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Abstract: We study the consistency of the estimator in a spatial regression with

partial differential equation (PDE) regularization. This new smoothing technique

allows us to accurately estimate spatial fields over complex two-dimensional do-

mains, starting from noisy observations. The regularizing term involves a PDE that

formalizes problem-specific information about the phenomenon at hand. In contrast

to classical smoothing methods, the solution to the infinite-dimensional estimation

problem cannot be computed analytically. An approximation is obtained using the

finite-element method, considering a suitable triangulation of the spatial domain.

We first consider the consistency of the estimator in the infinite-dimensional setting.

We then study the consistency of the finite-element estimator resulting from the ap-

proximated PDE. We study the bias and variance of the estimators with respect

to the sample size and the value of the smoothing parameter. Lastly, simulation

studies provide numerical evidence of the rates derived for the bias, variance, and

mean square error.

Key words and phrases: Functional data analysis, smoothing, spatial statistics.

1. Introduction

In this study, we examine the consistency of the spatial regression with par-

tial differential equation (SR-PDE) regularization (see, e.g., Azzimonti et al.

(2015); Azzimonti et al. (2014)). This regularized least squares method defines

a new class of bivariate smoothers that has a number of advantages over clas-

sical smoothers, such as smoothing splines and thin-plate splines, which have

well-established properties (see, e.g., Eubank (1999) and the references therein).

The regularizing term in an SR-PDE enables the inclusion of problem-specific

information, appropriately formalized in terms of a partial differential equation

(PDE) that describes, to some extent, the phenomenon under study. PDEs are a

powerful tool for modeling complex behaviors, and are used extensively in most
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fields of science and engineering. This makes the SR-PDE broadly applicable

to the analysis of spatially distributed data in varied contexts (see, e.g., the ap-

plications in Azzimonti et al. (2015); Bernardi et al. (2018)). In particular, the

regularizing term in an SR-PDE can include general linear second-order PDEs.

These involve space-varying second-, first- and zero-order differential operators

(instead of the simple differential operators, constant over space, typically consid-

ered by classical smoothers), as well as space-varying forcing terms. This highly

flexible and rich modeling of the space variation enables the analysis of a wide

variety of anisotropic and nonstationary phenomena. Furthermore, an SR-PDE

efficiently handles data distributed over domains with complex shapes, such as

strong concavities or holes (see, e.g., Ramsay (2002); Sangalli, Ramsay and Ram-

say (2013)). This is a crucial feature whenever the shape of the domain influences

the problem at hand. Another important advantage of the SR-PDE over the clas-

sical smoothers is the possibility of imposing conditions on the value of the field

and/or of its normal derivative that the field must satisfy at the boundaries of

the domain of interest (Sangalli, Ramsay and Ramsay (2013); Azzimonti et al.

(2014); Azzimonti et al. (2015)). This feature is fundamental in many applica-

tions to obtain meaningful estimates (see, e.g., Azzimonti et al. (2015); Sangalli,

Ramsay and Ramsay (2013)).

Such high flexibility comes at the price of a higher analytic complexity of

these smoothers. The solution to the estimation problem cannot be computed

analytically, and can only be characterized in a variational form. An approx-

imated solution can be obtained using a mixed finite-element approach, after

introducing a suitable triangulation of the spatial domain of interest.

Unfortunately, when considering the consistency of such estimators, because

of the unavailability of an explicit closed-form solution of the infinite-dimensional

estimation problem, it is not possible to leverage the arguments used to prove

the consistency of thin-plate splines and smoothing splines (see, e.g., Cox (1983,

1984); Cucker and Zhou (2007); Györfi et al. (2002); Huang (2003)).

Note that the problem of analyzing data that are spatially distributed over

irregularly shaped two-dimensional domains has begun attracting interest. As

such, other regularized least squares smoothers have been proposed to tackle this

issue, such as bivariate splines over triangulations (see, e.g., Lai and Schumaker

(2007); Guillas and Lai (2010); Ettinger, Guillas and Lai (2012); Lai and Wang

(2013)), soap film smoothing (Wood, Bravington and Hedley (2008)), and low-

rank thin-plate spline approximations (Wang and Ranalli (2007); Scott-Hayward

et al. (2014)). These methods all have isotropic and stationary regularizing terms;

bivariate splines over triangulations can include high-order derivatives. With the
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exception of soap film smoothing, which complies with some simple types of

boundary conditions, the remaining methods do not possess this ability. The

asymptotic properties of bivariate splines over triangulations are investigated in

Lai and Wang (2013). However, rather than the SR-PDE, they directly consider

the finite-dimensional estimator based on bivariate splines. To the best of our

knowledge, no results exist on the large-sample properties of any of the other

methods.

We prove the consistency of SR-PDE estimators, including the estimator so-

lution of the infinite-dimensional estimation problem, and the case of the finite-

element estimator. The remainder of the paper is organized as follows. Section 2

briefly reviews the SR-PDE infinite-dimensional estimation problem, introduced

in Azzimonti et al. (2014) and Azzimonti et al. (2015), and Section 4 outlines its

discretized version. Sections 3 and 5 contain the main contributions of this work.

In particular, in Section 3, we study the bias of the infinite-dimensional estima-

tor in the L2 and H2 spatial norms. We also investigate the convergence of the

variance of the infinite-dimensional SR-PDE estimator when n goes to infinity.

Using the rates obtained for the bias and the variance, we prove the consistency

of the estimator. Furthermore, we show that the mean squared error (MSE) of

the estimator achieves near-optimal rates of convergence. In Section 5, we focus

on the finite-element estimator. Unfortunately, because of the non-conforming

discretization approach used, it is not possible to derive the consistency of the

finite-element estimator from that of the infinite-dimensional estimator. Never-

theless, we are able to prove the consistency of the finite-element estimator in the

discrete `2 norm over the data locations when the triangulation vertices coincide

with the data locations, under some simplifying hypotheses. Moreover, we show

that the finite-element estimator achieves optimal rates of convergence. Section

6 provides numerical evidence for the convergence rates obtained in the previous

sections. Finally, Section 7 concludes the paper and discusses future research

directions.

2. Spatial Regression with Partial Differential Equation Regulariza-

tion: The Infinite-Dimensional Estimation Problem

We briefly review the SR-PDE infinite-dimensional estimation problem, as

introduced in Azzimonti et al. (2014) and Azzimonti et al. (2015). Consider a

bounded domain Ω ⊂ R2, with boundary ∂Ω ∈ C2(R2). Consider n observations

zi ∈ R, for i = 1, . . . , n, located at points pi = (xi, yi) ∈ Ω. Assume that:

zi = f0(pi) + εi,
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where f0 : Ω→ R is the field we wish to estimate, and εi are independent errors

with zero mean and finite variance σ2. Assume that partial problem-specific

information is available, which can be formalized in terms of a PDE Lf = u,

modeling, to some extent, the phenomenon under study. Specifically, relying on

the problem-specific information, we assume that the misfit ‖Lf0 − u‖L2 is small,

though we do not require it to be zero. Here, L is a general linear second-order

differential operator that can, for instance, include second-, first-, and zero-order

differential terms:

L(p)f = −div (K(p)∇f) + b(p) · ∇f + c(p)f,

where K(·) : Ω→ R2×2 is a space-varying symmetric and positive-definite diffu-

sion tensor, b(·) : Ω→ R2 is a space-varying transport vector, and c(·) : Ω→ R+

is a space-varying reaction coefficient. The forcing term u(·) ∈ L2(Ω) can ei-

ther be the null function u = 0 (so-called homogeneous case), or u 6= 0 (non-

homogeneous case). Assume that the problem-specific knowledge is also related

to the behavior of the field f0 at the boundary of the domain. Various types of

boundary conditions may be considered, involving the value of the field and/or

of its normal derivatives, at the boundary ∂Ω of the domain of interest. In this

work, we focus on Dirichlet boundary conditions. Specifically, we assume that

we know the value of the field at the boundary: f0 |∂Ω= γ, where γ(·) can either

be the null function γ = 0 (homogeneous condition) or γ 6= 0 (non-homogeneous

condition).

