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Abstract: In a classic paper, Teicher (1961) showed that certain location and scale
families of distributions are characterized by maximum likelihood estimators of their
respective families. In particular, the distributions that are characterized in this
manner are the exponential and normal distributions as scale parameter families,
and the normal distribution as a location family. We have extended these results to
the gamma distribution as a scale parameter family, and to the multivariate normal
distribution as a location parameter family. Similar results are obtained for elliptically
contoured families and Laplace distributions.
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1. Introduction

Several results are known that characterize parametric families of distribu-
tions from properties of maximum likelihood estimators. Methods developed by
Teicher (1961) in a classic paper on this subject are utilized here to obtain mul-
tivariate versions of known univariate results.

More specifically, the following cases are considered.

I. Location parameter families {F(z — 6), —0co < 6 < oo}

a. Teicher (1961) showed that if, for sample sizes n = 2,3, a maximum
likelihood estimator (MLE) of a location parameter  is the sample mean Z, then
with some regularity conditions, it follows that F' is a normal distribution. As
indicated by Teicher (1961), this result has its origins in the work of Gauss.

In the multivariate case, where =z and 6 are vectors, we show in Section 2
that if for sample sizes n = 2,3, the sample mean vector is a MLE of a location
parameter 6, then with appropriate regularity conditions, F' is a multivariate
normal distribution with some covariance matrix.
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b. Kagan, Linnik and Rao (1973) showed that if, for sample size n = 4, a
maximum likelihood estimator of a location parameter 4 is the sample median,
then with regularity conditions, F' is a Laplace distribution. This result has its
origins in the work of Laplace (see Johnson and Kotz (1970, Chapter 23, p.22)).
Rao and Ghosh (1971) showed that the result fails for sample sizes n = 2, 3.

In the multivariate case we show in Section 3 that if for sample size n = 4 the
vector of medians (computed component by component) is a MLE of a location
parameter 6, then F is the product of univariate Laplace marginal distributions.
This fact came as a disappointment to us since we were originally motivated to
study this case by the hope of finding a broader class of interesting multivariate
Laplace distributions.

II. Scale parameter families {F(z/c),0 > 0}

a. Teicher (1961) showed that if the second sample moment is a MLE of o2
where o > 0 is a scale parameter, then with appropriate regularity conditions, F
is a normal distribution with zero mean.

In the multivariate case, the scale parameter can be extended, in terms of
densities, to families of the form {¢(x,A) = c(A)f(xAa’), ¢ € RP}. Families of
this kind are just those with elliptically contoured densities. We show in Section 4
with appropriate regularity conditions that if the sample covariance matrix is a
MLE for £ = A™1, then ¢ is a normal density function with expectation 0.

b. Teicher (1961) showed that if the first sample moment is a MLE of o,
then with appropriate regularity conditions, F(0) = 0 and F is an exponential
distribution with mean 1.

This result is generalized in two directions in Section 5. There, the first
sample moment is replaced by 3 z;/rn where r > 0; in this case the exponential
distribution is replaced by the gamma distribution with shape parameter r.

In the multivariate case, with the family {F(z1/01,...,2,/0,)}, suppose that
a maximum likelihood estimator of (01,...,0p) is the vector with components of
the form 3 #;o/rin. Then with the required regularity conditions, F is a product
of univariate gamma distributions.

There is a closely related extension of Teicher’s result described under II.a
above, which applies to scale parameter families of the kind considered in the
preceding paragraph. If the vector with components (3" z2 /r;n)!/? is a MLE for
o2, where all the r; are odd integers, then

P
flz) = H {c,':c:"_l exp(—m?/2)}, —o00 < z; < oco.
=1

The case 71 = p =1 is the result of Teicher (1961).
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2. Characterization of the Multivariate Normal Distribution by the
Sample Mean Vector as a MLE of the Location Parameter

The following theorem with p = 1 is due to Teicher (1961).

Theorem 2.1. Suppose {F(x — p), u € RP} is a translation family of distribu-
tions on RP, where F has a density f that is lower semi-continuous at & = 0. If,
for all samples of size 2 and 8, a MLE of p is the mean vector &, then F is a
multivariate normal distribution with mean zero.

Proof. For sample size n + 1 = 2 or 3, the hypothesis asserts that

n+1 n+1

[[f@:i-2)>T] f(@i—p) forall p.
1 1

or equivalently,
n+1 n+1

I 7(us) > I f(ui —6) forall 6, (2.1)
1 1

where 6 = & — u, u; = @; — &, so that E’f‘"l u; = 0; with h = log f this becomes

3 hus) + h(unsa)
1

zl:hu, +h( Zui>2;h(u;—e)+h(—§;ui—0>. (2.2)

1
From (2.2) with u; = --- = u, = t,
nh(t) + h(—nt) > nh(t — 0) + h(—nt — 6),
which for n = 1 yields
h(t) + h(—t) > h(t — 0) + h(—t — 6). (2.3)

An argument is required to show that f(y) is finite everywhere, and that
f(y) > 0 for y = 0. For y € R!, Teicher (1961, p.1216) provides such an
argument which carries through word for word for y € RP based upon (2.1).

