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S1 Computational efficiency

Table 1 summarizes the average computing time (in seconds) of different
methods for estimating the conditional quantile for one simulation data.

Results show that the proposed method SIMEXQ is computationally more
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efficient than the other methods except SIMQ), which is designed for central
quantile analysis and does not involve the estimation of extreme value index
and extrapolation.

Table 1: The average computing time (in seconds) of different methods for estimating the
extreme conditional quantile in one simulation repetition.

Case BG ICDF TDR SIMQ SIMEXQ
Casel,p=1 140 531.31 10.24 0.03 0.48
Case 2, p=4 3.72 588.62 4250 0.03 0.36
Case 3, p=4 3.98 675.98 5424 0.04 1.48

BG: the estimator proposed by Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator:
TDR: the tail dimension reduction estimator; SIMQ: the single-index model estimator in Zhu et al.
(R012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

S2 Linear conditional mean assumption

The condition (2.3) is a linear conditional mean (LCM) assumption on the
true index parameter 3y, LCM(8y). The LCM condition is a common as-
sumption in the dimension reduction literature (Li, 1991; Hall et all, 1993;
Zhu et al), 2012; Li, 2018). Let B € RP, the LCM(3) condition assumes
that £ (X | BTX ) is a linear function of the random vector 3" X, see for
instance, Li (2018). Li (1991) and Li (2018) showed that a random vector
X satisfies LCM(3) for all 8 € R? if and only if X has an elliptical distri-
bution. Hall et al, (1993) proved that LCM(3) at a fixed 3 holds to a good
approximation in single-index models when the dimension p diverges. Thus,

the LCM assumption is typically regarded as mild, particularly when p is
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fairly large. The condition (2.3) is weaker than spherical symmetry because
it requires that LCM(8) holds only at one fixed By. In applications where
the elliptical distribution assumption is seriously violated, we can follow the
heuristic approach suggested in Chapter 7 of Li (2018) and transform each
component of X marginally to Gaussian. The validity of this approach is
built on a Gaussian copula assumption.

To study the sensitivity of the proposed method against the violation
of the linear conditional mean assumption, we consider an additional sim-
ulation study: Case 2 in the main paper with X from a multivariate skew
normal distribution. The multivariate skew normal distribution is intro-
duced by Azzalini and Vallg (1996). A p-dimensional random variable Z is
said to have a multivariate skew normal distribution if it is continuous with
density function

2¢,(z; Q)@ (a'z), z€R?,

where ¢,(z;€2) is the p-dimensional normal density with zero mean and
correlation matrix Q, ®(-) is the N(0, 1) distribution function, and a is a p-
dimensional vector. When a = 0, the density of Z reduces to ¢,(0,2). We
set p = 4 and choose shape parameter a = (2, —6,2, —6)7 and = I. Table
2 shows that even in this case when X follows an asymmetric distribution,

the SIMEXQ method still works the best among all methods considered.
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Table 2: The mean integrated squared error (standard errors) for different estimators of the
extreme conditional quantiles at 7 = 0.99, 0.995 and 0.999 for Case 2 with p = 4 and with X
following a multivariate skew normal distribution.

Method 7 = 0.99 7=0995  7=0.999

BG 12.24 (0.05)  8.76 (0.08)  6.76 (0.12)

ICDF 5.84 (0.07)  12.37 (0.11) 56.87 (0.17)

TDR 0.16 (0.06)  0.69 (0.09)  0.91 (0.12)

SIMQ 0.15 (0.09)  0.23 (0.15)  0.27 (0.19)
)

SIMEXQ 0.10 (0.03)  0.12 (0.05)  0.19 (0.07)

BG: the estimator proposed by Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator:
TDR: the tail dimension reduction estimator; SIMQ: the single-index model estimator in Zhu et all
(R012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator.

