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Supplementary materials include simulation examples (Section S1) and all technical
derivations (Section S2).
S1. Simulation examples

We carry out simulation studies to evaluate the performance of TQCC in testing the
null hypothesis of tail independence versus the alternative hypothesis of tail dependence.
The performance of the proposed test is compared with two newly published tests in
Bacro et al. (2010) and Hiisler and Li (2009).

The approach proposed by Hiisler and Li (2009) originated from an extreme value
condition of maxima domain of an extreme value distribution which can be characterized

by a dependence function I(z,y) satisfying the inequalities

xVy <llz,y) <z+y, z,y>0.

Testing asymptotic independence is to test Hy : I(z,y) = x+y for all 2,y > 0. Nonpara-
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metric estimators of I(x,y) were constructed and the limit distributions were derived.
Two tests, the integral test and the supremum test, were derived with critical quantile
values being numerically calculated. In our simulation examples, the integral test is
used, sub-sample sizes are all set as n/2 of the total sample size n in each case, and the

tuning parameter k is set as 0.075n respectively.

The test proposed by Bacro et al. (2010) is called the madogram test named after

the well-known madogram used in spatial statistics. The madogram test considers the
random variable

W= SIF(X) - F(Y),

and an empirical distribution based estimator of vy = E(W) as

and a normal test.

Six typical examples of simulated bivariate sequences are chosen as follows:
(1) Componentwise maxima over 10,000 realizations of bivariate normal random vari-

ables with p = 0.2, 0.4, 0.6, 0.8. Details of this example can be seen in Bacro
et al. (2010) Example (D4).
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(2) {(X;,Y:)} in Example M, where (Ly;, Qn;) follow (Z8) with p = 0.2, 0.4, 0.6, 0.8.

(3) Bivariate random samples drawn from (1/U,1/(1 — U)), where U ~ Uniform(0, 1).

(4) Bivariate random samples drawn from (Z1 E1, ZoF4), where

E; ~ Exponential(1), and Z; and Z, are independent unit Fréchet, and indepen-

dent of E;.

(5) Bivariate random samples with the joint distribution specified by a Gumbel copula,

Co(H(u1), H(up)) = e~ Zial=1os{H@INY)? "y 5 0, uy > 0, where H(u) is a

unit Fréchet distribution function, and 8 = /1 — p with p = 0.2, 0.4, 0.6, 0.8.

(6) Bivariate random samples drawn from two ¢4 (Student’s ¢ distribution with 4 degrees

of freedom) random variables with correlation coefficients p = 0.2, 0.4, 0.6, 0.8.

Cases of tail independence are given in Examples (1)-(4), while cases of tail dependence
are in Examples (5) and (6). Example (5) is also used in Bacro et al. (2010) and Hiisler
and Li (2009). In our simulation study, for the simulated sample {(X;,Y;)} in each
example, the threshold value is automatically chosen at the smaller one of two 100pth
percentiles of {X;} and {Y;}, where p = .80, .825, .85, .875, .90, .925, .95, .975, respec-
tively. The number of simulation replications is 1000.

Tables B-M report the proportions of rejecting the null hypothesis of tail indepen-

dence with different sample sizes at the nominal level « = 0.05. Column HLT stands
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for the approach of Hiisler and Li (2009), while column MaD stands for the madogram
approach of Bacro et al. (2010). One can immediately see that HLT method well con-
trols Type I error rates within its nominal level. Their method is relatively conservative
and requires sample size as large as 2000 to get a good performance. In the mean time,
MaD method is relatively aggressive, and Type I error rates are not controlled within its
nominal level, which is also seen in Bacro et al. (2010) for Example (1). Overall, TQCC
controls Type I error rates within its nominal level, and it has a better detection per-
formance in tail dependent examples. These tables also show that the performances of
TQCC are relatively less sensitive to choices of p in calculating TQCC. We recommend
the use of the 95th percentile of transformed sample data. We note that in Example (5)
with p = 0.2, corresponding to § = 0.8944, (note § = 1 corresponds to independence),
the empirical testing powers are low although the results also show an increasing trend of
the empirical testing powers as sample sizes increase. This example suggests that when
the null hypothesis is not rejected, cautions should be taken, and a further analysis is

recommended.
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Table 5: Empirical Type I error rates for Examples (1)-(4)