In (2.3) replace t by —t and 6 by —8 to yield

h(t) + h(—t) > h(—t + 6) + h(t + 6). (2.4)

Let g(t) = h(t) + h(—t); the sum of (2.3) and (2.4) shows that g is mid-point
concave and reaches a maximum at @ = 0. Furthermore, g satisfies (2.2). With
n =2 in (2.2), and from the symmetry of g, it follows that

g(ur — 0) + g(ug — 6) + g(u; + uzx +6)
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reaches a maximum at @ = 0, so

V[9u1) + gluz) - g(u1 +u5)] =0

for all u;,uy for which the gradient <7 exists. Thus

(91(21),.-., 9p(21)) + (g1(22), - - -, gp(2)) = (91(&'1 +2),...,9p(®1 + wz)),
(2.5)
where g;(z) = 0g(z)/0z;. But (2.5) is the well-known Cauchy equation, from
which we conclude that

gi(z) =ajnz1+ - +ajpzp, 7=1,...,p. (2.6)

(See, e.g., Aczél (1966, Chapters 2 and 8).)
We assert that all solutions of the set of partial differential equations (2.6)
have the form

g(z) = —(Zl,’ ..+, 2p)B(z1,...,2p)" + constant, (2.7)

where B is a positive semi-definite matrix.

From (2.6) note that g;x(z) = g-;%% = ajk, so that ajr, = apj, j # k. The

proof is by induction. The case p = 1 was resolved by Teicher (1961). Assume
(2.7) holds for p — 1. First note that for some function ¢

g(z) = /gl(z)dzl = %allzf + z1(a1222 + - - + a1p2p) + (22, ..., 2p).  (2.8)
Differentiation with respect to z;, j # 1, yields
9i(2) = ayjz1 + gi(2z2,...,2p), 7=2,...,p, (2.9)
which, by (2.6) is equal to
9i(z) =ajiz1+- -+ ajpzp, 7=2,...,p. (2.10)
Equating (2.9) and (2.10) yields the differential equation
gi(z2,...,2p) = ajozo+ -+ ajpzp, 1=2,...,p,

which is (2.6) in p — 1 variables. By the induction hypothesis g(z3,...,2,) is a
quadratic form plus a constant, so that from (2.8) we obtain (2.7).
Thus
g(z) = h(2) + h(—2z) = —2zBz’' + constant (2.11)
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which implies that
1 o
h(z) = —Esz + b(2z) + constant, (2.12)

where b(z) = —b(—z) is an odd function.
Assume without loss of generality that B is symmetric. To show that B is
positive semi-definite, recall that (2.3) and (2.4) imply

9(2) + g(—2) > g(z - 8) + g(—z — ),

which, from (2.11) yields
0B6’ > 0. for all 6. (2.13)

To show that b(z) = 0, substitute (2.12) in (2.3) to yield
b(z—0)-b(z+6) < 6B¢,
which far 8 replaced by —8 yields

b(z + 6) — b(z — 0) < 686,

so that
[b(z + 8) — b(z — )| < 6B’ for all z,6. (2.14)
With 6 = (0,...,0,6;,0,...,0), (2.14) becomes
b(z1,...,2j +05,...,2p) = b(z1,...,2; — 0;,...,2p) < b_.,JO (2.15)
26; 2

Taking the limit in (2.15) as §; — 0, j = 1,...,p, yields b(z) = 0, which implies
that b(2) is a constant. Because b(z) is an odd function, the constant must be
Zero.

In summary, from (2.12) we obtain that

1 .
f(z) = constant exp(—~2—sz'), ~c0<zj<00,i=1,...,p,

where B is a positive semi-definite matrix. For B positive definite, the constant
(27)" 2 |B|2 is determined so that f is a probability density function.

3. Characterization of a Multivariate Laplace Distribution by the Sam-
ple Median as a MLE for Location

The following univariate result was obtained by Kagan, Linnik and Rao
(1973).
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Theorem 3.1. Let {F(z — 6),0 € R'} be a translation family of distributions,
and suppose that F has a density f lower semicontinuous at x = 0. If the sample
median s a MLE of § for samples of size n = 4, then for some a > 0,

1
flz) = Eaexp(-—alwl), —00 < z < 0.