S3 Sensitivity with different extreme value index es-

timators

Our proposed method uses the Hill estimator of the extreme value index
(EVI). Alternatively, we can also consider other estimators, such as the
moment estimator as in Li and Wang (2019), the Pickands estimator as
in Daouia et al (2013), and the peaks over random threshold (PORT)
estimator as in Santos et al| (2006). First, Theorem 1 does not include
the estimation of the EVI so the result remains the same for different EVI
estimators. For Theorem 2, the asymptotic properties of different EVI
estimators will be similar in terms of the asymptotic normality but with
different representations and variances. For example, see the asymptotic
property of the moment-type estimator in [Li and Wang (2019). When

a different EVI estimator such as the moment-type estimator is used, we
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expect the asymptotic result in Theorem 3 still holds but with a different
form for the term on the right hand side. To examine the numerical stability
of our proposed method against different choices of EVI estimators, we
include the PORT estimator in the simulation study.

The PORT estimator was introduced in Santos et al, (2006) for uni-
variate data, and it is based on the sample of excesses over a random
threshold and is invariant for changes in location and scale. We can adapt
the estimator to the regression setup by taking the sample of excesses as
{Y; — Q,(Y|X)},, that is, the positive exceedances above the 7-th condi-
tional quantile. If the tail behavior of Y is invariant of X, then we can use
this sample of excesses to estimate the common extreme value index; see
the similar idea as in Chernozhukov and Du (2006) for linear extreme quan-
tile regression. However, in cases when the EVI varies with X, we cannot
directly apply the idea to obtain the PORT estimator of «(X); and how to
adapt the PORT estimator in this setting will require further investigation.

In our simulation study, Case 2 has a common extreme value index.
Therefore, we include another variant of our proposed estimator, referred
to as SIMEXQp, which replaces the Hill estimator in Step 2 with the PORT
estimator, in Case 2 for comparison. For the PORT estimator, we choose the

threshold level as 7 = 0.9. Tables 3 and 4 summarize the mean integrated
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squared error (standard errors) for different estimators of the extreme con-
ditional quantiles at 7 = 0.99,0.995 and 0.999 and ~(x) for Case 2 with
p = 4, respectively. The results show that the procedures based on the
Hill and PORT estimators perform similarly, suggesting that our proposed

method is stable with different extreme value index estimators.

Table 3: The mean integrated squared error (standard errors) for different estimators of the
extreme conditional quantiles at 7 = 0.99,0.995 and 0.999 in Case 2 with p = 4.

Method 7=099 7=0995  7=0999
BG 12.42 (0.04)  8.37 (0.07)  5.04 (0.11)
ICDF 6.22 (0.05) 11.23 (0.08) 57.38 (0.12)
TDR 0.18 (0.04)  0.67 (0.07)  0.89 (0.09)
SIMQ 0.06 (0.09)  0.13 (0.12)  0.24 (0.15)
SIMEXQ  0.04 (0.02) 0.05(0.03)  0.07 (0.07)
SIMEXQp  0.04 (0.03)  0.05 (0.03)  0.09 (0.07)

BG: the estimator proposed by Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator:
TDR: the tail dimension reduction estimator; SIMQ: the single-index model estimator in Zhu et all
(R012) for central quantiles; SIMEXQ: the proposed extreme quantile estimator based on the Hill EVI
estimator; SIMEXQp: the proposed extreme quantile estimator based on the PORT EVI estimator.

Table 4: The mean integrated squared error (standard errors) of different estimators of (x)
in Case 2 with p = 4.

BG ICDF TDR SIMEXQ  SIMEXQp

0.25 (0.09) 0.17 (0.07) 0.34 (0.12) 0.11 (0.07) 0.10 (0.07)