Sample size n=300

Example | HLT | MaD TQCC

80 825 .85 875 .90 .925 .95 975

(1) ] 0.2 .03 .041.04 04 03 .03 .03 .02 .02 .02
p |04 .04 05]1.03 .03 .03 .03 .03 .02 .02 .01
0.6 .03 16 1.05 .04 04 .03 .03 .03 .03 .02

0.8 .03 94 1.11 10 .09 .09 .07 .05 .04 .02

2)|02 | 02| .11].03 .03 .03 .03 .03 .03 .03 .02
p |04 | 03] 32[.04 03 .03 .03 .03 .03 .03 .02
06 | 03| 65|.03 .03 .03 .03 .03 .02 .02 .02

0.8 .04 91].03 .03 .03 .03 .03 .02 .02 .02

(3) 03] 000}.01 .01 .01 .01 .01 .01 .01 .01

(4) .04 1.00|.07r .06 .06 .06 .05 .05 .04 .03
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Table 6: Empirical Type I error rates for Examples (1)-(4)

Sample size n=500

Example | HLT | MaD TQCC

80 825 .85 875 .90 .925 .95 975

(1) ] 0.2 .03 03].02 .03 .03 .02 .02 .02 .02 .01
p |04 .03 05].04 04 04 .03 .03 .03 .03 .02
0.6 .05 A9 1.05 .05 .05 .05 .04 .04 .03 .03

0.8 05| 100}.13 .12 .11 .09 .08 .07 .05 .03

(2) 1 0.2 .03 14 1.04 04 04 .04 03 .03 .03 .02
p |04 .02 451003 .03 .03 .03 .03 .03 .03 .02
0.6 .03 86 .04 04 04 .04 04 .03 .03 .03

0.8 .02 991.06 .06 .05 .05 .05 .05 .04 .03

(3) .02 00).02 .02 03 .03 .03 .03 .03 .03

(4) 03| 1.00].06 .06 .06 .06 .05 .05 .04 .04
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Table 7: Empirical Type I error rates for Examples (1)-(4)

Sample size n=1000

Example | HLT | MaD TQCC
80 825 .8 875 90 .925 .95 975
(1) ] 0.2 .04 021 04 04 04 04 04 04 .04 .03
p 0.4 .03 051 05 05 .05 .05 .05 .04 .04 .03
0.6 .04 29| 06 06 .06 .06 .05 .05 .05 .04
0.8 .07} 100} .18 .17 .14 12 .11 .10 .08 .06
(2) 1 0.2 .03 241005 0.05 0.05 0.04 0.04 0.04 0.04 0.03
p |04 .03 741 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.03
0.6 .04 991 0.04 0.04 0.03 0.04 0.03 0.03 0.03 0.03
0.8 .03 | 1.00 | 0.06 0.06 0.056 0.05 0.056 0.05 0.05 0.04
(3) .04 000 .03 .04 .04 04 04 04 04 .04
(4) .05 1.00| .07 .07 .07 .06 .06 .05 .05 .04
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Table 8: Empirical Type I error rates for Examples (1)-(4)

Sample size n=2000

Example | HLT | MaD TQCC

80 825 .85 875 .90 .925 .95 975

(1) ] 0.2 .06 02]1.04 04 04 .05 .05 .04 .04 .03
p |04 .06 051.06 .06 .06 .06 .06 .06 .06 .05
0.6 .06 43 1.06 .06 .06 .06 .05 .04 .04 .03