Denote by Hk(Ω) the Sobolev space of the functions in L2(Ω) with deri-

vatives up to the kth order in L2(Ω), equipped with the norm ‖v‖Hk = (
∑
|α|≤k

‖Dαv‖2L2)1/2. Define the affine space

Vγ = {v ∈ H2(Ω) : v|∂Ω = γ}.

SR-PDE solves the following estimation problem:

f̂ = argmin
f∈Vγ

1

n

n∑
i=1

(f(pi)− zi)2 + λn

∫
Ω

(Lf − u)2 . (2.1)

The estimation functional in (2.1) trades off a data fidelity criterion (the sum of

the squared errors) and a model fidelity criterion (the differential regularization),

defined as the L2-norm over the spatial domain of interest, of the misfit with

respect to the governing PDE. The smoothing parameter λn > 0 controls the

relative weight of these two criteria.
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The methodology is very flexible. The three terms in the differential operator

L enable us to model various forms of anisotropy and nonstationarity in the field.

The diffusion term −div(K∇f) induces smoothing in all the directions. If the

diffusion matrix K is a multiple of the identity matrix I, the diffusion term has

an isotropic smoothing effect, otherwise it implies an anisotropic smoothing, with

a preferential direction that corresponds to the first eigenvector of the diffusion

tensor K. The degree of anisotropy induced by the diffusion tensor K is controlled

by the ratio between its first and second eigenvalues. The transport term b · ∇f
induces a smoothing only in the direction specified by the transport vector b,

with an intensity that depends on the length of b. The reaction term cf has

a shrinkage effect, because the penalization of the L2 norm of f shrinks the

field to zero. Moreover, because K, b, and c can vary over space, the effects

described here are nonstationary. This flexibility is increased further by the

presence of the possibly non-homogeneous forcing terms u ∈ L2(Ω). The SR-

PDE can be viewed as an extension of the classical smoothing techniques to the

anisotropic and nonstationary case. In particular, it includes as a special case

the isotropic and stationary regularization of the Laplacian of the field considered

in Ramsay (2002) and Sangalli, Ramsay and Ramsay (2013), when no problem-

specific information is available (setting K to the the identity matrix, b = 0,

c = 0, such that L = ∆, and a null forcing term u = 0).

Note that in the estimation problem given in (2.1), the estimator f̂ is searched

in a general Sobolev space of functions (with boundary conditions). Specifically,

the search is not restricted to the space of the solutions of the differential equa-

tion Lf = u. Indeed, as described above, we do not assume that the true f0

satisfies the PDE in the regularization. Rather, we assume that the PDE carries

partial information about the true f0; hence, we use the PDE to regularize the

estimate. As a consequence, we are not interested in searching for the solution of

the PDE that is closest to the data. In fact, in the following sections, we study

the asymptotic properties of the estimators by letting the smoothing parameter

λn go to zero when n goes to infinity. That is, the influence of the regularizing

term decreases as n increases. This is a natural setting to consider for the models

considered here, because a greater number of observations means there is less

need to regularize the estimate.

2.1. Illustrative problem

As an illustrative example, Azzimonti et al. (2015) considers the problem

of estimating the blood-flow velocity field in a cross-section of a human carotid

artery, using eco-color doppler data and magnetic resonance imaging data. Figure
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Figure 1. From left to right: ECD data on the artery cross-section; corresponding
estimate of the blood-flow velocity field obtained using the SR-PDE; nonstationarity
anisotropic diffusion tensor field K used in the SR-PDE estimate; nonstationarity trans-
port field b used in the SR-PDE estimate.

1, top row, left panel, shows a reconstruction of the cross-section of the common

carotid artery of one of the patients in the study; this quasi-circular section is

obtained by segmenting the magnetic resonance imaging data. The same figure

also displays the spatial locations of seven beams where the blood-flow velocity

is measured using eco-color doppler acquisitions. The color of the beam refers to

the mean blood velocity, measured over the beam at the systolic peak. Starting

from the observations over the seven beams, we need to estimate the field f0 of

the blood-flow velocity at the systolic peak, over the entire cross-section of the

carotid. In this applied problem, there are known conditions that the field must

satisfy at the boundaries of the domain of interest, that is, at the arterial wall.

In fact, the physics of the problem implies that the blood-flow velocity is zero at

the arterial wall, owing to the friction between blood cells and the arterial wall.

The influence of the shape of the domain and the presence of specific boundary

conditions hinder the applicability of classical smoothing methods and, more gen-

erally, of classical methods for spatial data analysis. In fact, classical techniques

for field estimation work naturally on tensorized domains and do not accurately

deal with bounded domains when the shape of the domain is important for the

behavior of the phenomenon under study. Moreover, classical techniques cannot

naturally comply with specific conditions at the boundary of the domain of in-

terest, such as those here specified. Furthermore, Azzimonti et al. (2014) shows

that isotropic and stationary smoothers return non-physiological estimates of the

blood-flow velocity field, owing to the cross-shaped pattern of the observations.

On the other hand, we can benefit from the detailed problem-specific information

about the phenomenon under study. There is a vast body of literature devoted

to the study of fluid dynamics and hemodynamics; see, for example, Formaggia,

Quarteroni and Veneziani (2010). This information can be conveniently trans-
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lated into a PDE that describes, in an idealized setting, the main features of the

velocity field. In particular, as in Azzimonti et al. (2015), we consider the op-

erator L that includes a nonstationary anisotropic diffusion tensor that smooths

the observations in the tangential direction of concentric circles (see Figure 1,

third panel), and a nonstationary transport field that smooths the observations

in the radial direction, from the center of the section to the boundary (Figure

1, fourth panel); the reaction and forcing terms are not required by this applica-

tion. The second panel of Figure 1, displays the corresponding estimate of the

blood-flow velocity field. Suitably incorporating the problem-specific information

on the phenomenon under study, the SR-PDE returns a realistic estimate of the

blood flow that is not affected by the cross-shaped pattern of the observations

and displays physiological and smooth isolines.