BG: the estimator proposed by Beirlant and Goegebeur (2004); ICDF: the inverse CDF estimator;
TDR: the tail dimension reduction estimator; SIMEXQ: the proposed extreme quantile estimator
based on the Hill EVI estimator; SIMEXQp: the proposed extreme quantile estimator based on the
PORT EVI estimator.
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S4 Assumption in the rule of thumb for the band-

width selection

To determine a simple rule of thumb for the bandwidth, we assume that the
second derivatives of the quantile function G”(z) and the conditional mean
function G”(z) are similar. Even though G(z) itself might vary considerably
with z in terms of curvature, the second derivatives of G(z) and G,(z) may
still be similiar in some situations. For example, in the location-shift model
Y; = G(z;) + ¢&i, where z; = x! 3y, and ¢;’s are identically distributed errors
with mean zero and CDF F, the mean function is G(z), and 7-th quantile
function is G,(z) = G(z) + F-!(7); thus in this case G”(z) = GZ(z) for
any z. The assumption also holds in heteroscedastic cases if the conditional
quantiles of ¢ do not depend on z or are linear in z. One example is:
Y; = G(z;) + (14 az;)e;, where a is a constant satisfying 1+ az; > 0 for any
z; in the support, and ¢; are identically distributed errors. The assumption
has also been used for bandwidth selection in Yu and Jones (1998), Zhu et
al| (2012) and etc.

In the simulation study, Case 2 is a heteroscedastic model with the
error term ze, therefore the assumption of G”(z) = G”(z) holds for any z

except z = 0 and for any 0 < 7 < 1. This assumption does not hold in
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Cases 1 and 3. However, our simulation results show that the bandwidth
chosen based on the rule of thumb still performs well even when the as-
sumption is violated. On the other hand, directly estimating G”(z) and
G"(z) would involve nonparametric estimation that depends on some other
tuning parameters, and thus is difficult to apply in practice. Therefore, we
would still recommend using the assumption G”(z) = G”(z) to simplify the

bandwidth selection procedure.

S5 Proof of Proposition 2.1

It suffices to prove that, for any constant u € R, there exists a constant s

such that £,(u,3) > L, (u,kB0), T € (7, 1). Specifically,

L-(0,8) = E[E{p, (Y —u—8"%)[B;x,V}]
> Ep-{E(Y[Bx,Y) —u—E(8'x[6x,Y)}]
=E[p.{Y —u—E(B8'%[Byx,Y)}]
=E{p. (Y —u—rfix)}.
The first equality follows from the iterative law of conditional expecta-

tion; the first inequality follows from Jensen’s inequality and the convexity

of p,; the second equality is true with the conditional expectation property,
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and the last equality holds true by invoking the linearity condition (2.3).

This completes the proof. O

S6 Proof of Proposition 2.2

Quadratic Approximation Lemma. Suppose £,(d) is convex and can
be represented as 6" Bd/2 + ul'd + a,, + R,(8), where B is symmetric and
positive definite, u, is stochastically bounded, a,, is arbitrary, and R, (d)
goes to zero in probability for each §. Then 8, the minimizer of L,(6), is
only o0,(1) away from —B~'u,. If u, converges in distribution to u, then &
converges in distribution to —B~u.

We will apply Quadratic Approximation Lemma. The main steps
are similar to those in the proof of Theorem 2 in Zhu et al| (2012). But we
correct some errors.

Let oy = n~2, b= n'/2(ii;, — ur,), and a = n'/%(8,, — B,,). Write

Lon(iiny, Boy) = Lon(tny + b, Br, + cpa).

We will expand L, (i, Br,) around L., (tr,, By, )-
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By applying the identity

ol —y) — pol) = y{I(z < 0) — 7} + / (< t)— I(x < 0)}dt, (S6.1)

it follows that

£7n<u7-0 + anb7 ﬁ"ro + ana) - ETTL(U’T(M /370)

1 & T
- ﬁ ;pT(}/Z ~ Un T Oénb o XIT'BTO - Oé”XlTa> - E ,LZIPTO/Z — Ury — X?ﬁm)
1 n
= > an(XTa+ b){I(Y; = X] By, < ur) — 70}
i=1

+_

1 n Ocn(XZTa-i-b)
n Z/ {](Yz - XiTIBTo < Up + t) - I<Yz - Xz‘T:BTo < UTo)}dt'
0

i=1
Let e =Y — XT3,,, and denote F,(¢|X) and f.(-|X) as the conditional

CDF and conditional density function of € given X, respectively. By Taylor

expansion, it follows that

E{Lﬂ'n(u‘ro + anba /67'0 + ana) - ETTL(“TQ? IBT())’X]J ceey Xn)}

1 n uTO +047L(X7,Ta+b)
=1 o
— % [(XiTa + 0){Fe(urn | Xi) = 7o} + %fs(uro|xi)(XiTa +0)%| +op(ay).