0.8 141 1.00 .25 24 22 19 .15 .14 .10 .06

(2) 1 0.2 .03 401.04 04 04 04 04 04 05 .04
p 0.4 .04 96 1.05 05 .05 .04 05 .05 .04 .04
0.6 05] 1.00|.04 .04 04 .05 .06 .05 .04 .04

0.8 041 1.00].05 .05 .05 .06 .05 .05 .05 .05

(3) .03 00].03 .04 04 04 04 .04 04 .04

(4) 08| 1.00}.09 .08 .07 .07 .07 .07 .06 .06
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Table 9: Empirical powers for Examples (5) and (6)

Sample size n=300

Example | HLT | MaD TQCC
80 825 .85 875 .90 925 .95 .975
(5) 1 0.2 .03 L6 | 14 13 12 10 .09 .08 .07 .05
p |04 06| 1.00| 44 42 40 37 33 27 .18 .10
0.6 07 100} 79 77 75 70 63 .55 40 .20
0.8 A2 100100 99 99 99 97 94 8 .53
(6) | 0.2 03| 100 75 75 75 4 73 72 .69 .65
p |04 04 100 8 8 84 8 81 719 76 .71
0.6 050 100 9 95 94 93 93 92 89 8
0.8 11| 1.00 | 1.00 1.00 1.00 .99 99 99 98 .95

Sample size n=500

(5) 1 0.2 .04 96| 17 16 15 14 13 12 10 .06
p |04 07| 1.00] 49 46 42 39 37 31 25 .14
0.6 A5 100 88 8 8 8 77 70 .61 .38
0.8 25| 1.00 | 100 1.00 1.00 99 99 98 95 .77
(6) | 0.2 03| 1.00 | 0.80 0.79 0.78 0.77 0.77 0.76 0.74 0.72
p |04 .06 | 1.00 | 0.88 0.87 0.87 0.87 0.86 0.84 0.83 0.79
0.6 A1 1.00 1096 0.96 0.96 0.95 095 094 0.92 0.89
0.8 22 1.00 | 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98
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Table 10: Empirical powers for Examples (5) and (6)

Sample size n=1000

Example | HLT | MaD TQCC
80 825 .85 875 .90 .925 .95 .975
(5) 1 0.2 09 100 20 .20 .20 .19 .18 .17 .15 .11
p |04 A5 100 59 58 56 B3 .50 46 .40 .28
0.6 B340 100 94 93 92 90 87 84 .79 61
0.8 .63 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .97
(6) | 0.2 07 100 84 84 8 8 8 8 8 .79
p |04 A4 100} 91 91 91 91 91 9 .89 .86
0.6 29 100 97 97 97 96 96 96 .94 .92
0.8 52| 1.00]1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99
Sample size n=2000
(5) 1 0.2 A4 1.00 25 25 24 23 .22 21 .19 .15
p 0.4 350 1.00| 70 .68 66 .64 .61 BT .52 42
0.6 700 100 97 96 96 95 94 92 8 .77
0.8 93| 1.00|1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(6) | 0.2 A5 100 8 .86 .86 .86 .86 .85 .84 .83
p 0.4 B0 1.00) 92 92 92 92 91 91 90 .88
0.6 59 100 99 99 99 98 98 98 97 97
0.8 .86 | 1.00 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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S2. Appendix

Proof of Proposition 0. First, we have

P(max(X, Tye) > u, max(Y, Tpt) > w)
P(max(X, Tyt) > u)

P(T <uw)P(X >u,Y >u)/P(X >u) + P(Typ > u)/P(X > u)
P(Ty <u)+ P(Ty > u)/P(X > u)

=0 (1/g(u)) 4+ O (nu'™") (52.1)

=0 (max (1/g(u), nu'"")). (52.2)