2.2. Well-posedness of SR-PDE estimation problem and linearity of

the estimator

Azzimonti et al. (2015) and Azzimonti et al. (2014) show that, under regu-

larity conditions on L, u, and γ, the estimator f̂ in (2.1) is unique. The required

regularity conditions on the parameters are such that the operator L has so-called

H2-smoothing properties; that is, L is such that, for all u ∈ L2(Ω), the solution

to the problem Lf = u with Dirichlet boundary conditions belongs to H2(Ω).

Solving (2.1) is equivalent to finding f̂ such that

λ

∫
Ω

(Lf̂ − u)Lv +
1

n

n∑
i=1

f̂(pi)v(pi) =
1

n

n∑
i=1

ziv(pi) ∀v ∈ V0. (2.2)

This formulation highlights the linearity of the estimator f̂ in the observations

zi. Owing to the linearity of equation (2.2) in f̂ , we can write f̂ as

f̂ = f̂∗ + ŵ,

where f̂∗ and ŵ solve, respectively,

λ

∫
Ω

(Lf̂∗ − u)Lv +
1

n

n∑
i=1

f̂∗(pi)v(pi) =
1

n

n∑
i=1

f0(pi)v(pi) ∀v ∈ V0

λ

∫
Ω
LŵLv +

1

n

n∑
i=1

ŵ(pi)v(pi) =
1

n

n∑
i=1

εiv(pi) ∀v ∈ V0;

equivalently,
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f̂∗ = argmin
f∈Vγ

[
1

n

n∑
i=1

(f(pi)− f0(pi))
2 + λn

∫
Ω

(Lf − u)2

]
(2.3)

ŵ = argmin
w∈V0

[
1

n

n∑
i=1

(w(pi)− εi)2 + λn

∫
Ω

(Lw)2

]
. (2.4)

The minimization problem (2.3) involves the true values of the field, without any

observational noise, f0(pi), and the non-homogeneous regularization term (that

is, with forcing term u) with non-homogeneous boundary conditions. The mini-

mization problem (2.4) instead involves pure noise data, εi, and a homogeneous

regularization term (i.e, with no forcing term) with homogeneous boundary con-

ditions. The minimizer f̂∗ is deterministic, whereas the minimizer ŵ is such that

E[ŵ] = 0. Consequently, we have that: E[f̂ ] = f̂∗ and Var(f̂) = Var(ŵ). As

a result, we can split the analysis of the bias and the variance of the estimator:

when studying the bias, we can focus on the minimization problem (2.3), and

when studying the variance, we focus on the minimization problem (2.4).

3. Consistency of SR-PDE Estimator: Infinite-Dimensional Problem

As in Cox (1983, 1984), in order to prove the consistency of the estimator,

we make some assumptions on how the points pi fill the domain Ω as n goes

to infinity. Denote by Fn(p) the bivariate cumulative distribution function of

the probability measure that assigns mass n−1 to each point pi. Let F be the

limiting distribution of the sequence {Fn}. Define dn = supp∈Ω |F (p)− Fn(p)| .
Note that when Ω = [0, 1]d and F is the uniform measure, dn is the so-called star

discrepancy (see, e.g., Niederreiter (1992)).

Assumption 1. The sequence {Fn} converges uniformly to a cumulative dis-

tribution function F with density f ∈ C∞(Ω̄), with respect to the d-dimensional

Lebesgue measure, such that, for all p ∈ Ω, 0 < κ1 ≤ f(p) ≤ κ2 < ∞, for some

constants κ1 and κ2.

Assumption 2. λn is such that limn→∞ dnλ
−1
n = limn→∞ λn = 0.

The following result holds (see Cox (1984)).

Lemma 1. Under Assumption 1, if ∂Ω ∈ C2, for all h, g ∈ H2(Ω), there exists

a constant c > 0, such that∣∣∣∣ ∫
Ω
hgfdp− 1

n

n∑
i=1

h(pi)g(pi)

∣∣∣∣ =

∣∣∣∣ ∫
Ω
hgd(F − Fn)

∣∣∣∣ ≤ cdn ‖h‖H2 ‖g‖H2 . (3.1)



CONSISTENCY OF SR-PDE 217

The proof of this lemma is rather involved. It is based on results from functional

analysis and measure theory; refer to the original paper for the details.

3.1. Convergence of the bias term: infinite-dimensional estimator

In this section, we study the bias of the estimator

B = f0 − E
[
f̂
]

= f0 − f̂∗

with respect to the number of observations n and the smoothing parameter λn.

Theorem 1 gives the rates for the bias when f0 has different Sobolev regularities,

f0 ∈ H2(Ω) and f0 ∈ H4(Ω). In the proof of the theorem, we use fractional

Sobolev spaces Hθ(Ω), with noninteger θ > 0; the space Hθ(Ω) can be defined as

the interpolation space between Hk(Ω) and L2(Ω); with k an integer larger than

θ (see, e.g., Lions and Magenes (1972)). Moreover, we consider L∗, the adjoint

operator of L, defined as

L∗ĝ = −div(K∇ĝ)− b · ∇ĝ + (c− div(b))ĝ. (3.2)

Theorem 1. Under Assumptions 1 and 2, for n sufficiently large, if f0 ∈ H2(Ω)

and f0 |∂Ω= γ, then

‖B‖L2 ≤ C
√
λn, (3.3)

with C independent of n and λn. Moreover, if Lf0 − u ∈ H2(Ω), then

‖B‖L2 = O(λ5/8
n ) and ‖B‖H2 = O(λ1/8

n ). (3.4)

Finally, if in addition (Lf0 − u)|∂Ω = 0, then

‖B‖L2 = O(λn) and ‖B‖H2 = O(
√
λn). (3.5)

Proof. To lighten the notation we write λ = λn. Solving the minimization prob-

lem (2.3) is equivalent to finding f̂∗, such that

λ

∫
Ω

(Lf̂∗ − u)Lv +
1

n

n∑
i=1

f̂∗(pi)v(pi) =
1

n

n∑
i=1

f0(pi)v(pi) ∀v ∈ V0. (3.6)

Let us rewrite equation (3.6) in terms of B. To this end, we subtract the quantity

λ
∫
Lf0Lv on both sides of (3.6), yielding

λ

∫
Ω
LBLv = λ

∫
Ω

(Lf0 − u)Lv − 1

n

n∑
i=1

B(pi)v(pi).
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Then we add
∫
Bv dF on both sides, obtaining

λ

∫
Ω
LBLv +

∫
Ω
Bv dF = λ

∫
Ω

(Lf0 − u)Lv +

∫
Ω
Bv dF − 1

n

n∑
i=1

B(pi)v(pi).

The equation above holds for all v ∈ V0; in particular, we can set v = B. Hence,

from Assumption 1, we have:

λ ‖LB‖2L2 + κ1 ‖B‖2L2 ≤ λ
∫

Ω
(Lf0 − u)LB +

{∫
Ω
B2d(F − Fn)

}
. (3.7)

Now, owing to (3.1), we can write
∣∣∫

Ω B
2d(F − Fn)

∣∣ ≤ cdn ‖B‖2H2 . Moreover,

from the H2-regularity, we have that the norm ‖Lv‖L2(Ω) is equivalent to the

norm ‖v‖H2(Ω), for any v ∈ V0 (see, e.g., Evans (1998)). Because B ∈ V0, being

f0 ∈ Vγ , there exists a constant cL, depending only on Ω and L, such that

cL ‖B‖2H2 ≤ ‖LB‖2L2 . Using these two inequalities in (3.7), we obtain

cLλ ‖B‖2H2 + κ1 ‖B‖2L2 ≤ λ
∫

Ω
(Lf0 − u)LB + cdn ‖B‖2H2 .