=1
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Following standard arguments, we obtain that

Rn - LTTL (UTO + Oénb, /87'0 + ana) - ’CTH(UT()) /87'0)
— E{L.(tury + anb, Bry + ana) — Loy (Ury, Bry) |1 X1, -, X0 }
= op(n_l).

So,

Loy (tr, + b, Br, + aya)

= ‘CTTL(UT(N /67'0) + E{ﬁTn(uT() + a/nba /870 + ana) - /C’rn(um; /67'0)|X1’ ) Xn} + Rn

n

n C(n
= Loaltny, B+ 22 3 (KTt B){FulunX) — 0} + B2 ol | X0 (X 2+ )7
=1
+o,(n"!) + R,
T
Lo ! b
- LTTL(“TQ: ﬂTo 7 {FE(UTO|XZ> - TO}
i=1 Xz a
T
b Oéi Z?:l f€(u7'0’Xi> Z?:l Xcirfe<u7'o|Xi) b _1
n o +o,(n" ).
a Z?:l Xif6(u7'0 |XZ) Z?:l XiX?fe(“To |X1) a

Applying Quadratic Approximation Lemma, we obtain that

b P
= —B;l7 Z (FE(’LLTO‘Xi) - 7_0)7

a i=1 Xz
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where
-1 n ) -1 n T .
Bn _ 04121 n Zi:l fe(ur, | X5) n 27;:1 X fe(ury|Xs) _. OéiBn.
T YT Xife(uny | Xa) n7t 30 XX T fe(tq | X)
Hence
M2 (T — Uy ) nt 3 (Fu(un |X5) — 10)
O = —aB T +0,(1)
nl/Q(/BTo - ﬁTo) n_l Z?:l Xi(FE(uTo‘XZ) - 7-0)
(56.2)

and by the CLT,

o | E(fe(unX))  B(XT fe(un X))
B, = =B

E(X fe(ur|X))  EXXT f(ur, X))

In order to study the limitation of (), we first study the mean and

variance of

Fg(um |X) — 70

X(Fe(ur|X) = 70)

In fact, (s, B,) solves E[{ro — (Y < u+ XTB)}(1,XT)T] = 0. Then

it follows that

E[IY <u, +X'B,) —1] =0, EXIY <u,+X8,)—mn)]=0.
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Hence, we have E[E{I(Y < u,, +X73,)|X} — 7] =0,

E(X[E{I(Y < up, + X" B,)|X} - 7]) = 0,

which implies that

F(uq,|X) — 70 0
E —
X(Fe(ur|X) —79) 0
Let
F(ur,|X) — 10
V =Var

X (Fe(urn|X) = 70)

Then, by () and central limit theory, we obtain that

M2 Qg — Uy, 0
R B >

nl/Q(BTO - /67'0) 0

with ¥ = B~!'VB~L. O

S7 Proof of Theorem 1

Recall the notations z = X28,,,2 = X13,.,.Z = X'B,,,Z; = X783,

Let ap = G,(2) = G.(XIB,,), by = G.(2), K; = K{(Z; — 2)/h}, K; =
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K{(Z; — z)/h} and K'((Z; — z)/h) for i = 1,2, ..., n.

We first show that, for BTD which is a /n-consistent estimator of 3.,

%Z [ﬂT{Y; —a—b(Zi — YK — pAYi —a—b(Z; — Z)}Ki] = 0,(n"1?).
_ (S7.1)

Define

1< .
R = = 3 K |peAYi —a—b(Zi = 2)} = po{Yi —a = b(Zi = 2)}
=1

Rig= 3" [ord¥i— a = b(Zi = 20} = pel¥i = 0 = W2 = 2)}] (i — o).

