ﬁlnpwg I AL + o IATIDRTO ) 2 o - R (81.23)

where the last inequality follows from A = C/y/n and ¢, < 7 < C;, and the constant Co; = (1 +
o2)col| DU ¢{™ |2 + o2C 67|12 + 03O | D2{™ .

Conversely, by (S1.11)),

_ <Dd1¢§opt)’BDd1¢§opt)> - <Dd1q/b\1,BDd1(/Z)\1> <Dd1$1 ]§Dd1$1> (Ddl(/z;l’ (]§ _ B)Dd1$1>
<Dd1¢(opt) EDd1¢(0pt)> T (Dhgy, BDhGy)  (Dhy, EDhg) — (Dhigy, (5 — B)Dh )
GA(DU 41, DU 1) + A|on|* + Ar[| D261 |*] — (DU 6y, (B — B)DUgy)
(D% 1, EDhG) — (Db gy, (8 — ) Db gy)
(due to the first line in (S1.22))
521 2 27T 121 _ a7l (B di %
| BN MDY = (D5, BBIDNG) s s
1-— <Dd1¢)1, (2 — 2)Dd1¢1>
531+ AlB? + Aer | D% B1[17 — 2| D 2

AT
6'\% - %HDdl(ble ~2 022 023
wipage =T 8 T
L+ | Db

v

(due to Lemma [I))

v

(due to (ST.20)), (S1.24)

where Cyy and Ca3 are constants. By (S1.24)), as n is large enough, we have

2 2
52 _ g2 < Cao7 + Ca3 < 20207 + 2Ca3

S om S NG ,
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which, together with (S1.23)), gives

H
57 — o2 < =22 (S1.25)
where Hy 3 = max{Coy, 20220% + 2C93}.
Step 3: Provide upper bounds for <(Dd1$1 — DdlgbgoPt)),E(Ddlggl - Ddlgbg')pt))) and ((DdlqASl -

D), S(DU Gy — D))
Let g1 = DYy — (D4 gy, D% ¢y D1 p{P)  Then

D¢y = (DU gy, £DN ) D P 4 gy, (S1.26)

where 11 (s) satisfies (1)1, EDdqugOpt)} =0 as (DdqugOpt), de1¢§0pt)> = 1. Taking the inner products of
both sides of (ST.26) with D% ¢, we have

(D11, DN G1) = (DU Gy, £DH ¢\ PNV 1 (), DN Gy). (S1.27)
Now we calculate

(D% ¢y, BD% 1) (S1.28)
=(D% g1, =DU ") DU BDU ) + 2(DU Gy, BDN ) (1h1, BDD SV + (41, Ben)
(replacing DdlqAﬁl in by the right hand side of (S1.26))
=(D"1, ZD )20 (DM BDU V) + 2(D oy, ED S )0 (1, EDH ) + (41, Be)
(due to (S1.8)
=0} (D" 61, BDU (") + (1, Bin) < oF (DN 61, ZDN )2 4 03 (4, Dby, (S1.29)
where the first equality in the last line follows from <Dd1¢50pt), ZDdlgbgOpt)) = 1and (¢, ZDd1¢§°pt)> =0,

and the last inequality is due to <1Z1, Bzzl) < a%(zzl, 2{/31> which is explained as following. Let é1 be a
function satisfying Dd1¢~51 = 7,21/ <1$1, E{Eﬁ. Then we have

(D161, DM ¢y) =1, (51.30)
and by (1)1, EDdlgbgOpt)) =0, we have

(D% gy, =D% Py = 0. (S1.31)
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(S1.30) and (S1.31) imply that qgl satisfies the constraints in the optimization problem (S1.3)) with k& = 2.

Since the maximum value of (S1.3)) with k = 2 is equal to 03, we have

2 (DU, BDYGy) (1, Biy)
03 = - = ~
(D41, =D%G) (i, Teh)
which implies that (¢1, By < 02(¢1, Zih1).
On the other hand,

(D%¢1, BDY 1) = (DN $y, BDUgy) — (DU gy, (B — B)DUgy)

=52 [<Dd1q§1, SDUG) + M| || + A7 D261 |2 — (DB gy, (B —B)D% )  (due to the first line in (S1.22))

=0 [1 + Mlo1l? 4+ AT D%¢1 || — (D% ¢y, (B —B)D%¢,) (follows from the third equality in (S1.7))
_ o - C
— (D4, (B —B)DUg,) > o2 — % \FHDd%lHQ (due to (ST.23) and LemmalT)
C
>of — % (S1.32)

where the last inequality follows from (S1.20)) and the constant C3; = C21 + c¢oHj 4,. Now combining

(1S1.29) and (S1.32)), we have

o G _
01 \/ﬁ
= o3(DN G, SDUGP)? 4 3((DN 1, DN G1) — (DU, =D )2

< (D“$y, BD% 1) < 02(D% ¢y, SDU PNV 4 62(4)y, ey

(by plugging in 1;1)

(0% — 03) (DU 61, DN\ P)2 + 62(DN 1, DN )

(0 — 03) (D" 41, BDN )2 4 03(DM gy, BDDG1) + 03 (DT 61, (B — ) D )

o~ o~ o~ o~ C o~
< (07 — 03)(D Gy, =DU "2 4+ 62(DN 1, DN 1) + 03— | DTGy |2

vn
(by Lemma [I)
= (0 D BDUA™) 4 f + B IDNGI (by BT)
< (03 = o2) (DY, EDN ¢\ 4 o + 3%2 (S1.33)
where the last inequality follows from and the constant Csy = o3coH 1,d,- By , we have
(02 — 62) < (02 — 62)(D% ¢y, 2Dd1¢50pt)>2 + (Cs1 + Cs2)/+/n, which leads to

(D31, 5D\ N2 > 1 — Cyy/\/n,  and hence, (D% gy, BDH ") > 1 — Cyy/v/n,  (S1.34)

10
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where we use <Dd1$1’ EDd1¢gOpt)> >0 in (S1.5). It follows from (S1.34]) and Lemma |1f that

(DU Gy, 5D glP)y = (D g mD Py — (DB Gy (B — S)DUP)y > 1 - Cy5 /v (S1.35)

Now we calculate
(D61 — DU (™), B(DM 61 — DN (™))

:<Dd1 ngopt), EDdl ¢§0pt)> - 2<Dd1 &5\17 EDdl ¢§opt)> + <Dd1 Q/Z)\ly del $1>

=1—2(D% gy, =DMy £ (DG BD% 1) (due to the first equality in (S1.7) )

—1—2(D% g, =D \") 4 (DU Gy, EDH ) + (DU Gy, (T — S)DU )

<1 - 2(D% g, DN Py 41 4 %del $1]>  (by Lemmal[f] and the third equality in (SL.7) )

<2 - 2(1— Css/v/n) + \/%dl (due to (ST34) and (ST.20))