The first equality from the above identities directly proves (2=4). Notice that g(u) — oo

as u — oo. For any h(u) satisfying h(u) — oo when u — oo, we have

P(max(X', Tyt) > h(u), max(Y’', Tyt) > h(u))
P(max(X',Ty) > h(u))
_ P(Ty: < h(uw)P(X' > h(u)) + P(Th: > h(u))/P(X’ > h(u))
P(Th < h(u)) + P(The > h(u))/P(X" > h(u))

g*(u) =

=0 (max (1/h(u), nh~*(u))) . (52.3)
In particular, when h(u) = min (g(u), nut 1, (ng(u)) T ,u), we have
g"(u) = O (max (1/g(u), nu'~")). (52.4)
Eq (5Z3) gives

P(X >u,Y >u)
P(X >u)

— 0(g"(w)). (52.5)

Combining Eq (§8232) and (§Z4), we have

P(max(X, Tt) > u,max(Y, Tye) > u)

P(max(X, Tpe) > u) =0(g%(u). (52.6)
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Proof of Proposition B. Denote K (u) = 1/g(u). The results follow from proving
Po= P(Upy {28 > 20t Zhs Sy o p((p, (S0 St 2L Sne)
n n’' n n n n’' n n
0, when tn <1,
=1-P, —
1, whenn=1,1¢t>1,
as n — oo. We have
Xi Tn t Y; Tn ty¢
Py = P, {50 > 2, Sis Sty
nt i " n’n’ n }
o Xz Y; n . _nl-t
0 n n
o0 nl—t
= / [1—P(X; >na, Vi >na)]"de” "+
0
o0 nlft
:/ [1—K(nx)(1—e‘ﬁ)]nd67T, set nx = nt/ty
0
o 1 [
:/ [1—K(n?y)(1—e n”t'y)] de v*
0
— [ty
0
1
Note that f,:(y) <1, and n'/ty(1 —e ='/7s) — 1 as n — oo, we have
K(nty) 1 ey
fnt:[l_Wn y(l—e "/y)]
. nl/ty nl’%K(n%y)nl/ty(kf;"Ll}"y)
K(nt 1 1 7% Y
= [1 - n(ln;t;)nl/ty(l —e nl/ty )] Kntpnl/tya—e n/Ty)

The proof is then completed by noticing the limit of n!~% K (n7y) and the limit of P,,.
|

Proof of Theorem 0. For z > 0, we have

P(T,, /0"t < 2) = P(T,s < n/t2) = exp{—n/(nz!)} = exp(—1/2").
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Denote X7 = X;/n'/t, Y = Y;/n'/t, T =T, ;/n'/t and b,, = n'/t. We have

P(Tn,t{ .- max(X;, Tp.t) +1} < z) _ P(Tt*{ Hax max(X/,T}) +1} < nl—l/tz)

n Li<i<n max(Y;, T, 1) 1<i<n max(Y;*, T})
o max(X7,z)  n'"Vitz n
- [ [P L ~1}| dexp(-1/a"). $2.7
/0 Pl < exp(—1/a") (s2.7)
We now calculate the integrand in (8272). For w > 1 and z > 0, we have
maX(X;a {E) * * * * * * *
P{—————7<w} = P(XI)YF <w, X! >z, Y >a)+P(X!x<w, X >z, Y <)
max(Y*, z)

+P(z/r <w, X <z, YV <z)+Pla/Y] <w, X <z, Y] >zx)

= L+L+1I3+ 1y,

where
I = 1%[1 —exp{—(1 +w)/(wbnz)}] — exp{~1/(bnz)} + exp{~2/(bn2)}.
Similarly,

I = exp{—1/(bua) Hexp{—1/(why) } —exp{ =1/ (bn)}] = exp{—(1+w), (wboz)} -
exp{=2/(bat)}, Is = exp{=2/(bu)}, L1 = exp{—1/(bu) H1—exp{—1/(bu)}] = exp{—1/(bu)}—

exp{—2/(bpz)}, thus
Lthtl+li—1— H%[l — exp{—(1 + w)/(wbnz)}].