Rao and Ghosh (1971) show by a conterexample that the theorem is false if
the sample size is reduced to 2 or 3.

The proof of the multivariate version given below follows the univariate proof,
but a differential equation generated in the univariate proof becomes a set of
partial differential equations in p variables. It is interesting to note that the
condition n = 4 does not change in the multivariate case.

Theorem 3.2. Let {F(x — 0),0 € RP} be a translation family of p-dimensional
distributions, and suppose that F has a density f lower semicontinuous at & = 0.
If the vector of sample medians is a MLE of 0 for samples of size n = 4, then
for some a > 0,

4

flz) = (ff[ai/2) exp (— Zailmil), z € RP.

1

Proof. The proof for general p requires some cumbersome notation, and can be
made more transparent if given in detail for p = 2. We adopt this course, and
then describe the modifications required for the general case.

Write 6 = (p,v), so that by hypothesis,

Hf(miayi)ZHf(mi—/-">yi“‘V) (31)
=1 =1

for all (z;,y;) with median O and all yx,v. Inequality (3.1) with n = 4 and points
(—z,—vy), (-z,—y), (z,y), (z,y) is equivalent to (2.1) with n = 1, from which it
followed that f(0) > 0 and f is everywhere finite.

Suppose that n = 4 and the ordered z; (ordered y;) are respectively

—21 <2< 0< <2 (- <-y<0<y<Ly). (3.2)

These observations can be paired in a number of ways to generate a sample, but
for purposes of this proof, only two possible samples need be considered:

(—2:, -syl)a (_'a:, —E'y), (E,Ey), (1:2, 53/2), £ ==l.
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Then (3.1) becomes

f(=z1,—ey1) f(—z, —ey) f(z,ey) f (2, cY2) (3.3)
2 fl-z1—p,—ey1 —v)f(—2 — p,—ey — v)f(z — p,ey — v) f(z2 — p,ey2 — v)

whenever (3.2) holds.
In (3.3), interchange (z1,y1) and (z2,¥2), (#,v) and (—pu, —v) to obtain

f(mlasyl)f(_ma —Ey)f(:c,sy)f(—:cz, "5y2) (34)
> flzi+p ey +v)f(—z+p,—ey +v)f(z + p,ey +v) f(—z2 + p, —sy2 + v),

With g(z,y) = f(z,y)f(—=, —y), multiplication of (3.3) and (3.4) yields

9(z1,e91)9%(x, £y) g (2, £92) (3.5)
> g(z1+ p,ey1 +v)g(z + p,ey + v)g(—z + p, —ey + v)g(—z2 + p, —€y2 + v).

With h =log g, (3.5) can be rewritten as

h(z1,ey1) + 2h(z,ey) + h(x2,cy2)
> h(x1+ p,eyr +v) + h(z + pyey +v) + h(—z + p,~ey + v)
+h(—z2 + p, —ey2 +v). (3.6)

With z; = z, y1 = y in (3.6), if follows that

thiz,ey) > hz+mey+ty)th(—ztp-cy+y) ()
= h(z+ p,ey+v)+ hi(z — p,ey —v)

so that h is midpoint (Jensen) concave.

Since f is lower semicontinuous at 0 and f(0) > O for some § > 0 it fol-
lows that f(z,y) > & whenever the norm ||(z,y)| is sufficiently small. Sup-
pose g(u,v) = 0 for some (u,v) # 0, and let ¢ = inf{||(u,v)| : g(u,v) = 0}.
Then ¢ > 0. It is possible to choose (z1,¥1), (z,¥) and (z2,y2) and (u,v)
with sufficiently small norms such that g(z1,ey;) = 0, ||(z1 + p,ey1 +v)|| < ¢,
l(z + p,ey +v)|| < e |[(z— p,ey —v)|| <e, ||[(z2+ p,ey2 — v)|| < c. For such a
choice, (3.6) fails to hold for g in place of h. This contradiction leads to the con-
clusion that g(z,y) > 0 for all z,y and it follows from (3.6) that h is continuous
and convex. (See, e.g., Roberts and Varberg (1973).)

According to (3.6), the right-hand side of (3.6) as a function at g and v
reaches a maximum at g = v = 0, and differentiation with respect to these
variables yields

hj(z1,ey1) + hj(z,ey) + hj(—x, —ey) + hj(—z2,—€y2) =0, j=1,2. (3.8)
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Set 3 = 23 =z, y; = y2 = y in (3.8); it follows that
hj(z,ey) + hj(—z,—ey) =0, j=1,2, z,y>0. (3.9)
Combined with (3.8), (3.9) implies
hi(z1,6y1) + hj(—z2, —ey2) =0, j=1,2, z,y> 0. (3.10)

A consequence of (3.10) is that hj(z,ey) is a constant for z,y > 0, and
continuity yields this for z,y > 0. For some functions ¢; and g- integration yields

h(z,ey) = b1 — a1z + q1(ey) = bz — azey + g2(z),
which with y = 0 yields
b1 — a1z + ¢q1(0) = b2 + g2(z).