=Hy7/v/n

where the constant Hy 7 = 2C35 + coHy q,. Then we have

D (/51 _ ph (bgopt))’ i(Ddl &1 _ ph ¢g0pt))>

{
<

Dt 51 — D™, B(D "y~ deﬁ&"”)» (D161 = DUG™), (8 = B)(DN 6y — D ™))
Hig

o H,y
DU — D2 < =L+ <

2 —=A{ll
v i
where Hy ¢ = Hy 7 + coHy 4, + HDd1¢gopt)H2-

< DUG|)? + | D |2

(S1.36)

Step 4: Estimate 1[z; —z|3 .
In addition to Z; and z; defined in (SI.9), we define another vector z; = (Z11,--- ,2n1) ", Where Z;, =
Jo[Xi(s) — X (5)] D% ¢\ (5)ds. Then we have

| I ~ ~
~Jiz1 3 = (D% — DEG™), DD — DEG™)) < Hig/ Vi, (51.37)
where the last inequality follows from (S1.36)), and

1 - — - _

7l = (X, DU < [XIPIDA S < conDASEIP, (s138)
where the last inequality follows from (S1.6)) in Lemma |1, Combining (S1.37)) and (S1.38)), we obtain

1
Iz — z1|l3 < Hia/vn. (S1.39)

11
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Step 5: Estimate ||Dd2§A —DQEY’M)H2 and ||Dd2A—L[||2 .

Note that L S | 2 = S | [H[X X (5)| D% gy (s)ds = 0, LS 122 = (DN gy, D gy) =1,
% Yo Zikza = <Dd1</£k, ledlqbl) = 0 for all k£ # [, where the second and third equalities follow from the

last two equalities in (S1.7]). The objective function in the optimization problem (2.6 can be expanded

as

1 n K R K
2 oI = D2 = S muD e 4 D + 1 30 (51.40)
) k=1

K

K
*ZHYHQ"‘|’Dd2MH2+ZHDd2§kH2 2(Y, D) — 2 (5, D®&) + 5| D?p|* + £ | D&
— k=1 k=1

K K
1 _ _
n z IYil]> + | D% = Y|1> = |V ]|* + E D&, — D11 = D 5015 + £ D?ull® + &> IID|1,
=1 k=1 k=1 k=1

where DP(t) = 1 Zle ZiYi(t) = 1Z] Y (t). So based on the expansion in (SI.40)), solving the optimiza-
tion problem (2.6 is equivalent to solving the following optimization problems separately,

min | D% = V| + 5 D] (S1.41)

w(t)

min [HDd2§k — 20112 + k|| D22 } for 1<k<K. (S1.42)
t

The following inequality follows from Lemma A.4 in supplementary material of Luo and Qi (2017)),

opt Ces3
D% — AP < 2, (51.43)

because Dd2§§Op ") is the function in the optimal expansion for B(s,t), where Cg3 is a constant. Since é\l

is the solution to with k£ = 1, we have
|D%6, = 2P + £ DG < ID%=™ — 20 + wl| D?6? < f/ﬁ RID?EP, (S1.44)
where the last inequality follows from (S1.43). As we choose k = Cy/\/n, leads to ||Dd251 —
9|2 < Cga/+/n, which together with gives
|ID%& — D2eP) |2 < Hy5/y/n.  and similarly, we can show [|[D®fi — ||? < Ho/v/n.  (S1.45)

By Steps 1-5, we have proved all the inequalities in the claim (S1.10)) for £ = 1. Then by induction
and similar calculation as above, we can show that the equalities in the claim (S1.10) hold for all
1 <k < K. We skip the details. The inequalities in (2.8]) and (2.9)) in the theorem can be obtained

from the claim (S1.10|) and the second inequality in (S1.45)). We next prove the inequality in (2.10)).
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S1.2  Proof of Theorem 2 S1  PROOF OF THEOREMS

o Estimate + fo IF(t) — F(¢)|2dt.
Based on the definitions of z; and z; in , we have

o0 K
F(t) = W01, + Yz D2 (1), F(t) = DEA()L, + Y 2,D%6,.

k=1 k=1
Define FX(t) = ()1, + Z,ﬁil szd%,(fpt) (t) which is the truncation of F(¢) after the first K terms in

the series. Then we have

/ |E(t) — FX(0)[3dr < 2| D=7 —1)* + / HZzwd%k Zzwd%m()n%dt. (51.46)
K
2l ||Z (DRE() = 2D (1) 3
k=1
1 - 11 &
= IS 5l DEult) - Do) e+ | IS = D ) 3
k=1 k=1

K

K 1 1
4 - daF dy +(opt) 2 4 / ~ ds +(opt) 2
< 2 _ 2 = _ 2
_nKZ/ |Zk{ D&k (t) — D™E, (t)}llzdt+nKZ [z — zp) D& ()] 2dt
o 4K o
Zuzkn |D%&, — Dhel) )12 + Zuzk—zku |De=gPY)|?

41K ~ . ~
SRS D~ D + nZuzk—zkH%HDdQs,iO”“rP (since |23 = n)

k=1 k=1
K 1 K ( ) 1
<(4xS H.s | — + [4KS  H, 4| D2PY)2 ) —  (by claim (SI.10 S1.47
_< ,; k,5>ﬁ+< ; call DEET? ) = (by claim ELI0)), (S1.47)
combining (S1.46)), (S1.45) and , we obtain
M1
||F K )|3dt < (S1.48)
n

By the inequality after (A.74) in supplementary material of [Luo and Qi (2017), we have

/ IF(t) — F¥(0))3

k=K+1
which, together with (S1.47)), gives
My
/ B - Pl < M S o2
vn E=K-+1

where the constant Mg = Mg 1 + M 2.
The inequality for E [H}A/pred - Ynew||2‘Xi(s), Yi(t),1<i< n} can be similarly proved, and we skip
the details.
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S2  ADDITIONAL DETAILS FOR COMPUTATION
S2  Additional details for computation

S2.1 Solving ([2.17))

First we consider the problem

al=a
max ——,
0£ackM aTQa

subject to a,Ha=0. 1<I<k-—1, (52.1)
which removes the constraint a’Ha = 1 in . Let a be a solution to (S2.1]). For any nonzero scalar
¢, ca is also a solution to because the values of the objective function for ca and a are the same,
and ca also satisfies the constraints in . In particular, we choose ¢ such that a; = ca satisfies
a]Ha, = 1. Hence, aj, satisfies all constraints in (2.17). Now let @ be any other vector satisfying all
constraints in , and hence a also satisfies the constraints in . As described above, a;, is a
solution to , so we have

alEa, _a'Ea
Hence, ay, is a solution to (2.17)). To solve (2.17]), we just need to solve (S2.1]) and then make a scaling.
Next, we convert (S2.1) to a generalized eigenvalue problem. Let C = [Haj,...,Ha, 1] be an