1< .
= [,OT{Yi —a—b(Z - 2)YKi — pAYi —a—b(Zi — z)}Ki] = R+ Rt Ry
=1

Using the identity (), we have |p,(z — y) — p-(7)] < 2]y|. Invoking
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the y/n-consistency of BTO, we have

prAYi —a—b(Z; = 2)} = pAYi — a = b(Z; - 2)}

1 n
|Ry1| < - Z K;
i=1

< 2[b| sup | K (u |— Z{|Z Zil + 12— 2}

= 2/blsup |K (u I—Z{IXTBTO Br)| + [Xo(Bry — Br)[} = Opln™'7).

Next we deal with Ry5. By Taylor expansion, we have

Fiz = (B —Br)" ZK'( 2) (Xi=Xo)pr{Yima—b(Zi—2)H1+0,(1)}.

Let ZiO = (Xz — Xo)/h Then

nhZK,(

:_ZK/ 0 ‘ro 10/)7-(}/;—@—th% 7’0)

2) (X3 = Xo)po{Y; = a = b(Z: — 2)}

=5 ZK/(Z% ) ZiolY; — a — bhZ] B, |
= 0,(1).

Together with the y/n-consistency of 3,,, we prove that Ry = O,(n~'/2).

[t remains to investigate the order of Ry3. Following similar arguments,
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we have R;3 = O,(n~'/?). Thus, (S7.3) follows and implies

% Z pr{Yi—a—=b(Z;=2)} K; = %ZpT{Yi_a_b(Zz‘—Z)}KH-Op{(nh)_l/Z},

=1

This means, the quantile regression estimate of G,(-) based on {(X73,,,Y;) :
i=1,2,...,n} is asymptotically as efficient as that based on {(X73,,,Y;) :
i=1,2,...,n}.

The rest of the proof follows literally from Lemma 3 of Wang et al.
(2012). Based on the auxiliary data points {(X? 8o, Y;),i = 1,2,...,n}, the
technique for establishing the asymptotic normality involves the convexity
arguments for argmin process (Katg, 2009). We only sketch the outline
below.

Recall that

F{U®# )2} =1 — %

By taking the derivation with respect to ¢, we have
/ . (4. 1
F{U(t; 2)}U'(t; 2) = o

By Condition Cs, it follows that U(t; z) = G1-1,(2) and tgl(itzz)) =(2)
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uniformly for z € Z, and hence

1—7
(G:(2)]z) = m{l +o(1)}. (57.2)
Let 6(7) = )éz {a—ag, h(b—bo)}",
fa(0,7)
S D OVE (e NP RO N I
V(2)G-(2) L= n(l—7)h (Z - 2)/h
—ZPT{Yi ap —bo(Z —Z}K]
and
(0,7) = =07 W,(7) + 567 Q(7)
where
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1 0
with o = [, u? K (u)du and i3 = ﬁ1 WK (u)duand Q(1) = fz(2)

0 po

Following similar arguments as in Chernozhukov (2005), we have

sup | fn(0,7) — gn(0,7)| LN 0,
T€T

By Theorem 2.2 of Shorack ([1979), it follows that W, (7) converges to a

Gaussian process. Then, by applying Theorem 2 in Kato (2009), we have

0(1) = {Q(7)} ' Wa(r) + 05(1),

which means

n(l—r 4 B T
GGy T MO )
1 [1 0 ] n 1
- —= [(——=> [T — I{Y; < G.(Z)}K;
A U =
VAT (’;h(“) ;()> "l reene).