From Assumption 2, for n large enough that dnλ
−1 ≤ cL/2c, we get

cLλ

2
‖B‖2H2 + κ1 ‖B‖2L2 ≤ λ

∫
Ω

(Lf0 − u)LB. (3.8)

Moreover,

λ

∫
Ω

(Lf0 − u)LB ≤ λ

2

(
2

cL
‖Lf0 − u‖2L2 +

cL
2
‖LB‖2L2

)
≤ λ

cL
‖Lf0 − u‖2L2 +

λcL
4
‖B‖2H2 . (3.9)

The equation above, together with equation (3.8), leads to (3.3).

From (3.8), if Lf0 − u ∈ H2(Ω), using, in order, the first Green identity,

Hölder inequality, trace theorems, interpolation between Sobolev spaces (see Li-

ons and Magenes (1972)), and Young inequality, we get:

cLλ

2
‖B‖2H2 + κ1 ‖B‖2L2

≤ λ
∫

Ω
L∗(Lf0 − u)B + λ

∫
∂Ω

(K∇B) · n(Lf0 − u) (3.10)

≤ λ ‖L∗(Lf0 − u)‖L2 ‖B‖L2 + λ ‖K‖L∞(∂Ω) ‖∇B · n‖L2(∂Ω) ‖Lf0 − u‖L2(∂Ω)

≤ λ ‖L∗(Lf0 − u)‖L2 ‖B‖L2 + cλ ‖B‖H3/2(Ω) ‖Lf0 − u‖H1(Ω)
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≤ λ ‖L∗(Lf0 − u)‖L2 ‖B‖L2 + cλ ‖B‖1/4L2 ‖B‖3/4H2 ‖Lf0 − u‖H1(Ω)

≤ λ2

2κ1
‖L∗(Lf0 − u)‖2L2 +

κ1

2
‖B‖2L2 + (3.11)

+
κ1

8
‖B‖2L2 +

3cLλ

8
‖B‖2H2 +

c2λ5/4

2κ
1/4
1 c

3/4
L

‖Lf0 − u‖2H1(Ω) ,

where c is a constant independent of n and λ, and that changes from line to line.

From (3.11), we can write

cLλ

8
‖B‖2H2 +

3κ1

8
‖B‖2L2 ≤

λ2

2κ1
‖L∗(Lf0 − u)‖2L2 +

c2λ5/4

2κ
1/4
1 c

3/4
L

‖Lf0 − u‖2H1(Ω) .

Because Lf0 ∈ H2(Ω) and u ∈ H2(Ω), both ‖L∗(Lf0 − u)‖2L2 and ‖Lf0 − u‖2H1(Ω)

are finite. Thus, we get the rates in (3.4). Finally, when (Lf0 − u)|∂Ω = 0, from

(3.10), we get the rates in (3.5).

3.2. Convergence of the variance term: infinite-dimensional estimator

In this section, we study the variance of the estimator f̂ with respect to n

and λn.

Theorem 2. For all 0 < δ ≤ 1/2 and n sufficiently large,

VarL2(f̂) = E
(
‖ŵ‖2L2

)
= O

(
σ2

nλ
1/2+δ
n

)
, (3.12)

with a constant that diverges to +∞ when δ → 0.

Proof. To lighten the notation we write λ = λn. Solving the minimization prob-

lem (2.4) is equivalent to finding ŵ, such that

λ

∫
Ω
LŵLv +

1

n

n∑
i=1

ŵ(pi)v(pi) =
1

n

n∑
i=1

εiv(pi) ∀v ∈ V0,

or equivalently,

λ

∫
Ω
LŵLv +

∫
Ω
ŵv dF =

1

n

n∑
i=1

εiv(pi) +

∫
Ω
ŵv d(F − Fn) ∀v ∈ V0. (3.13)

Define the following inner product on V0:

(v1, v2)λ = λ

∫
Ω
Lv1Lv2 +

∫
Ω
v1v2 dF ,
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which is equivalent to theH2 inner product, and denote by ‖ · ‖λ the norm induced

by this inner product (·, ·)λ. Because the norms ‖L ·‖L2 and ‖ · ‖H2 are equivalent

on V0, there exists a constant cL, such that

‖v‖2H2 ≤
1

cL
‖Lv‖2L2 ≤

1

cLλ

(
λ ‖Lv‖2L2 +

∫
Ω
v2 dF

)
=

1

cLλ
‖v‖2λ . (3.14)

Define T , T1, and T2 as follows:

T1(v) =

∫
Ω
ŵv d(F − Fn), T2(v) =

1

n

n∑
i=1

εiv(pi), T (v) = T1(v) + T2(v).

From the Sobolev embedding theorems (see, e.g., Lions and Magenes (1972, Thm.

9.8), for each δ > 0, we have T ∈
(
H1+2δ(Ω)

)∗
, where

(
H1+2δ(Ω)

)∗
denotes the

dual space of H1+2δ(Ω). Therefore we can rewrite equation (3.13) as

(ŵ, v)λ = T (v) ∀v ∈ V0.

We have that

‖ŵ‖λ = sup
v∈V0

(ŵ, v)λ
‖v‖λ

= sup
v∈V0

T (v)

‖v‖λ
≤ sup

v∈V0

T1(v)

‖v‖λ
+ sup
v∈V0

T2(v)

‖v‖λ
. (3.15)

For the first term on the right-hand side of (3.15), from equations (3.1) and

(3.14), we have

sup
v∈V0

T1(v)

‖v‖λ
≤ cdn sup

v∈V0

‖v‖H2 ‖ŵ‖H2

‖v‖λ
≤ c̃dnλ−1 ‖ŵ‖λ . (3.16)

For the second term on the right-hand side of (3.15), setting θ = 1 + 2δ, such

that T2 ∈
(
Hθ(Ω)

)∗
, for 1 < θ ≤ 2, we have

sup
v∈V0

T2(v)

‖v‖λ
≤ sup

v∈V0

‖T2‖(Hθ)∗ ‖v‖Hθ

‖v‖λ
≤ c sup

v∈V0

λ−θ/4 ‖T2‖(Hθ)∗

(
λθ/4 ‖v‖θ/2H2 ‖v‖1−θ/2L2

)
‖v‖λ

≤ c sup
v∈V0

λ−θ/4 ‖T2‖(Hθ)∗

(
(θ/2)

√
λ ‖v‖H2 + ((2− θ)/2) ‖v‖L2

)
‖v‖λ

= cλ−θ/4 ‖T2‖(Hθ)∗ sup
v∈V0

(
(θ/2)

√
λ ‖v‖H2 + ((2− θ)/2) ‖v‖L2

)
‖v‖λ

≤ cλ−θ/4 ‖T2‖(Hθ)∗ ,
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where the last inequality is true from equation (3.14) and the fact that

‖v‖2L2 ≤
1

κ1

∫
Ω
v2dF ≤ 1

κ1
‖v‖2λ .