M x (k — 1) matrix, where the [-th column is the vector Ha;, 1 <[ < k — 1. Then the constraints in
(S2.1)) can be written as CTa = 0, that is, a belongs to the orthogonal complementary subspace spanned
by the columns of C. Let Pt be the orthogonal projection matrix onto the orthogonal complementary

subspace spanned by the columns of C in R™. Then we have
pipt =P+ PHT=pPL PiCc=0. (S2.2)

We will show that if b is a solution to the following problem, then a = P1b is a solution to (S2.1)):

bTPL=P'b
max —m———— S2.3
OyébeI)REM bTPLQP-1b (52.3)
First, the third property in (S2.2)) implies that a = P-Lb satisfies the constraints in (S2.1)). Second, let
ag be any vector satisfying the constraint in (S2.1)), that is, a belongs to the orthogonal complementary
subspace spanned by the columns of C. Then we have Plag = ag, and
a'Za  b'PLEP'b _ a]PlEP'a;, a]Ea,

= = - = , S2.4
a'Qa prpLQPLib  ajPtQPla; alQag (52.4)

14



S2.2  Solving (2.18)) S2 ADDITIONAL DETAILS FOR COMPUTATION

where the inequality is because b is the solution to (S2.3]). Since ag is an arbitrary vector satisfying the
constraint in (S2.1), a = PLb is a solution to (S2.1). We note that the solution to (S2.3) is the first

eigenvector of the generalized eigenvalue problem
PLEP1b = A\P1QP'b. (S2.5)

Therefore, to solve (2.17)), we just need to calculate the first eigenvector of the generalized eigenvalue
problem (|S2.3) which can be obtained by a power method.

S2.2  Solving (2.18)

With the constraints in ([2.5), we have that the variables Zzj;, are uncorrelated, and Y ;" | Z;x = 0. So the

penalized least squares problem (2.6)) can be decomposed into the following optimization problems:

%1;1 [—Z / (t)D%y, t)}QdH /0 I{DdQM(t)}zdt+m /0 I{Dz,u(t)}2dt , (S2.6)

and

mm [—Z/ t)Zie D&, (1) dt+/ {D®g(t) }th+f€/ {D%&(t }2dt (52.7)

for 1 < k < K. Let II(t) be a vector of basis functions to expand p(t) and &(¢). Solving (S2.6) and
(S2.7), we get the estimates

-1
at) = 1)t [ / 1 D®TI(t) DTI(t) Y dt + & / 1 D2H(t)D2H(t)Tdt}
0 0
X / 1 D®TI()Y (t)dt, (S2.8)
0
-1
&) =1I1()" [ / 1 D®IL(t) DRI Tdt + / 1 D2H(t)D2H(t)Tdt}
0
/ Z D®ETI()Y;(t)Zindt /n (S2.9)

for1<k<K.
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S3  ADDITIONAL DETAILS FOR NUMERICAL ILLUSTRATION

S3 Additional details for numerical illustration

S3.1 Simulation 1

Figure shows some sample curves for the two types of X (s) in simulation 1.

Sample curves of X(s): Type 1 Sample curves of X(s): Type 2
2 A P I
\‘::
i
1
4
r
"
71 4 |l::
y
72,
v
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure S1: Sample curves for each type of X(s) in Simulation 1.

Coefficient functions are shown in Figure The specific forms of B (s,t) and Ba(s,t) are given

below.

o Bi(s,t) = S0 {fi(s)fi(1)}/(i — 15)> where fi(s) = h(is), and h(s), ie, fi(s), is the triangle
wave function shown in the top-left of Figure We also draw the plot of fap(s) = h(20s) in the
top-right of Figure [S3]

o By(s,t) = 2:3221 9i(s)gi(t)/ (i — 20), where the square wave functions g;(s) = (—1)%()d;(s) with
di(s) = |si|%%i. The floor function |¢] is the largest integer not greater than ¢, and a%%b is the

remainder of the division of the integer a by the integer b. We draw the plots go1(s) and gso(s)
in the bottom of Figure [S3]
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S3.1  Simulation 1 S3  ADDITIONAL DETAILS FOR NUMERICAL ILLUSTRATION

B1(s,) B (s,t)

0%

0.0 97 >
0.4 0.6 0.8 1.0 QOO'Q t

Figure S2: Three types of coefficient functions B (s,t) ~ B3(s,t) in Simulation 1.

fl(S) fzo(s)
1 11
0 0
_1 , , , , , , _1 i , , , , , ,
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
S S
g2(s) g20(s)
0.0 1 —
~0.5 - 0
17
-1.01 i i - - - -201 i i i i —

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0



S3.1  Simulation 1 S3  ADDITIONAL DETAILS FOR NUMERICAL ILLUSTRATION

In Simulation 1, we consider two types of intercept coefficient functions: ;(t) = Z?; gi(t) and
$s(t) = sin(2nt), where g;(t)’s are the square wave functions defined above. These two intercept

coefficient functions are shown below in Figure [S4]

U(t): Type 1

=500+ - - . . .
0.0 0.2 0.4 0.6 0.8 1.0

U(t): Type 2

_1 ] . . . . . .
0.0 0.2 0.4 0.6 0.8 1.0

t

Figure S4: Two types of intercept functions used in Simulation 1.

S3.1.1 Results for settings with 27 = 128 observation points

To run all methods considered in this paper, we consider a setting with 27 = 128 observation time points
on each curve. The MISEEs and running times are summarized in Tables [S1] and [S2] respectively. For

o < 1, when (t) or B(s,t) is spiky, the fof.deriv has the lowest MISSEs; when both $l(¢) and B(s,t)

18



S3.1  Simulation 1 S3  ADDITIONAL DETAILS FOR NUMERICAL ILLUSTRATION
are smooth (Type 2 of U(t) and type 3 of B(s,t)), all methods except fdapace have close MISSEs

which are lower than that of fdapace. When o = 1, the methods fof.deriv, sSigComp and wSigComp
perform similarly. The MISSEs of these three methods are lower than fdapace, pffr and FDboost when
$U(t) or B(s,t) is spiky, or similar with pffr and FDboost when both $i(t) and B(s,t) are smooth. In
implementation, we use 20 B-spline basis functions of s and 20 B-spline basis functions of ¢ for pffr, and
2000 boosting iterations FDboost. Increasing these values can slightly decrease the MISSEs of these
two methods, but greatly increases the computational times, which have been much larger than other

methods.

19



S3.1

Simulation 1

S3  ADDITIONAL DETAILS FOR NUMERICAL ILLUSTRATION

Table S1: Average (and standard deviation) of MISEEs from 100 replicates for Simulation 1 with
27 = 128 observation time points on each curve.