3

Since we are more interested in the estimation of ay = G,(z), taking
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the first row in above, we obtain

{nh(1_7—>}1/2 N o3\ > _1 2 I p . - o
()G (2) G-(2) = G-(2) = SP° G2} = Wa(T){1 + 0p(1)},

(S7.3)

where py = [' u?K(u)du, fy(y|z) is the conditional density function of

Y|Z =z,

W(r) = ﬁfz_l(z) It - 1Y < Go(Z)HK,, TET.

which converges to a Gaussian process with mean zero and covariance

vo{min(7y, 75) — 775}

\/(1 —7)(1—175)

E(Tt77—s) = fgl(z)a

where vy = f_ll K?(u)du and fz(z) is the density function of Z. O

S8 Proof of Theorem 2

From Theorem 1, we have that

{nh(1 —7;)}'?
V(Z)GT](Z)

[61,(8) = G () — GHGL (R} = Walm){1 4 0,(1)}

($8.1)
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uniformly for 7; € 7 where 7; =1 — j/n and j = [n"], ..., k, and that

W () = {nh(1—7)} "2 f 7 {—ZT HY; < G(Z)}|Ki}, 7€ (0,1),

converges to a Gaussian process with mean zero and covariance

vomin (74, 75) — T47Ts}

f2(2)/ T =7)(T—7)

(1, 1) =

Based on (S8.6), we have
Gry(2) = ij(2)+%h2Gﬁj(Z)M2+{nh(1—7j)}1/27(2)@](2) n(7){1+0p(1)}-

Hence, by Taylor expansion, it follows that

~—

G, (2
Gr, ()
o ()1 + 3h*G ()G (2)pz + {nh(1 — 7))} 24 (2) Wa(7) (1 + 0,(1))]

Gr (2)[1 + 3R G H2)GY, (2)p2 + {nh(1 — 1) } 72 (2) Wi (7 ){1 + 0,(1)}]
G

)
7 (2)
Gnr(2)

G ({1 + ()} + k(L — 7)) V(W (7) {1 +0,(1))
1

— SHRGN ()G (2)pad1 + 0(1)} = {nh(1 = )} 2 ()W (m) {1 + 01}

= log
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By (3.1), we have

G,() Ul=) U@ UG5
Gn(2)  Uly) UG U
= (k/3)P[L + A(n/k; z)%u +o(1)}],
and hence
log 27:%) (k/j)") —1

g G o) —(2)log(j/k) + A(n/k; Z)T{l +o(1)}.
Now we have

log — = —~(2)log(j/k
g N v(z) log(j/k)

Neo(z) _
+ A(n/k: z)(k/];(—z)lu +o(1)}

F PG )G () — GG () H1 +o(1)}

Gr(2)

+ (h) P { (1= 1) VEWa(7y) — (1= 7)™ 2 W (i) H{1 + 0,(1)}
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Note that

T3 tori/h) = [ logads + otmax{a"].1/k)

j=[n"

= —1+ o(max{[n"],1/k}) = =1 + o(k~*/?)

and that

; k M— 1& a n _ 1 -1/2
k;j%ﬂ o(z) —/0 o) da-+o(m X{[nT,l/k})—l_Q(Z)Jro(k: ).

Recall that G- (2) = U{1/(1—7); 2} and G (2) = 823;2(2) = 82U{1(/9(Z12_T);Z}.

0?U{1/(1-1);z}

(z), we have to approximate £

In order to approximate G;jl(z)G:j

Note that, for U(t; z) satisfying the second order condition (3.4) with

0(z) < 0, we can write it as

Ult; 2) = c(2)t"®) 4 d(2) 7=+ 1 4 0(1)}, (S8.2)

for some ¢(z) > 0 and d(z) € R. Assume ¢(z),d(z),7(z) and o(z) are

continuous functions with second derivative functions. Then

oU (t; z)

2 = () 4 ()7 log 1) (2)
z

+ (d ()@@ L g(2) OO (log ) (7' (2) + 0'(2))) {1 + 0(1)}.

Now we distinguish three cases: (1) 7'(2) # 0; (2) 7' () = 0 but ¢'(2) # 0;
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(3) ¥ (2) =0 and ¢'(2) = 0.