From equation (3.16), we have

‖ŵ‖λ ≤ c1dnλ
−1 ‖ŵ‖λ + c2λ

−θ/4 ‖T2‖(Hθ)∗ .

Moreover, from Assumption 2, we have that dnλ
−1 = o(1). Therefore, the first

part on the right-hand side of the above equation can be absorbed in the second

term on the right-hand side, such that, for n sufficiently large,

‖ŵ‖λ ≤ cλ
−θ/4 ‖T2‖(Hθ)∗ .

By squaring and taking the expected values of both terms of the above inequality,

we have

E(‖ŵ‖2λ) ≤ cλ−θ/2E
(
‖T2‖2(Hθ)∗

)
. (3.17)

To conclude the proof, it remains to show that E(‖T2‖2(Hθ)∗) ≤ cσ2/n. From

the definition of T2, we can write

T2 =
1

n

n∑
i=1

εiδpi ,

where δpi is the Dirac delta in pi. From the Sobolev embedding theorems, δpi ∈
(Hθ(Ω))∗. We denote as (·, ·)θ,∗ the inner product in (Hθ(Ω))∗. Recalling that

the errors εi are uncorrelated, with zero mean and constant variance σ2, we have

E
(
‖T2‖2(Hθ)∗

)
= E ((T2, T2)θ,∗) = E

 1

n2

n∑
i,j=1

εiεj(δpi , δpj )θ,∗


=

1

n2

n∑
i,j=1

E (εiεj) (δpi , δpj )θ,∗

=
1

n2

n∑
i=1

σ2 ‖δpi‖
2
(Hθ)∗ ≤

cσ2

n
,

where c = maxi=1,...,n ‖δpi‖
2
(Hθ)∗ < ∞. From the previous equation and from

(3.17), we have

E(‖ŵ‖2λ) ≤ cλ−θ/2σ2

n
.
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Finally, from Assumption 1, we have that ‖w‖L2 ≤ κ−1
1 ‖w‖λ, where κ1 does not

depend on λ or on n. This fact and the above equation lead to (3.12).

3.3. Convergence of the MSE: infinite-dimensional estimator

We finally consider the MSE of the estimator in the L2 norm; that is,

MSEL2(f̂) =
∥∥∥bias(f̂)

∥∥∥2

L2
+ VarL2(f̂).

The following theorem shows that the estimator f̂ is consistent and that its MSE

nearly achieves the optimal rate of convergence for nonparametric estimators

(Stone (1982)), considering different Sobolev regularities of the true unknown

field, f0 ∈ H2(Ω) and f0 ∈ H4(Ω). Specifically, the theorem shows that the MSE

achieves the optimal rates, but for an infinitesimal δ, as small as desired.

Theorem 3. If f0 ∈ H2(Ω) and f0 |∂Ω= γ, setting λn = n−2/3, we have

MSEL2 = O
(
n−2(1−δ)/3

)
, (3.18)

for δ as small as desired. If, in addition, Lf0 − u ∈ H2(Ω) and Lf0 − u|∂Ω = 0,

setting λn = n−2/5, we have

MSEL2 = O
(
n−4(1−δ/2)/5

)
, (3.19)

for δ as small as desired.

Proof. From Theorems 1 and 2, if f0 ∈ H2(Ω) and f0 |∂Ω= γ, we have

MSEL2(f̂) = O (λn) +O

(
σ2

nλ
1/2+δ
n

)
,

which is minimized when λn = n−2/3, leading to (3.18). Moreover, from equation

(3.5), if Lf0 − u ∈ H2(Ω) and Lf0 − u|∂Ω = 0, we have

MSEL2(f̂) = O
(
λ2
n

)
+O

(
σ2

nλ
1/2+δ
n

)
,

which is minimized when λn = n−2/5, leading to (3.19).

Remark 1. As highlighted in Section 2, we do not assume that the PDE in the

regularizing term describes perfectly the phenomenon under study. Hence, we do

not assume that the true f0 is a solution of the PDE. On the other hand, if our
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problem knowledge is complete, and the PDE in the regularizing term offers a

perfect description of the unknown field, Lf0 = u, we expect to benefit in terms

of both the estimation error and the rate of convergence of the MSE. Indeed,

from equations (3.8) and (3.9), we get

‖B‖2L2 ≤
λ

cLκ1
‖Lf0 − u‖2L2 ,

meaning that the L2-norm of the bias is proportional to ‖Lf0 − u‖L2 . This means

that, as expected, the closer f0 is to the solution of the PDE, the smaller is the

bias. In particular, if ‖Lf0 − u‖L2 = 0, the L2-norm of the bias is zero. In this

case, the best rate for the MSE of the estimator is achieved for a constant λn = λ,

for all n, and this rate is the optimal rate of convergence for the parametric

estimators:

MSEL2(f̂) = O(n−1).

4. Numerical Solution to the SR-PDE Estimation Problem

The SR-PDE estimator defined in (2.1) cannot be computed analytically. Az-

zimonti et al. (2015) shows that solving (2.1) is equivalent to solving the following

coupled system of PDEs:{
Lf̂ = u+ ĝ in Ω

f̂ = γ on ∂Ω

L∗ĝ = − 1

λn

∑n
i=1(f̂ − zi)δpi in Ω

ĝ = 0 on ∂Ω,
(4.1)

where ĝ represents the misfit of the penalized PDE, that is, ĝ = Lf̂ − u, and L∗

is the adjoint operator of L defined in (3.2). This reformulation of the problem

introduces homogeneous Dirichlet boundary conditions on ĝ, although we do not

require that f0 satisfies the boundary conditions Lf0 − u|∂Ω = g0|∂Ω = 0. Note,

however, that when Lf0 − u|∂Ω = 0, we obtain the best rate of convergence in

Theorem 1.

The reformulation (4.1) of the estimation problem (2.1) is convenient because

it can be discretized easily using the finite-element method. We briefly recall the

discretization (see, e.g., Azzimonti et al. (2015) for details). For simplicity of

exposition, assume here that Ω is a convex polygonal domain. Let Th be a

triangulation of the domain Ω, where h is the maximum length of the edges in

the triangulation, and define the finite-element space of piecewise polynomial
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functions of degree r over the triangulation

V r
h,γ =

{
v ∈ C0(Ω̄) : v|∂Ω = γh v|τ ∈ Pr(τ) ∀τ ∈ Th

}
,

where γh is the interpolant of γ in the space of piecewise continuous polynomial

functions of degree r over ∂Ω. Call ξ1, . . . , ξNh the interior nodes of the trian-

gulation, which correspond to the interior vertices of the triangulation for linear

finite elements. Let ψ1, . . . , ψNh be the associated finite-element basis; that is,

ψi ∈ V r
h,0 and ψi(ξj) = δij . Each f ∈ V r

h,0 can be written as

f(x, y) = ψ(x, y)T f ,

where ψ = (ψ1, . . . , ψNh)T is the vector of the basis functions, and f = (f(ξ1), . . . ,

f(ξNh))T is the vector of coefficients. Define the bilinear form a(·, ·), associated

with the operator L, as

a(f̂ , ψ) =

∫
Ω

(
K∇f̂ · ∇ψ + b · ∇f̂ψ + cf̂ψ

)
.