Setting w = nz/(byx) — 1 gives

1

(h+b+h+hW:P—————
nz —b,x

{1+0(0}]" = exp(~1/2).
This concludes

. max (X, x) 1-1/t "
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This, together with the dominated convergence theorem and T;, ¢ /nA, L proves the
first part of (i). The proof of the second part of (i) uses similar arguments. For part (ii),

letting A; = A;’ltmax(Xi, T)/max(Y;, Tn ) and ©; = A} ymax(Y;, Tp¢) /max(X;, T t),

we have
A _ max(A;) + max(0;) — 2/A,,;  {max(A;) + max(0;) {1+ op(1)}
e, = max(A;) max(0;) — 1/A%2 ,  max(A;) max(0;){1+ op(1)}
This together with part (i) and Slutsky’s theorem proves part (ii). |

Proof of Corollary O. Following the proofs in Theorem 0, we get

1
xwnl/t

P{ max(X/, z) .

< w} = exp{—
x

1-1/t

Setting w =n z/x, then all proofs follow the same proofs as in Theorem .

Proof of Theorem B. Before proving Theorem B, we need Lemma [I.

Lemma 1. Suppose that X, X1, Xs, ... are positive random variables. Then X, B x
if and only if there are two sequences of positive random variables 57(11) and §£¢2) such that

DR @R amdeVx <X, <ePX, n=1,2,...

Proof. The sufficient part is obvious. For the necessary part, define )?,(11) =
max(X,, X) and )2'7(12) = min(X,,X). Then for j = 1,2, )Z}(Lj) are measurable and
)NQ(L]) B X asn — oo Setting 553) = )}ﬁlj)/X, j =1,2, completes the proof. |

We now show Theorem B. By Lemma [, there exist 5,(3) > 0, gff) 5 1,5=1,2, as

n — oo, and fgl)u* <uy < §,(L2)u*, which imply

min(1, &MY max(X;, u*a,) < max(X;, u,) < max(1,£?) max(X;, u*ay),
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min(1, €Y max(Y;, u*a,) < max(Y;,u,) < max(1, ) max(Y;, u*ay).

Then we have

min(l,fg)) max(X;, u*ay,) < max(X;, uy,) < max(l,fg)) max(X;, u*ay,)
max(l,fg))maX(Yi,u*an) — max(Yi,un) T min(l,ffll))max(ﬁ-,u*an),
min(l,f,(ll))max(Yi,u*an) < max(Y;, uy,) < max(l,f,(?))max(Yi,u*an)

max(l,ﬁ,(?))max(Xi,u*an) T max(Xi,un) T min(l,&,&l))max(Xi,u*an).

Noticing that for b, = n(1 — exp{—1/(u*a,)}), we have

12 max(l §n )maX(Yi,u*an) 1<isn max(1, &, ) max(X;, u*ay,)
> p{ ma o max(Xiun) Mgbnyﬂ}
1<'L<n maX(Yl,un) 1<i<n max(X;, uy,)
(2) ok
> P{ ax max(1, (1)) max(X;, u*ay,) <byo—1, m max(l,gg) )max(Y;, u*ay,) < by — 1}.
1<isn min(1, &) max(Y;, u*ay,) 1<isn min(1, &, 7 ) max(X;, u*ay,)

Since max(l,ﬁék))/min(l,gﬁj)) 51 for all j,k = 1,2, and by Theorem 5.2 of Zhang
(2008b), maxi <<, {max(X;, u*a,)/ max(Y;, u*a,)} and max; <;<,{max(Y;, u*a,)/ max(X;, u*a,)}
are tail independent, we have by Slutsky’s theorem that both the first and the last proba-
bility in the above inequalities converge to exp(—1/x —1/y) as n — oo, hence the middle
one converges to the same limit. The rest of the proof is similar to the proof in Theorem
m. |
Proof of Corollary B is obvious.
Proof of Theorem 3. It can be shown that ¢; < X;/Y; < ¢o. Using the fact min(¢q,1) <

max (X, up)/max(Y;, u,) < max(l,cz), we have that with probability tending to 1,

| < max max (X, un) max(Y;, uy)