For the first case 7 (z) # 0, we can easily have

02U (t; )

5.2 ~ e(2)0P (log t)* {7 ()}

and that, with 7; =1 — j/n for j = [n"], ..., k,

GG (2) ~ {log(n /) {y (2)}.

G H2)G (2) = GLH(2)G7 (2) ~ {7 (2)F{(log (/) — {log(n/k)}*}

= {7 (2)}*{2log(n/k) + log(k/j)} log(k /)

5 301G AIG (2) ~ GG ()} ~ 2log(n/W) ' (2))? [ ~logads

j=[nn 0

= 2log(n/k) {7 (2)}*.
For the second case v'(z) = 0 but o (z) # 0, we denote y(z) = v > 0.
Then we have

02U (t; z)

9.2 = ¢ () + d(2)0 4 (log ) {0 (2) {1 + o(1)}
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and that
611G (2) = S 3 /)9 ogn [ ()1 + o).
Hence

GG, (2) = G ()G, (2)

~ SEREE (03 log(n/ )} ~ (n/ )" log(n/ )}
d(Z){QI(Z)}2 UAVE k o(z A 2 Ny o(z 2

~ ST LG GO Lot/ k) toa (/)Y — () ot/ )
d(z){g’(z)}Z n o(z 2 k o(z

~ ST e (G - 1

and thus

For the third case 7'(z) = 0 and ¢ (2) = 0, we denote v(z) = v > 0 and
0(z) = o < 0. Without loss of generality, we assume ¢ (z) # 0 or d (z) # 0.
Similarly, we have

02U (t; 2)

e ¢ ()0 +d ()14 0(1)}
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and that

611G () = S5 - (S - T By o)

Hence

1"

G2 ()G (2) - G ()G (o) ~ —{ ) _ LYy g

Tj Tk

and thus

NI»—k

¢'(2)d(z) d'(2) nyo [ 2= — Ddx
(2) c(z) }(k) /0 ( b
¢(2)d(z)  d'(2)\ nye o
B )

2

2

(@)

z

zk: (2) = G (2)G,, (=)}
=l

~

-

A(z c(2) 1—0

Consider the last part: approximation to (1 — 7;)~/2W,,(7;). Note
that, by Theorem 1, /T — 7{fz(2)/vo}/*W,(7), 7 € (0,1) converges to a
Gaussian process with mean zero and covariance function min(r, 75) — 757,
for 7, 75 € (0,1). Thus, there exists a sequence of Brownian bridges { B, (t) :

€ (0,1) },>1 such that

=25 ) Z B £ 0,1}, 7 e (0,1)

140
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and hence

(=7 PWalr) = (L= 1) [ Bu) {1+ 01}

On the other hand, there exist a sequence Brownian motions {W,,(t) :

€ (0,1)},>1 such that

B, (t) = W, (t) — tW,(1).

By the fact B,(t) < B, (1 —1t), it follows that

Buln) = B (1=21) £ Bu(57) =W

nk nk %){H_Op(l)} : (5)1/2 ( ){1"‘01)( )}

Then

(1= 1) PW(ry) = (1= 7) P Woa(7)

a / Yo {(1 ) Ba() = (1= 7)™ Balm) M1+ 0,(1))
f - (2) = Wal) 11+ 0,(1)}.
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Thus
. Z {0 =772 Wa(r) = (1= 7)™ Wa(m) }
] [n7]
Y —
S /{ W) — W, (1)} {1+ 0,1}
fz(z
Without loss of generality, we replace “ alr by “=" above. Therefore,

+% 3 Ay B =Ly

it o(2)

+ % Z thMQ{G;J_l(Z)GZj(Z) — GT_kl(z)G’T'k(z)}{l +o(1)}

i= [n”]

42 Z (nh)~1/2y {1—73) V2, (7)) — (1—Tk)—1/2wn<rk)}{1+op(1)}

i=[n"n]

=: 1,(2) + Ion(2) + I3, (2) + L4n(2).