X| o P sSigComp wSigComp fdapace pifr FDboost
1 755(14 -1074]2.26(0.6)-102| 7.66(1.1)-1073 | 0.64(0.02) 1.60(0.02) 1.55(0.02)
2 1.18(0.2)-1072|7.04(5.0)-1073{ 0.62(0.01) 1.53(0.03) 1.54(0.02)
3 4.90(0.0)-10-*]4.90(0.0)-10~*0.61(0.00) 0.60(0.00) 0.55(0.00)
O 2.20(0.6)-102|8.69(2.1)-102|0.03(0.02) | 1.00(0.02) | 1.00(0.03)
2 1.14(0.2)-10726.06(4.0)-10~3 | 0.02(0.00) 0.93(0.02) 0.97(0.02)
3 7.51(1.7)-1077]1.24(0.5)-107]4.36(1.9)-103[6.25(0.3)-107 | 1.39(0.7)-10~°
1 2.39(0.6)-1072]9.41(1.1)-1073{0.64(0.02) 1.61(0.03) 1.56(0.03)
2 1.37(0.2)-1072|8.94(4.8)-1073| 0.63(0.01) 1.54(0.03) 1.55(0.03)
3 7.01(0.3)-10~*[7.68(0.5)-10~*0.62(0.00) 0.61(0.00) 0.56(0.00)
L 2.36(0.6)-107219.36(1.0)-1073{0.04(0.02) 1.00(0.02) 1.01(0.02)
2 1.36(0.2)-1072]9.64(1.0)-103{0.02(0.00) 0.94(0.02) 0.98(0.02)
3 4.23(1.1)-1075]1.02(0.3)-10~*]1.28(0.2)-1072|2.10(0.4)-10~*[ 1.38(0.4)-10~*
1 0.21(0.05) 8.23(1.3)-1072[1.47(0.05) 1.60(0.03) 1.56(0.03)
2 0.17(0.02) 0.12(0.01) 1.46(0.04) 1.59(0.05) 1.56(0.02)
3 2.17(0.2)-102(2.33(0.3)-10~2 | 1.44(0.03) 0.60(0.01) 0.56(0.01)
L 1 0.18(0.04) 7.34(1.2)-102[0.87(0.04) 1.00(0.03) 1.01(0.03)
2 0.17(0.02) 0.11(0.01) 0.85(0.04) 0.95(0.03) 0.98(0.02)
3 3.08(1.2)-1073[4.22(1.5)-10730.83(0.04) 5.51(0.6)-1073[1.12(0.1)-10~2
1 1.22(0.4)-107319.45(2.3)-103[0.62(0.02) 1.59(0.02) 1.52(0.02)
2 2.06(0.4)-107316.29(0.5)-1073{0.84(0.07) 1.29(0.02) 1.33(0.04)
3 4.90(0.0)-107*{4.95(0.8)-10-*{0.60(0.00) 0.60(0.00) 0.55(0.00)
O 7.44(3.7)-107]9.84(3.8)-10730.02(0.02) 0.99(0.02) 0.95(0.02)
2 1.60(0.4)-1073]5.78(0.7)-102[0.25(0.06) 0.68(0.09) 0.74(0.04)
3 6.55(1.4)-1077]7.45(2.9)-10~7 | 1.18(0.0)-10~3[3.37(0.2)-1070 | 9.65(3.6)- 106
1 1.99(0.3)-10731.00(0.3)-102| 0.63(0.02) 1.61(0.02) 1.55(0.03)
2 3.14(0.3)-1073[6.75(0.5)-1073 | 0.84(0.06) 1.30(0.03) 1.35(0.03)
3 6.98(0.2)-10~*]7.02(0.2)-10~*0.61(0.00) 0.61(0.00) 0.56(0.00)
21 1.56(0.4)-10731.01(0.2)-102|0.03(0.02) 1.01(0.03) 0.98(0.03)
2 2.67(0.4)-1073[6.38(0.5)-10730.24(0.06) 0.68(0.02) 0.76(0.03)
3 3.54(0.9)-107%[7.37(3.1)-10753.09(0.2)-10~3[ 1.37(0.0)-10~* | 1.14(0.0)-10~*
1 5.38(0.4)-1072|5.32(0.5)-1072{0.82(0.03) 1.54(0.04) 1.54(0.04)
2 7.57(0.9)-102(6.39(0.5)-1072| 1.04(0.06) 1.32(0.03) 1.34(0.03)
3 2.13(0.2)-1072|2.12(0.2)-102{0.80(0.02) 0.61(0.01) 0.56(0.01)
: 1 5.33(0.5)-1072|4.68(0.4)-1072{0.22(0.02) 1.00(0.02) 0.97(0.03)
2 6.96(0.8)-1072] 5. 88(0 5)-1072]0.43(0.07) 0.71(0.03) 0.75(0.05)
3 2.87(1.0)-1073|2 (0 9)-1073]0.19(0.01) 3.49(0.1)-103[7.36(0.4)-103
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Table S2: Average (and standard deviation) of running time from 100 replicates for Simulation
1 with 27 = 128 observation time points on each curve.