Define the (Nh ×Nh) matrices Aij = a(ψj , ψi) and Mij =
∫

Ω ψiψj , and the (n×
Nh) matrix of the evaluations of the basis functions at the data locations Ψij =

ψj(pi). In addition, let ψD = (ψD1 , . . . , ψ
D
ND
h

)T be the vector of basis functions

associated with the boundary of the domain, and define ADij = a(ψDj , ψi), ΨD
ij =

ψDj (pi), and γ as the evaluation of the boundary condition γ at the boundary

nodes. The coupled system of PDEs (4.1) is then discretized as followsΨTΨ

n
λnA

T

A −M

[ f̂

ĝ

]
=

ΨT z

n
− ΨTΨDγ

n
u−ADγ

 . (4.2)

Azzimonti et al. (2014) shows that, under regularity conditions on L, there exists

h0 > 0, such that for every h ≤ h0, the solution of the discretized problem (4.2) is

unique. The required regularity conditions on the parameters of L are such that

for every u ∈ Lp(Ω), there exists a unique solution of the differential problem

Lf = u in the Sobolev space W 2,p(Ω), for some p > 2, where W 2,p(Ω) is the

space of functions in Lp(Ω) with derivatives up to the second order in Lp(Ω).

The finite-element SR-PDE estimator is thus obtained as

f̂h = ψT f̂ + (ψD)Tγ. (4.3)

The estimator has a penalized regression form. In particular,
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f̂ =
(
ΨTΨ + nλnP

)−1
ΨT z,

where P = ATM−1A is a discretization of the regularizing term. The fitted

values ẑ can be obtained as

ẑ = Ψf̂ + ΨDγ = Sz + r,

where the smoothing matrix S ∈ Rn×n and the vector r are given by

S = Ψ
(
ΨTΨ + nλnP

)−1
ΨT

r = Ψ
(
ΨTΨ + nλnP

)−1 {
nλnPA

−1u−
(
ΨTΨD + nλnA

TM−1AD
)
γ
}
.

5. Consistency of SR-PDE Estimator: Finite-Element Estimation Pr-

oblem

We now prove the consistency of the finite-element SR-PDE estimator. This

estimator is not a direct discretization of the infinite-dimensional SR-PDE esti-

mator, defined in (2.1). As described above, the finite-element estimator is based

on the discretization (4.2) of the reformulation (4.1), which consists of a coupled

system of second-order differential problems, rather than the original fourth-order

problem in (2.1). Because the results in Section 3 are all based on the forth-order

problem (2.1), it is unfortunately not possible to derive the consistency of the

finite-element SR-PDE estimator from the consistency of the infinite-dimensional

SR-PDE estimator.

The consistency of the finite-element estimator is studied in the following

discrete semi-norm, defined for any function vh ∈ Vh as

‖vh‖2n =
1

n

n∑
i=1

v2
h(pi).

This norm is an approximation of the L2-norm, computed at the data locations.

For simplicity, we restrict our attention to the following case.

Assumption 3. The differential operator L is self-adjoint; that is, Lf = −div (

K∇f) + cf.

Assumption 4. The discretization is based on linear finite-elements on a con-

strained Delaunay triangulation of p1, . . . ,pn.

See Hjelle and Dæhlen (2006) for Delaunay triangulations. We also make an addi-

tional assumption on how the data locations fill the domain Ω. This assumption

ensures good properties of the finite-element basis. Given a family of triangu-
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lations {Th}h>0, let hK and ρK be the diameter (longest edge) and the radius,

respectively, of the inscribed circle of the triangle K ∈ Th. The family {Th}h>0 is

said to be shape regular if there exists σ0 such that σK = hK/ρK ≤ σ0, for all h

and all K ∈ Th. Moreover, the family {Th}h>0 is said to be quasi-uniform if it is

shape regular and there exists c > 0 such that hK ≥ ch, for all h and all K ∈ Th.

Assumption 5. The points p1, . . . ,pn are such that the constrained Delaunay

triangulation Th on these points is a quasi-uniform triangulation.

5.1. Convergence of the bias term: finite-element estimator

In this section, we consider the bias of the finite-element estimator

Bh = f0 − E(f̂h),

and study its n-norm with respect to the number of observations n and the

smoothing parameter λn.

Theorem 4. Under Assumptions 4 and 5, for n sufficiently large, if f0 ∈W 2,p(Ω)

for p > 2, f0 |∂Ω= γ, g0 = Lf0 − u ∈ H1(Ω), and g0|∂Ω = 0, then

‖Bh‖2n ≤ C
(

1

n
+ λn

)
. (5.1)

Proof. Azzimonti et al. (2014) shows that if f0 ∈ W 2,p(Ω), for p > 2, f0 |∂Ω= γ,

g0 = Lf0 − u ∈ H1(Ω), and g0|∂Ω = 0, there exists h0 > 0 such that for every

h ≤ h0,

‖Bh‖2n ≤ C
{
h2
[
(1 + λn) ‖f0‖2W 2,p + ‖Lf0 − u‖2H1

]
+ λn ‖Lf0 − u‖2L2

}
. (5.2)

Under Assumption 4, we have that h2 ≈ 1/n. Thus, for n sufficiently large, we

obtain (5.1).

Note that the result in Theorem 4 is sub-optimal in λn with respect to the

rate in Theorem 1.

5.2. Convergence of the variance term: finite-element estimator

Here, we focus on Cov(ẑ) = σ2SST , and consider its n-norm

‖Cov(ẑ)‖n =
1

n

n∑
i=1

Var(zi) =
σ2

n
Tr(SST ). (5.3)

We are thus interested in studying the eigenvalues of the matrix SST . Under

Assumption 4, the matrix Ψ coincides with In, the identity matrix in Rn×n, and
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S = (In + nλnP )−1 . Therefore, we are interested in studying the eigenvalues

of the penalty matrix P . Before giving the result on the variance of the finite-

element estimator, we need the following lemmas.

Lemma 2. Suppose that H is an n× n positive semi-definite symmetric matrix,

and C is an n × n matrix. Let `k(A) denote the kth smallest eigenvalue of a

positive semi-definite symmetric matrix A. Then, for each k = 1, . . . , n,

`1(H)`k(CC
T ) ≤ `k(CHCT ) ≤ `n(H)`k(CC

T ).

Proof. See Lu and Pearce (2000).

Lemma 3. Let {ζk,h}nk=1 be the eigenvalues of the penalty matrix P, ordered such

that 0 < ζ1,h ≤ · · · ≤ ζn,h. Under Assumptions 3, 4, and 5,

ζk,h = O(k2h2). (5.4)

Proof. Because P = ATM−1A = ATM−1MM−1A, we can study the eigenvalues

of P starting from the eigenvalues of M−1A and M . Denote by {µk,h} the

eigenvalues of M , and by {ηk,h} the eigenvalues of M−1A. From Lemma 2, we

have

µ1,hη
2
k,h ≤ ζk,h ≤ µn,hη2

k,h. (5.5)

Consider the problem of finding the eigenfunctions and eigenvalues ηk of:{
Lv = ηv in Ω ⊂ R2

v = γ on ∂Ω.
. (5.6)

For self-adjoint operators L, the eigenvalues ηk are infinite and belong to (a,+∞),

for some a > 0 and ηk ∼ k (see, e.g., Agmon (2010); Brezis (2010)).