< 1 1<
1<i<n max(Yi,un) = max( 702)a < max

< 1,1 .
1<i<n max(X,»,un 7m3’X( ’ /Cl)
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So qu, > f(max(1,cz),max(1,1/c1)) >0 (for f in (Z53)) completes the proof. [ |
Proof of Proposition 3. Under Condition A1l and oy + as = 1 and 1 + 82 = 1 in

(Z13), let @« = ay, 8 = 1 — By, then the corresponding bivariate distribution is
F(z,y) =exp [— max{a/z, (1 -75)/y} —max{(l — a)/z, ﬁ/y}]
Notice that «, 8 > 0, « + 8 < 1 imply 8/(1 — a) < (1 — )/c. Thus,

exp (—1/y), y/z < B/(1 - a),

Fla.y) =Y ep{-(1-8)/y—(1-a)/z}, B/(1-a)<y/z<(1-pB)a, 8

exp (—1/z), (1-p)/a<y/z.
We have
P(X Y 1—-F(u)—F F _F
g PE>w Y o) (W) = Flw) + Flu,w) _ )y F) = Flu,u)
U—00 P(X > u) U—00 1— F(u) U—00 1— F(u
e~ /v _ o= (2= (a+8))/u
=1-— lim
uU—00 1—e1/u
~Le1/uy 22(@4h) o~ (2—(atB))/u
=1-— lim —% o -
U—00 Fe_ /u

=1+ lim (1—(2— (a+ B))e'"FA/) = a4 3.

U— 00

By (BZR), we have

Then we have
1-8 11—« )
P « B

Qo = Toayiopy 7 ~ @7
=a)i=5)
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Similar to the proof of Theorem B, we have that with probability tending to 1,
max(X;, up) < 1-p | < max max(Y;, uy,) < 1-«
1<i<n max(X;, uy,) B

1 < max
~ 1<i<n max(Y;, uy) o

7

which shows q, — a+ .

Proof of Proposition B. Notice that {€;1/€;2} is a Cauchy random variable having its

density function and distribution function as:
z—p

1 V1= p? 1 1
P , F(z) = = + —tan™ ' ———.
2 7 /1= p?

PO

_ 1 1 -1 _Yn—p
14 lean—12nzp
™ /17’)2

=1 _1 i T_ T
~,wehave 1 - = 5 e, tan(5—1) = =

Considering 1—F ()

which implies
1_ o2

VTP ot (DY~ T
Yo =P n°.on

Then we have

\/1—p2n+p% V1—p?n

Yn =
™

which implies
T L _
max {€;1/€2} = e Ve for x> 0,

1A /1 —_ p2 1§i§n
u

and the proof follows the same steps of the proof for Theorem M.

Proof of Theorem B. The following lemma facilitates the proof of Theorem @.

Lemma 2. Suppose that {X;}7, is a random sample from the distribution

F, (v) = exp(=1/z%), with x > 0, and the true shape parameter ~y,. Suppose that
, Xn) satisfying n*(y — ~,) A W, for some a > 0

the estimator of v, is ¥ = ¥(X1,...
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and some random variable W. Then as n — oo,

max |log{F,, (X:)}/log{F5(X;)} — 1| = 0.

1<i<n

Proof. We only prove the case of v, > 0; cases of 7, = 0 and ~, < 0 can be similarly
treated. We have that for any finite integer k£ > 0,

) (X)) 1] — ¥y o _
max [log(£y, (Xi))/log(F5(Xy)) — 1] = max |.X7/X;° —1|

e 1
< =l — max [log(Xy)| + -

n® 1<i<n
+n(k_1)a ‘;Y\ — '70|k_1 . max ‘ log(X‘)|k_1
k=1 nGDa 22, Z
kA= %l"