I

X| o |U|B| fof.deriv |sSigComp| wSigComp | fdapace pifr FDboost
1] 6.45(1.50) [0.76(0.17)| 16.84(3.54) |0.27(0.02)| 881.03(265.52) |257.20(61.95)
1] 279.62(2.17) [0.98(0.22) | 32.06(7.11) |0.27(0.01)| 744.09(279.92) |256.37(61.61)
31 3.78(0.93) [0.61(0.15)| 4.88(1.20) |0.27(0.03)| 473.64(136.99) |260.87(63.81)
OL76.40(1.44) [0.76(0.16) | 16.68(3.64) |0.27(0.01)| 913.61(289.19) |256.09(60.81)
2121 9.70(2:28) |0.98(0.23)| 33.26(7.19) |0.27(0.01)| 893.20(501.17) |256.10(61.34)
31 3.76(0.93) [0.59(0.14)| 4.79(1.03) |0.27(0.01)| 426.18(118.93) |261.37(64.50)
1] 6.86(1.61) [0.79(0.17)| 17.37(4.04) |0.27(0.02)| 879.12(266.68) |255.41(61.70)
1] 27]9.83(2.47) [0.98(0.24)| 33.52(8.11) |0.27(0.01)| 718.14(203.36) |255.17(60.94)
3| 4.04(0.96) |0.62(0.16)| 8.47(2.06) |0.27(0.03)| 479.81(144.20) |260.42(64.41)
UL T 0776.66(1.62) [0.77(0.18) | 17.59(4.64) |0.27(0.01)| 938.39(289.41) | 256.18(61.02)
2121 9.96(2.18) [0.99(0.22) | 33.61(7.30) |0.27(0.01)| 831.71(394.53) [255.04(60.75)
3 14.03(0.96) [0.63(0.16)| 9.41(2.13) [0.27(0.01)| 395.20(104.82) |261.05(63.57)
1 [47.04(1.33) | 1.30(0.07) | 355.34(63.63) [0.27(0.02) | 427.80(134.28) |256.40(61.20)
1|2 [45.74(0.88) [ 1.30(0.05) | 306.84(46.83) | 0.27(0.01)| 645.21(255.56) |255.89(61.74)
3 45.99(1.29) | 1.34(0.16) [278.86(59.19) [ 0.27(0.01) | 343.97(53.45) |261.12(63.86)
L T146.72(1.05) | 1.29(0.06) | 342.95(63.63) |0.27(0.01) | 411.02(139.00) |256.50(61.53)
22 45.78(0.95)| 1.30(0.07) | 317.22(46.16) |0.27(0.03) | 615.19(251.84) | 257.06(61.32)
3 146.59(1.10) | 1.22(0.05) | 305.80(40.81) [0.27(0.01) | 334.43(64.00) |261.27(63.78)
1]5.61(1.37) [0.72(0.17)| 9.17(2.51) [0.26(0.01)] 1199.18(347.90) |254.51(57.20)
1]2|6.39(1.45) [0.75(0.17)| 10.67(2.19) |0.26(0.01)| 596.83(219.97) |255.18(58.12)
3| 3.84(0.92) |0.60(0.15)| 3.62(0.77) |0.26(0.01)| 561.62(181.14) |258.98(58.81)
O 776.04(1.39) [1.07(0.24)| 9.22(1.93) |0.26(0.01) | 2042.23(1000.91) | 254.60(57.33)
912 6.43(1.45) [0.76(0.16) | 10.74(2.27) [0.27(0.02)| 483.22(121.07) |258.29(59.49)
3| 3.84(0.92) [0.59(0.15)| 3.61(0.80) [0.26(0.01)| 477.68(138.98) |259.41(59.88)
1] 5.77(1.31) |0.71(0.16) | 8.99(2.10) |0.26(0.01)| 1161.19(465.40) |254.81(57.03)
1] 2716.56(1.57) [0.77(0.18) | 10.93(2.71) |0.26(0.01)| 552.98(173.10) |254.45(57.48)
3 14.02(0.96) [0.63(0.15)| 5.83(1.52) [0.26(0.01)| 548.53(152.72) |258.63(58.28)
2\ 1] 5.78(1.39) 10.73(0.21) | 8.56(2.30) |0.26(0.01)| 1927.10(938.49) |254.57(57.02)
212 6.57(1.44) |0.77(0.16)| 10.60(2.14) |0.26(0.01)| 510.83(183.51) |258.08(59.11)
3 3.96(0.95) [0.62(0.15)| 6.11(1.74) |0.26(0.01)| 465.04(132.89) |258.82(58.94)
1]18.85(0.59)0.94(0.04) | 60.23(19.61) |0.27(0.02) | 857.33(195.60) |254.37(57.14)
112 [18.62(0.57)]0.91(0.05) | 65.18(15.15) [0.26(0.01) | 586.18(181.00) |254.68(57.86)
3 119.42(0.43)0.93(0.05) | 56.34(17.88) [0.26(0.01) | 522.34(32.48) [259.05(59.20)
1 118.75(0.60) | 1.06(0.14) | 58.02(12.77) |0.26(0.02) | 948.96(362.76) |254.23(56.52)
2|2 [18.48(0.43) |0.91(0.07) | 65.96(18.53) [0.26(0.02)| 537.78(134.72) |256.16(58.55)
3 119.42(0.58) [ 0.93(0.05) 54.79(20(.)116) 0.26(0.02) | 399.37(84.82) [258.64(59.00)
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S3.1.2 Additional results with 2° = 512 observation time points

Table S3: Percentage (%) of the selected orders (dy,dy) of derivatives in the fof.deriv method
from 100 replicates in Simulation 1 with 2° = 512 observation time points on each curve.

Bi(s,t) Bo(s,t) Bs(s,t)
Lll uQ Ll1 uQ Ll1 uQ
X o (dl,d2> % (dl,dg) % (dl,dg) % (dl,dg) % (dhdg) % (dl,dg) %
0.01] (1,1) 100| (1,2) 93] (1,1) 99| (1,1) 99| (0,1) 100| (0,0) 100
(1,1) 7 (2,1) 1 (2,1) 1
0.1 (1,1) 100 (1,1) 100 (1,1) 100 (1,1) 100 (0,1) 100 (0,0) 100
L T(0,0) 100 (0,00 99 (0,1) 51| (0,0) 96| (0,1) 97| (0,0) 95
(1,00 1| (0,2) 48| (000 3| (1)) 3| 1.0) 5
(1,1) 1 (1,1) 1
0.01] (2,1) 68| (2,1) 49| (2,1) 56| (2,1) 52| (0,1) 100| (0,0) 98
(1,1) 26 (2,2) 17 (1,1) 44 (1,1) 48 (1,0) 2
(0,1) 6 (1,1) 16
0.1] (2,1) 49| (1,1) 46| (2,1) 67| (2,1) 62| (0,1) 91| (0,0) 87
2 (1,1) 39 (2,1) 45 (1,1) 32 (1,1) 36 (1,1) 9 (1,0) 13
(0,1) 12| (0,1) 9] (0,1) 1| (0,1) 2
1 | (1,1) 83 (0,0) 60| (1,1) 51| (1,1) 59| (0,1) 91| (0,0) 96
(1,2) 10 (2,0) 24 (2,1) 47 (2,1) 35 (2,1) 6 (1,0) 2
(0,1) 5/ (1,0) 16| other 2| (0,1) 6| other 3| (2,0) 2

Table S4: Average (and standard deviation) of running time from 100 replicates of settings with
Type 1 8(s) for Simulation 1 with 29 = 512 observation time points on each curve.