Obviously, I1,(2) = v(2){1 + o(k~1/2)},

(Tonl2) = Aln/k: 2){z—— + ok )}{1 + (1)},

0(2)
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;

W2z log(n/k) (7 (2))*{1 + o(k™"2)H{1 + o(1)}

o S L 2300ty 2C) 1 o)) 14 0(1))

Ion(z) = 2¢(2) 1—o(2)
for 7/(2) =0, ¢'(2) #0,
L S-F R e (GEE RN (S IR
\ for /() = '(2) =0
and

Lin(2) = () (k)" /\/T / [ W) — Wa (1)} {1 + 0, (1)},

By taking I5,(2) and I3,(z) as the bias, it follows that

<kh>1/2{A< ) = 1(2) — Fon(2) — (2 >}

\/fZTO/ {27 W, (x L(1)}dx{1 + 0,(1)}.

By the assumption (kh)Y2A(n/k;2) — Xy € R and (kh)Y2h?log(n/k) —

A € R, it follows that

(k1)2{3(2) - 5(2) — % NE)

oG [ ) - s+ 1)
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where
1?2 log(n/k) (7' (2))* , 7'(2) #0,
() = & 5t e gt P45 ) =0, 4G 20,
9 c(2)d(z d'(2)Y ,no , ,
\__h MQ{ (czzz)( - c(i))}(g) % » VE) =d(2) =
(S8.3)

S9 Proof of Theorem 3

Note that, with notation 7, = 1 — k/n and p, = 1 — 7%,

G, (2) (1 — Tk )%(2) ng(é) { G (z; }1

56 Gy (2)  Ule) |
i e ) el )

7 (2)

We will approximate the item (k/(np,))?*) by applying Theorem 2,

g”f 8 by applying Theorem 1, and approximate the
Tk

approximate the item

item LU/ (177*)5 by applying the second order condition (3.4).

U(/(1=mx)

By Theorem 1, it follows that

Gn(2) _ | n 3G (2)pa + (nh) 2L (G (2)[2) Wa (7){1 + 0,(1)}
Gr(2) Gr(2) '
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By the second order condition (3.4), it follows that

U(l—lﬂ'*) -1

o))
(D) [ A S et}
Then
7 (2 WO G (2 no (e —1 n
i ) g A g etaa]

Then, under the assumption (kh)~'/2log(k/(np,)) — 0, we have (9(2) —

7(2)) log{k/(npn)} — 0 and

(F Y1016 2 G- ot/ ()

NPn

=14+ {5(2) = ~(2)} log{k/ (npn) {1 + 0p(1)}.
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Then, we write

G = [ 13() = () oglk/np)]
< [L+ sh°GY (2)ps + (nh)‘”zfé:if;(2)|Z}Wn(m){1 + Op(l)}}
o (E)O-1 g
X [1 = A(;: Z)WT +o{A(z;2)H
= 1+ [{4(2) = 2(=)} log(k/npy)
1oy n G =1
+ §h G (2)G7 (2)pe — A(E’ Z)Tz)
+ (nh) V2 f G (2)| 3G ()W) {1+ 0,(1)}
Let N, ( N fo {o= "W, (z »(1)}dz. Then by Theorem 2,

(7(2) = (2)) log(k/npy)

= (k) log{k/(npn) H{ Nu(2) + Tsn(2) + ”/ k ?)

SuAths

Recall that (nh)~2fi G, (2)|2}G ()W) = Op((kh)™?) (see the

proof of Theorem 2). By our assumption k/(np,) — oo and (kh)~/21og{k/(np,)} —
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0, we have

G (2)
G, (2)

=1+ [(kh)—uz log{k/(npy)}Nn(2) + %hQGml(z)G;’k(z)uz - A(% 9

x {1+ 0,(1)}.
Thus

n

k

(kh)'/? GT*(z)_ Ll ;
log{k/mpn)}{c:ﬂ(z) L= PG ()G () + Al

= Np(2){1 + Op(l)}a

. Z) nPpn
)

which completes the proof.
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