1 _
— max [log(X,)[F X7,

+n
k! nke 1<i<n

where 7 is between v, and 7. It suffices to show two parts:

1 P 1 EyY=Y% P
o Rax |log(X;)| — 0, ke X |log(X;)|" X, — 0.

For the first part, we can show a more general result. For any ¢ > 0, 8 > 0 and

1 </ <k, we have that as n — oo,

L ¢ 1/¢,8 1/¢, By\in
MNese)=1— _ < x <
P(nw jmax |log(X;)|" > 6) 1 — [P{exp(—e/*n”) < X; < exp(e/n”)}]

= 1 — [exp{—exp(—€”/* n%P)} — exp{—exp(e7/* n0F)" — 0. (S2.9)

Now we show the second part. We assume that s is a large enough positive constant.
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Then
Plimax X0 2 e = Plagax Xm0 206 =% > 0)

+P(1rgf<xn X] 70 > nt%, v — 1, <0)

=Pl 0 Pl X7 S0 27,0

+P(y -, <0) — P( max <n'%, y—1, <0)

1<i<n x 07
K3

=P -7, >0) — P( max XZ_WO <n*%e, ¥ —r, >0)
1<i<n

PO =% <0) = Plaax ~mr= < ne 7 =% <0). (82.10)

For sufficiently large n, we have ne > 1. Denote s = s*a + 1, where s* > 0. Then

sTavg o
P(H —7, >0)>P(max X, <n7 % (ne)” 0, 7 —r, >0)
1<i<n
s*avy Yo
> P(max X;° <nP 0l (ne)T 0!, 57—~ >0) (52.11)
1<i<n
) ) nestany noy R
= P(n™" max X;° <n™ 0l " (ne)" Tl n*(F —,) > 0);
1<i<n
similarly,
_ S*Q’YO Yo
P(A —7, <0)>P(max X, © <n7% 7 (ne)¥o, 7 —~, <0)
1<i<n
_ s*avg Yo
> P(max X; ° <nlPoT(ne)To 7, 57, <0) (52.12)
1<i<n
= P(max X, 7 ~log(n) < 0™ (ne) "0 7 ~log(n), n®(§ ~7,) < 0).
<i<n

Note that X 7 ° and X ;70 are standard Fréchet and exponential random variables respec-

tively, and we have n~! max; <;<, X, ° 5 X[, and max;<;j<, X; °—log(n) 5 log(X°).
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n“‘s*(x'yo n®~ n("s*a'yo na—yo

. . e g, o p Ll Sl P
It is obvious that n ™" =71 " (ne)"* =%l = oo, and n™ 0 =1 (ne) """ =71 —log(n) — oo.

Applying these relations to (§2ZM)-(8ZTZ), we have P(max;j<ij<, X; °© > n*%) — 0

as n — oo. Note that as n — oo, for k > s, we have

) 7770 < ka
P(max [log(X;)["X; 7 < n™e)

> P(max |log(X:)[* < no=s0el/2 max X770 < poael/2) 51
1<i<n 1<i<n  °

which completes the proof. |

We now prove Theorem B. By Lemma B, for any € > 0, as n — oo,
Pl—e< XS /XX <l4e i=1,....,n) =1

which implies that for any w,, > 0,

P(l—e< max(XfX7un)/max(Xf°’X,un) <l+e¢i=1,...,n)—>1

and thus

P(l — €< min —max(XfX,un) < max —max(XfX,un)
IS max(XPN ) SIS max(XE0 )

<1+ e> — 1.

Therefore, by a similar argument in Lemma [, there exist two sequences of positive
random variables fy(ll) and 57(12) such that 57(11) i 1, 57(12) 5 1, and 57(11) max(XfO’X,un) <
max(XfX,un) < &(LQ) max(Xf”’X,un), t1=1,...,n; n=1,2,... A similar argument is
true for marginally transformed ny. With these established notations, the proof of the

theorem can be completed by following the same procedure used in the proof of Theorem

. ]
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