The finite-element discretization of (5.6) on the triangulation Th leads to the

generalized eigenvalue problem Avh = ηhMvh. Because M is invertible, this is a

classic eigenvalue problem, and is equivalent to finding the eigenvalues of M−1A.

In particular, we have ηk,h → ηk, for h→ 0 (see, e.g., Boffi, Gardini and Gastaldi

(2012); Kolata (1978)). More precisely, ηk ≤ ηk,h ≤ ηk + ch2 (see Boffi (2010,

Thm. 10.4). Therefore, for k (and thus n) sufficiently large, we have

ηk,h = O(k). (5.7)

With regard to the eigenvalues of M , from Assumption 5, we have that for each

k in {1, . . . , n},
c1h

2 ≤ µk,h ≤ c2h
2 (5.8)
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(see, e.g., Quarteroni and Valli (2008); Ern and Guermond (2013)). From (5.5),

(5.7), and (5.8) we conclude that {ζk,h} increases at the same rate as {η2
k,h} with

respect to k, leading to (5.4).

Theorem 5. Under Assumptions 3, 4, and 5, for n sufficiently large,

‖Cov(ẑ)‖n = O

(
1

n
√
λn

)
. (5.9)

Proof. Under Assumption 4, S = (In + nλnP )−1. Thus, S has eigenvalues 1/(1+

nλnζi), where ζi are the eigenvalues of P . The trace of SST is hence given by

Tr(SST ) =

n∑
i=1

(
1

1 + nλnζi

)2

. (5.10)

From equations (5.3) and (5.10), from Lemma 3, we have

‖Cov(ẑ)‖n ≈ σ
2h2

n∑
k=1

(
1

1 + λnk2

)2

≈ σ2h2

∫ n

1

(
1

1 + λnt2

)2

dt = O

(
h2

√
λn

)
.

Recalling that under Assumption 4, h2 ≈ n−1, we obtain equation (5.9).

5.3. Convergence of the MSE: finite-element estimator

The following theorem shows that the finite-element estimator is consistent

and its MSE achieves the optimal rate of convergence for nonparametric estima-

tors of H2(Ω) functions.

Theorem 6. Under Assumptions 3, 4, and 5, for n sufficiently large, setting

λn = n−2/3, we have

MSEn(f̂h) = O
(
n−2/3

)
.

Proof. From Theorems 4 and 5, we have

MSEL2(f̂h) = O (λn) +O

(
σ2

n
√
λn

)
,

which is minimized when λn = n−2/3, leading to MSEn(f̂h) = O
(
n−2/3

)
.

Remark 2. As we did for the infinite-dimensional estimator, we have studied

the properties of f̂h without assuming that the true f0 satisfies the regularizing

PDE. From equation (5.2), we see that if Lf0 − u = 0, the bias does not vanish,

owing to the discretization error. However, when Lf0 − u = 0,

‖Bh‖2n ≤ ch
2 ≈ cn−1,
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where c is a constant that does not depend on n or λn. In this case, setting λn = λ,

constant for all n, as in the infinite-dimensional case, we achieve a parametric

rate of convergence for the MSE: MSE(f̂h) = O(n−1).

6. Numerical Simulations

In this section, we provide numerical evidence of the convergence rates ob-

tained in Sections 3 and 5 for the bias and the variance of the estimators, in a

simple setting. We consider the convergence in the L2 and on the discrete n-norm,

both with respect to n and λn. In particular, in Section 6.1, we report simula-

tions that illustrate the rate of convergence for the infinite-dimensional estimator

when the discretization size is small. In Section 6.2, we report simulations that

illustrate the rate of convergence for the finite-element estimator when the mesh

is constrained to the data locations.

In all simulations, the domain Ω is a circle with radius R = 1, the differential

operator L is the Laplacian, and the forcing term u is equal to zero. All rates of

convergence are illustrated using a log-log plot, with λn or n on the x-axis and

the error on the y-axis.

To illustrate the convergence rates achieved for functions with different reg-

ularities, we consider three test functions f0. The first test function is

f0,1(x, y) =
[
1− (x2 + y2)

]3
.

This function vanishes on ∂Ω; moreover, it is such that ∆f0,1|∂Ω = 0. The second

test function is

f0,2(x, y) =
[
1− (x2 + y2)

]2
.

Similarly to the previous function, f0,2 vanishes on ∂Ω, but in this case, ∆f0,2|∂Ω 6=
0. The third test function is

f0,3(x, y) =
[
1−

√
x2 + y2

]
.

As before f0,3 vanishes on ∂Ω; for this function, ∆f0,3|∂Ω 6= 0 and ∆f0,3 ∈ L2(Ω),

but f0,3 /∈ H2(Ω).

6.1. Simulations with fine and fixed triangulation

In this section, we illustrate the rate of convergence for the infinite-dimensional

estimator. To this end, we consider a very fine discretization, consisting of a De-

launay triangulation with N = 123103 nodes; hence, we sample n data locations,

with n ≤ N , from the nodes of the mesh.
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Figure 2. Test function f0,1 without noise; fine and fixed triangulation. (a) Data sampled
at each interior node. Convergence rates of the bias of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
bias with respect to the number of points n, with λn = n−2/5.
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Figure 3. Test function f0,2 without noise; fine and fixed triangulation. (a) Data sampled
at each interior node. Convergence rates of the bias of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
bias with respect to the number of points n, with λn = n−4/7.

We first consider the bias term. For this reason, we sample data from the

test functions f0,1, f0,2, and f0,3 without adding any noise. We first look at the

bias with respect to the smoothing parameter λn when the number of observa-

tions n is fixed. In this case, we consider an observation for each interior node

in the triangulation. Figures 2a, 3a, and 4a show the bias decay in the cases

corresponding to the three test functions. For the first test function f0,1, the bias

reaches the expected rate of convergence of λn for small values of the parameter

(see Figure 2a). For f0,2, the bias decays as λ
5/8
n (see Figure 3a), and for f0,3, as

λ
1/2
n (see Figure 4a), as expected.

We then consider the bias when the number of observations n increases (up to

the number of interior nodes of the triangulation) and the smoothing parameter
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Figure 4. Test function f0,3 without noise; fine and fixed triangulation. (a) Data sampled
at each interior node. Convergence rates of the bias of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
bias with respect to the number of points n, with λn = n−2/3.
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Figure 5. Pure Gaussian noise; fine and fixed triangulation. (a) Data sampled at each
interior node. Convergence rates of the variance of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
variance with respect to the number of data locations n, with λn = 1.

λn varies as a power of n. In particular, for the three test functions f0,1, f0,2,

and f0,3, we set λn proportional to n−2/5, n−4/7, and n−2/3, respectively. These

are the optimal settings in the minimization of the MSE, according to Theorem

3. Figure 2b, 3b, and 4b show that the theoretical rates are indeed achieved in

all three cases.