Type 1 X (s) Type 2 X(s)
o |'B| fof.deriv | sSigComp | wSigComp | fdapace | fof.deriv | sSigComp | wSigComp | fdapace
1[18.3(0.6)] 2.3(0.1) | 46.5(1.9) |5.35(0.33)]18.2(0.5)| 2.3(0.1) | 47.8(1.7) [5.20(0.19)
.011]2(22.6(0.6)| 2.6(0.1) | 63.5(2.6) |5.31(0.10)|15.7(0.4)| 2.2(0.1) | 40.3(0.9) |5.18(0.12)
2 [14.3(0.3)| 2.1(0.1) | 37.2(0.7) [5.29(0.12)[14.5(0.3)| 2.1(0.1) | 36.4(0.6) |5.21(0.14)
1]18.7(0.7)| 2.4(0.1) | 47.0(2.1) |5.33(0.21)|18.4(0.5)| 2.3(0.1) | 47.5(1.6) |5.19(0.10)
1]2122.8(0.6)] 2.6(0.1) | 63.5(2.5) [5.31(0.12)]15.8(0.4)| 2.2(0.1) | 40.6(0.9) |5.17(0.13)
2 [14.7(0.2)] 2.1(0.1) | 39.3(1.0) [5.31(0.12)]14.6(0.2)| 2.1(0.1) | 38.1(1.0) |5.18(0.14)
1[90.1(1.9)] 3.5(0.1) [323.5(76.2)[5.30(0.16) [41.7(1.1)| 2.8(0.1) |100.1(20.6)]5.17(0.12)
1 2]86.9(1.7)] 3.4(0.1) |295.0(55.5)[5.30(0.12) [44.6(1.1)| 2.8(0.1) |107.8(26.7)|5.16(0.12)
2 [89.1(1.6)| 3.3(0.1) |280.9(94.8)5.33(0.13)]45.1(0.9)| 2.8(0.1) | 91.8(29.1) |5.18(0.13)
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Figure S5: Frequencies of the selected number K of components for each setting of Type 1 (a)
and Type 2 (b) of X(s) in Simulation 1 with 512 observation time points on each curve. For
each panel, from top to bottom, the three rows show the histograms when ¢ = 0.01, 0.1 and
1, respectively. The two integers on the top of each histogram specify the types of & and B,
respectively. 23
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Figure S6: Frequencies of the selected « for each setting of Type 1 (a) and Type 2 (b) of X (s)
in Simulation 1 with 512 observation time points on each curve. For each panel, from top to
bottom, the three rows of panels show the histograms when ¢ = 0.01, 0.1 and 1, respectively.

The two integers on the top of each histogram specify the types of Ll and B, respectively.
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The two integers on the top of each histogram specify the types of Ll and B, respectively.
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Figure S8: Frequencies of the selected 7 for each setting of Type 1 (a) and Type 2 (b) of X (s)
in Simulation 1 with 512 observation time points on each curve. For each panel, from top to
bottom, the three rows of panels show the histograms when ¢ = 0.01, 0.1 and 1, respectively.
The two integers on the top of each histogram specify the types of Ll and B, respectively.
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Table S5: Average (sd) of MISEEs from 100 replicates for Simulation 1 with n01sy observations

X(s ) of Type 1 predictor function, where X (s) =

X(s) + ex(s), ex(s) ~ N(0,0%), ox

T{Zizl Var(X(s;))/TY/? is r = 1% or 10% of the variation in X (s), and T' = 512.

r o | U|B fof.deriv sSigComp wSigComp fdapace
1 | 7.76(1.65)-10~% | 2.50(0.54)-10~2 | 5.50(3.06)-10% |  0.66(0.01)
1| 2 [2.76(0.41)-107 | 1.33(0.19)-10"2 | 6.26(3.54)-103 | _ 0.65(0.00)
3 | 1.54(0.97)-10~° | 3.12(0.00)-10~3 | 9.68(0.01)-10~% |  0.65(0.00)
U1 1 | 7.80(1.64)-10 7 | 2.17(0.54)-10 2 | 5.54(4.55)-10 2 | 2.07(1.13)-102
2 | 2 [2.68(0.39)-10~% | 1.03(0.24)-10~% | 6.57(4.86)-10~3 | 1.16(0.27)-10~2
3 | 6.82(0.63)-107° | 6.79(0.62)-107° | 8.90(1.22)-10~0 | 3.28(1.46)-10—°
1 | 1.78(0.11)-10 2 | 2.71(0.54)-10~2 | 1.09(3.09)-10 2 |  0.67(0.01)
1| 2 [1.98(0.13)-1073 | 1.46(0.16)-102 | 9.85(7.01)-10~° |  0.66(0.00)
3 | 2.23(0.19)-10~* | 3.32(0.03)-10~3 | 1.21(0.03)-10= |  0.65(0.00)
1% |01 1 | 1.76(0.14)-102 | 2.41(0.61)-10 2 | 7.43(7.80)-10~° | 2.96(1.24)-10~2
2| 2 | 1.95(0.13)-107% | 1.18(0.18)-1072 | 8.82(6.41)-1073 | 2.05(0.36)-10~>
3 | 2.48(0.45)-10° | 2.32(0.45)-10° | 3.78(0.88)-10° | 1.21(0.16)-102
1 | 4.94(0.34)-102 | 1.84(0.04)-10 " | 5.32(0.35)-10 2 |  1.54(0.03)
1| 2 [ 1.01(0.07)-10~T | 1.47(0.18)-10~1 | 1.01(0.06)-10~ |  1.52(0.04)
3 | 2.02(0.17)-10 2 | 2.22(0.17)-10 2 | 2.14(0.18)-10 2 | 1.52(0.04)
L 1 | 2.69(0.28)-10=2 | 1.13(0.09)-10~" | 2.98(0.22)-10~2 |  0.90(0.04)
2 [ 2 [6.99(0.43)-102 | 1.21(0.13)-10* | 7.20(0.39)-102 |  0.89(0.04)
3 | 6.71(2.18)-10~1 | 6.62(2.20)-10 7 | 1.13(0.30)-10 3 |  0.87(0.04)
1 | 5.40(0.90)-103 | 2.99(0.56)-10~2 | 8.85(1.71)-107% |  0.66(0.01)
1| 2 [4.19(0.51)-1073 | 1.49(0.22)-10~2 | 8.45(3.79)-103 |  0.65(0.00)
3 | 6.56(0.69)-10~* | 3.75(0.07)-10~3 | 1.67(0.13)-10= |  0.65(0.00)
U1 1 [ 5.27(1.41)107 | 2.56(0.50)-10 2 | 7.65(1.44)-10 7 | 1.75(0.95)-10 2
2 [ 2 [ 4.21(0.55)-102 | 1.16(0.22)-10~2 | 8.30(6.49)-10~3 | 1.14(0.28)-10~2
3 | 6.44(0.76)-10~* | 6.35(0.73)-10~* | 6.79(0.89)-10~7 | 3.89(0.99)-10°
1 | 6.02(0.95)-10° | 2.95(0.59)-10~2 | 9.51(1.34)-103 |  0.67(0.01)
1| 2 [5.40(0.53)-1073 | 1.65(2.04)-102 | 9.50(2.29)-103 | _ 0.66(0.00)
3 | 8.44(0.61)-10~* | 3.93(0.07)-10~3 | 1.90(0.12)-10 |  0.65(0.00)
10% 1 0.1 1| 6.07(1.30)-10 % | 2.76(0.58)-10 2 | 8.25(1.30)-10° | 2.67(0.73)-10 2
2 [ 2 [ 5.45(0.60)-10° | 1.32(0.19)-102 | 8.29(2.07)-10~2 | 2.07(0.27)-10~2
3 | 6.46(0.59)-10~" | 6.42(0.56)-10~* | 6.95(0.80)-10~7 | 1.32(0.14)-10~2
1 | 5.19(0.34)-1072 | 1.82(0.34)-10" | 5.63(0.40)-10~2 |  1.60(0.04)
1| 2 [ 1.01(0.07)-10 T | 1.46(0.16)-10~ 1 | 1.01(0.06)-10~* |  1.60(0.04)
3 | 2.07(0.16)-10 2 | 2.27(0.16)-10 2 | 2.21(0.17)-10 2 | 1.59(0.03)
L 1| 2.95(0.20)10 2 | 1.14(0.09)-10 ' | 3.34(0.25)10 2 | _ 0.96(0.04)
2 [ 2 [ 7.17(0.49)-102 | 1.22(0.12)-10~ T | 7.29(0.36)-102 |  0.96(0.04)
3| 1.28(0.27)-10° | 1.25(0,22)-10 7 | 1.82(0.36)-10° |  0.95(0.04)
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S3.2 Simulation 2
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Figure S9: Image plots of the coefficient functions B,(s,t) and B;(s,t) in Simulation 2.

Table S6: Percentage (%) of the selected orders (dy,ds) of derivatives in the fof.deriv method
from 100 replicates in Simulation 2.

T 29 =512 210 = 1024
B(s,t) Bs (s, 1) By(s,t) B (s, 1)
o [ ds) %|(di,d2) %|(di,do) %|(dids) %
(L0) 96| (1,1) 100] (1,0) 95| (L,1) 100
001 (0,0) 2 (0,0) 3
(2,0) 2 (2,0) 2
(0,0) 99| (0,0) 100 (0,0) 94| (0,0) 89
01 10 1 (1L0) 6| (1,0) 11
0 | (0,0) 100| (0,0) 100] (0,0) 100| (0,0) 100
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Table S7: Average (and standard deviation) of running time for Simulation 2.

T 29 =512 210 = 1024
o |'B| fof.deriv | sSigComp | wSigComp | fdapace | fof.deriv | sSigComp| wSigComp | fdapace
o1 4 153.2(1.7)| 2.8(0.1) |235.2(11.4)[5.55(0.33)[138.2(2.7)| 10.8(0.2) | 652.8(28.8) [28.5(1.7)
15 (16.6(0.4) | 2.1(0.1) | 42.5(2.0) [5.52(0.26)| 73.3(1.7) | 9.6(0.3) | 280.5(16.3) [28.5(0.9)
L[ 4]5310D) ] 27(0.1) [234.2(11.4) [5.51(0.25)[ 138.5(2.9) | 10.7(0.3) [ 640.2(25.8) [29.3(1.9)
T 15116.7(0.4)| 2.1(0.1) | 43.6(2.0) [5.51(0.27)| 73.5(1.6) | 9.5(0.2) | 281.1(14.3) {28.8(1.5)
) 4167.7(1.2)| 2.8(0.1) |419.5(27.7)|5.50(0.25)|163.8(3.8) | 10.9(0.3) | 955.6(56.3) |28.6(0.8)
5168.2(1.3)| 2.7(0.1) |234.8(43.2)|5.53(0.26) [165.8(3.4) | 10.7(0.3) |613.9(117.6) [28.6(0.9)
B1(s.) B(s.b)
1.0 L0 1.0 1.0
0.8 0.8
0.6 0.6
=05 04 =05 o
02 0.2
0.0 0.0
0.0 oz 0 >
0.0 0.5 1.0 0.0 0.5 1.0
B3(s,1) Ba(s,H)

1.0 10
0.8
0.6
0.4
~ 05 o
0.0
-0.2
000 05 10
S

1.0
= 0.5

0.0
0.0

1.00
0.75
0.50
0.25
0.00
-02
0.5 1.0
S

Figure S10: Image plots of the coefficients %B;(s,t) for 1 < j <4 of Type 1 in Simulation 3.

S3.3

Simulation 3

In this simulation, we consider the model (1.1]) with four functional predictors.

(1).

We generate the functional predictors (Xi(s), ...

, X4(s)) as follows.

Let Wi(s), 0 < s <1 and

1 < ¢ < m+3, be independent Gaussian processes with covariance function exp{—2500(s — s’)?}, where
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m = 4 or 6. We take X;(s) = Z;r,b_é Wit (s)/y/m for 1 < j < m. Sample curves of each Wy(s) are

spiky, so are those of the X;(s). Moreover, a larger value of m implies a stronger correlation between
the four functional predictors.

(2). We set 4(t) = 0, and consider two types of (Bi(s,t),...,B4(s,t)). The first type (Figure has
Bj(s,t) = e~800(s—t)*/V/7 cos(20m(s—1)) for 1 < j < 4, each of which have a ridge along the diagonal line.
The second type (Figure has B;(s,t) = Z?/:l &5 ()¢ (t), where &;5(s) and (j(s), 1 < j < 4
and 1 < j' <2, are independently generated from the following AR(1) time series model,

Z(sj) = 013" Z(sj1) + €1, 2<j<T. (53.1)

In , 0=3s1 <8 <---<sp=1areT = 512 equally spaced observation time points on [0,1],
Z(s1) and €, 1 < j <T —1, are all independent standard normal random variables. Figure shows
four curves generated from this AR(1) model.

(3). The random error £(t) is generated in the same way as in Simulations 1 and 2 with three noise
levels, o = 0.01,0.1,1. As before, when generating the response, we scale the B;(s,t) with the same
scaling factor such that the signal to noise ratio is 1 when o = 1.

(4). All samples curves are observed at 2% equally spaced points in [0, 1].
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B1(s,t) B(s,1)

Figure S11: Coefficients %B;(s,t) for 1 < j <4 of Type 2 in Simulation 3.

Sample curves from AR(1) time series model

Figure S12: Five time series curves generated from the AR(1) model (S3.1]) in Simulation 3.

As summarized in Table[Sg| in all settings, the new method fof.deriv has the lowest average MISEE.

All methods have larger MISEEs when the correlation between the four functional predictors gets
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stronger (larger m). The wSigComp performs better than sSigComp for the first type of B;(s,t), which
decays to zero when |s — t| gets larger at different exponential rate for different 1 < j < m, and hence
introduces certain amount of sparsity in wavelet coefficients. For the second type of B;(s,t), wSigComp
does not show advantage over sSigComp when o = 0.01,0.1. The fdapace has the second lowest MISEEs
for the first type of B;(s,t) when o = 0.01 or 0.1, but the highest in other settings.