To illustrate the rate for the variance term in Theorem 2, we consider pure

noise data. Specifically, we sample data as Gaussian random noise with variance

σ2 = 1 in all interior nodes of the mesh. We solve the estimation problem with

λn = 1, 10−1, . . . , 10−5, and we repeat the simulation 50 times to compute the

mean of the error. The results are shown in Figure 5a. As expected, the square

of the L2 and of the discrete norm increase as λ
−1/2
n .
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(a) Test function f0,1, λn = n−2/5.
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(b) Test function f0,2, λn = n−4/7.
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(c) Test function f0,3, λn = n−2/3.

Figure 6. Test functions f0,1, f0,2, and f0,3 with Gaussian noise; fine and fixed triangu-
lation; data sampled at an increasing number of interior nodes. Convergence rates of the
MSE with respect to the number of points n.

To illustrate the rate for the variance with respect to the number of obser-

vations, we proceed as for the bias, but consider an increasing number of obser-

vations n. We solve the estimation problem using a fixed λn = 1. We compute

the mean over 50 replicates. The results are shown in Figure 5b. As expected,

the square of the L2 and of the discrete norm decay as n−1.

Finally, we illustrate the rate for the MSE with respect to the number of

observations. To this end, we consider the same simulation setting considered for

the bias, increasing the sample size n and taking λn proportional to n−2/5, n−4/7,

and n−2/3 for the test functions f0,1, f0,2, and f0,3, respectively. We sample the

data, adding Gaussian random noise with variance σ2 = 1. We compute the

mean estimate over 50 simulation replicates. Figures 6a to 6c show the obtained

results. As expected from Theorem 3, the L2 and the discrete norm decay as

n−4/5, n−5/7, and n−2/3 for the three corresponding test functions.

6.2. Simulations with constrained triangulations

We now consider different Delaunay triangulations of Ω with an increasing

number of nodes N, approximately equal to 200, 800, 3000, 12000, 50000, and
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Figure 7. Three test functions without noise; constrained triangulations (N = n) of an
increasing number of data locations. Convergence rates of the bias of the finite-element
estimator with respect to the number of observations n, with λn = n−2/3. The rates for
f0,1, f0,2, and f0,3 are shown in circles, squares, and diamonds, respectively.
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Figure 8. Pure Gaussian noise; constrained triangulations (N = n) of an increasing num-
ber of data locations. Convergence rates of the variance of the finite-element estimator
with respect to the number of obervations n, with λn = 1.

200000 interior nodes. We sample the test functions f0,1, f0,2, and f0,3 at all

mesh nodes, such that n = N and the mesh nodes coincide with data locations

(constrained triangulation), as in Section 5. We illustrate the rates derived for

the finite-element estimator in Section 5, and show that, unlike for the infinite-

dimensional estimator, it is not possible to improve the rate when the true func-

tion f0 has regularity higher than H2.

We first consider the bias with respect to the number of observations n. To

this end, we consider the true data without noise. For all three test functions,

we set λn proportional to n−2/3, as in Theorem 6. Figure 7 shows that the bias

is proportional to n−1/3 (i.e., to
√
λn) for all three functions, f0,1, f0,2, and f0,3.

We then look at the variance term. We consider pure noise data, sampling
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Figure 9. Three test functions with Gaussian noise; constrained triangulations (N = n)
of an increasing number of data locations. Convergence rates of the MSE of the finite-
element estimator with respect to the number of observations n, with λn = n−2/3. The
rates for f0,1, f0,2, and f0,3 are shown in circles, squares, and diamonds, respectively.

Gaussian random noise with variance σ2 = 1 at each interior mesh node. We solve

the estimation problem using λn = 1. We compute the mean over 50 replicates.

The results are shown in Figure 8. As expected from Theorem 5, both the L2

and the discrete norm decay as n−1.

To illustrate the result in Theorem 6, we study the MSE with respect to the

number of observations. We sample from f0,1, f0,2, and f0,3, adding Gaussian ran-

dom noise with variance σ2 = 1 (at the interior nodes). We solve the estimation

problem with λ proportional to n−2/3 for all three test functions. The results are

shown in Figure 9. As expected from Theorem 6, both the L2 and the discrete

norm decay as n−2/3.

7. Discussion

We here proved the consistency of the infinite-dimensional SR-PDE estimator

for a general differential operator L with H2 regularity, when exact Dirichlet

boundary conditions are imposed on ∂Ω. The exact boundary conditions on f are

sufficient to prove that the MSE of the estimator achieves the near-optimal rate

of convergence when the true function f0 ∈ H2. Moreover, when exact Dirichlet

boundary conditions are also available on g0 = Lf0 − u, it is possible to improve

the rate, achieving the near-optimal rate of convergence for H4 functions. In

future research, we intend to prove the consistency under more general mixed

boundary conditions on the function, and possibly show that the estimators attain

exactly the optimal rate.

We here also proved the consistency of the finite-element SR-PDE estimator.
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In this case, we restricted our attention to self-adjoint operators L, that is, b = 0,

meaning that no unidirectional smoothing is considered. However, based on the

results obtained for the infinite-dimensional estimator, we conjecture that the

finite-element estimator is also consistent for b 6= 0. Moreover, to obtain the rate

on the bias, we assumed exact boundary conditions on g0. However, Azzimonti

et al. (2014) show numerically that the extra error incurred if g0 does not satisfy

the imposed condition is of the same order as that of the bias. In addition,

the rate of convergence for the bias of the finite-element estimator derived in

Theorem 4 is shown to be suboptimal by the numerical simulation in Section 6.

In future work, we aim to improve the rate derived in Theorem 4. To derive

the rate for the variance of the finite-element estimator, we assumed that the

triangulation is constrained to the data locations. We are currently working to

relax this assumption, which would allow us to relax the infill properties required

on the data locations.

The infinite-dimensional SR-PDE estimation problem can also be solved us-

ing different numerical approaches and bases. For instance Wilhelm et al. (2016)

use an isogeometric analysis based on non-uniform rational B-splines (NURBS).

Examining the consistency of the corresponding estimators is an interesting di-

rection of future research.

Moreover, we intend to explore the consistency of the SR-PDE estimators

for the space-time data defined in Arnone et al. (2019). Furthermore, we will

investigate the consistency of SR-PDE estimators over the two-dimensional man-

ifold domains defined in Ettinger, Perotto and Sangalli (2016), and of SR-PDE

estimators in three-dimensional domains. These studies will require different ar-

guments to those presented here. For instance, in the three-dimensional case,

Lemma 1 does not hold, and alternative ways to control the difference between

F and Fn should be sought.

Finally, it would be very interesting to prove the consistency of SR-PDE

estimators in the more complex semi-parametric setting considered in Sangalli,

Ramsay and Ramsay (2013). The latter setting includes space-varying covariate

information, following a generalized additive model, where zi = qTi β+f0(pi)+εi,

and qi denotes the covariates observed at pi. A particular interesting extension

of this work would be to prove the consistency and asymptotic normality of the

regression coefficients β. A similar problem, in the simpler case of univariate

smoothing splines, was considered by Heckman (1986).
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