Table S8: Average (and standard deviation) of MISEE from 100 replicates for Simulation 3.

m| o |‘B fof.deriv sSigComp wSigComp fdapace
0.01 1 | 0.032(0.003) | 0.192(0.009) | 0.133(0.011) | 0.034(0.003)
2 | 0.052(0.010) | 0.078(0.014) | 0.087(0.011) | 0.144(0.016)
4| o1 1 | 0.033(0.003) | 0.193(0.009) | 0.135(0.013) | 0.044(0.003)
2 | 0.054(0.012) | 0.081(0.017) | 0.089(0.013) | 0.153(0.016)
. 1 | 0.145(0.006) | 0.323(0.011) | 0.190(0.009) | 1.028(0.024)
2 | 0.131(0.013) | 0.165(0.023) | 0.154(0.014) | 1.140(0.030)
1 | 0.054(0.004) | 0.223(0.010) | 0.147(0.011) | 0.059(0.004)
WOl 2 1 0.068(0.013) | 0.095(0.019) | 0.108(0.018) | 0.178(0.019)
6 | 01 1 | 0.055(0.003) | 0.224(0.009) | 0.149(0.012) | 0.070(0.004)
2 | 0.069(0.014) | 0.097(0.023) | 0.110(0.016) | 0.185(0.017)
' 1 | 0.181(0.008) | 0.366(0.015) | 0.202(0.008) | 1.033(0.022)
2 | 0.145(0.016) | 0.185(0.027) | 0.169(0.018) | 1.147(0.031)

Table displays the frequencies of the selected order of derivatives by fof.deriv. With B;(s,t),
1 < j < 4, generated in the same mechanism for each type, the pattern of selected (di,d2) does not
change with m. For example, for the first type of B;(s,t), di = da = 2 is the most frequently (97%)
selected order when o = 0.01, and (2, 0) is selected 100% when o gets larger, for both m = 4 and 6. For
the second type of B;(s,t), (1,2) is the most frequently selected order when o < 1, and (1, 0) is selected
100% when o = 1, for both m = 4 and 6. We again observe that for spiky functional coefficients, positive
orders of derivatives are selected when the noise is small, and zero order derivative can be chosen when
the noise is large as local features can be masked by large noises. The running time summarized in

Table shows similar patterns as in Simulations 1 and 2.
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Table S9: Percentage (%) of the selected orders (dy,dy) of derivatives in the fof.deriv method
from 100 replicates in Simulation 3.

Type 1B, Type 2 B,
m=4 m=06 m = m =

o |(di,d2)  %|(di,d2) % |(di,ds) % |(d1,da) %
01 (2,2) 97| (2,2) 97| (1,2) 90| (1,2) 96
2,1) 3| (21) 3| (1L,1) 10| (1,1) 4

0.1 (2,0) 100| (2,0) 100 2) 90| (1,2) 96
1) 10| (1,1) 4

1] (2,00 100| (2,0) 100 0) 100| (1,0) 100

Table S10: Average (and standard deviation) of running time for Simulation 3.

Type 1 X(s)

Type 2 X(s)

fof.deriv

sSigComp

wSigComp

fdapace

fof.deriv

sSigComp

wSigComp

fdapace

.01

205.1(8.2)

11.8(0.5)

545.4(39.7)

68.1(16.9

205.9(8.1)

12.0(0.5)

555.6(36.3)

67.7(16.1

51.1(2.4)

5.8(0.3)

117.8(9.6)

67.5(16.2

52.4(2.5)

5.9(0.3)

122.1(8.8)

67.6(16.4

206.4(8.3)

11.8(0.6)

547.5(38.7)

68.0(16.7

207.6(8.0)

12.0(0.5)

559.5(40.9)

67.8(15.9

52.0(3.0)

5.8(0.3)

118.9(9.8)

53.2(2.7)

5.9(0.3)

123.1(9.7)

256.9(10.6)

13.1(0.6)

976.5(72.9)

67.6(16.2

258.6(9.1)

13.3(0.5)

1016.2(64.7)

67.6(16.1
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S3.4

Real data

This section provides the estimated coefficients and the corresponding auxiliary smooth functions for

Models 2 ~ 7 of the HPLC-PDA data.
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Estimated B(s,t)=D2Z2DB(s.t) Estimated B(s.t)
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Figure S13: Estimated functions from the second model of the HPLC-PDA data, where X (s)
and Y (t) are the chromatogram curves at wavelengths 332 and 368 nm, respectively. Top: the
estimated coefficient surface B(s, t) (left) and its corresponding auxiliary smooth function B (s,t)
(right) where B(s,t) = DthB(s,t); Bottom: the estimated intercept function $(¢) (left) and

the corresponding auxiliary function 7i() (right) with $((t) = Di(t).

34



S3.4  Real data S3  ADDITIONAL DETAILS FOR NUMERICAL ILLUSTRATION
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Figure S14: Estimated functions from the third model of the HPLC-PDA data, where X(s)
and Y (t) are the chromatogram curves at wavelengths 368 and 404 nm, respectively. Top: the
estimated coefficient surface B(s, t) (left) and its corresponding auxiliary smooth function B (s,t)
(right) where B(s,t) = D,D,B(s, t); Bottom: the estimated intercept function $(¢) (left) and the

corresponding auxiliary function f(t) (right) with i\[(t) = Du(t).
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Estimated B(s,t)=D2Z2DB(s.t) Estimated B(s.t)
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Figure S15: Estimated functions from the fourth model of the HPLC-PDA data, where X (s)
and Y (t) are the chromatogram curves at wavelengths 404 and 440 nm, respectively. Top: the
estimated coefficient surface B(s, t) (left) and its corresponding auxiliary smooth function B (s,t)
(right) where %(s,t) = Dthg(s,t); Bottom: the estimated intercept function ﬁ(t) (left) and

the corresponding auxiliary function 7i() (right) with $((t) = Di(t).
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Figure S16: Estimated functions from the fifth model of the HPLC-PDA data, where X(s)
and Y (t) are the chromatogram curves at wavelengths 440 and 476 nm, respectively. Top: the
estimated coefficient surface B(s, t) (left) and its corresponding auxiliary smooth function B (s,t)
(right) where s%(s,zﬁ) = DthB(s,t); Bottom: the estimated intercept function ﬁ(t) (left) and

the corresponding auxiliary function 7i() (right) with $((t) = Di(t).
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Figure S17: Estimated functions from the sixth model of the HPLC-PDA data, where X(s)
and Y (t) are the chromatogram curves at wavelengths 476 and 512 nm, respectively. Top: the
estimated coefficient surface B(s, t) (left) and its corresponding auxiliary smooth function B (s,t)
(right) where B(s,t) = Dstg(s,t); Bottom: the estimated intercept function (¢) (left) and

~

the corresponding auxiliary function fi(t) (right) with i\((t) = D*[(t).
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Estimated B(s,t)=D2D2B(s,t)
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Figure S18: Estimated functions from the seventh model of the HPLC-PDA data, where X (s)

and Y (t) are the chromatogram curves at wavelengths 512 and 548 nm, respectively. Top: the

estimated coefficient surface B(s, t) (left) and its corresponding auxiliary smooth function B (s,t)

(right) where %(s,t) = DngB(s,t); Bottom: the estimated intercept function ﬁ(t) (left) and

~

the corresponding auxiliary function fi(t) (right) with i\[(t) = D*[(t).
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