Thus
h(z,ey) = b— a1z — brey, z,y >0. (3.11)

In (3.3), set z; = z, y; = y and take logarithms to obtain

h(z,y) 2 log f(z — p,ey — v) +log f(~z — p, —ey — v) (3.12)
= h($+p,€y+l/)+10gf(2 —',U,,Ey—ll) —logf(:c+p,6y—v), z,y 2 0.

With £ > 0, y > 0 and p,v chosen so that z — |p| > 0, ey — |v| > 0, (3.12)
becomes

log f(z — p,ey —v) — log f(z + p,ey + v)
< —(a1z + azey) + [a1(z + p) + bi(ey + V)]

= ajp+ b (313)

In (3.13) replace (p,v) by —(u,v); this reverses inequality (3.13) and shows that
(3.13) holds with equality. Taking derivatives in (3.13) with respect to z and y
yields

%log f(z,ey) = —ay, %log f(z,ey) = —b1. (3.14)
Consequently,

log f(z,ey) = —a1z + t1(ey) = —b1y + t2(=e).
Set y = 0 to conclude that t3(z) = —ajz + t1(0), so that

f(z,ey) = cexp(—aiz — biey), z,y >0, (3.15)
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where the constant ¢ does not depend upon the choice € = 1 or ¢ = ~1 because
of the lower semi-continuity of f at zero.

The starting point for the above development was (3.3), which does not
change if (z,y) and (-z,-y), (—z1,¥1) and (1, —y;) are interchanged. Thus,
(3.14) again holds. Because of continuity the constant c is unchanged.

Because f is everywhere a product of its marginals, and because the marginals
satisfy the conditions of Theorem 3.1, the proof for p = 2 is complete.

For general p, it is notationally convenient to replace (z1,y;) by (1), (z,9)
by @ and (z2,y2) by «(®). For p-dimensional vectors z = (21,...,2p) and a =
(a1,...,ap), write @ o z = (ay21,...,ap2p). Then (3.2) becomes

eV < —z; <0<z < 2P

T

1=1,...,p

and (3.3) becomes

f(—E0m(l))f(—-eoa:)f(eom)f(eom&))
< f(—;eo‘”(l)—a)f("eow(l)—O)f(eo:c-—ﬂ)f(eom(z)__9).

Then the proof goes through in essentially the same way as with p = 2.

4. Characterization of the Multivariate Normal Distribution by the
Sample Covariance Matrix as a MLE of the Population Covariance
Matrix

Theorem 4.1. Let {¢ : ¢(x;A) = c(A)f(xAz'),® € RF} be a family of density
Junctions where the parameter A is a positive definite matriz, c is a normalizing
constant depending on A, and f is a function continuous on (—oo0,00) such that

f(z) >0 for z € (0,6) for some § > 0, and

- lim f(z) =a or
;1_)0 02) (A), forall A>0. (4.1)

If, for all samples o = (T1a,...,%pa), @ =1,...,n, of sizen, a MLE of ¥ =
Al is S ="l a2, /n, then

é(z; A) = c(A) exp (— —;—:::Az')

15 a normal density function with ezpectation 0.

Proof. Suppose n > p. Then ¥ is nonsingular with probability 1. (See Das
Gupta (1971), Eaton and Perlman (1973).)
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Let A = $-1. By hypothesis

Al fIf(w,-Aw;) > |A2 ﬁf(wiAwE) (4.2)
1 1

~

Let y, = :c,-f\%, U= A_%AA‘%, so that
n l n
Il fwawd) > 1912 ] £ (s %90, > viyi/n = I, (4.3)
1 1

for all ¥ positive definite, where I, is the identity matrix of order p.
Let ¥ = AL, A > 0, y;y; = 2z;. Then } 2 = tr} yly; = pn, and (4.3)
becomes

T1 () > /2 [ £ (e, (4.4
1 1

With g(z) = f2/7(2), (4.4) becomes

n

[T9(z) = 3 [[a(Az), Yz =pn. (4.5)
1 1

1

But this is exactly inequality (5.2) with p and r replace by 1 and p, which as we
will see in Section 5 implies

9(2) = bz W exp (- [4'(1) + 1)2/p),
where A()\) = a?/P()\). Consequently
f(2) = bz (1P/2 exp ( -[4'(1) + l]z/Z).

As in Section 2, A(A) = X! for some ¢t > 0, and for 3 z;/n to be a MLE of ), it
is necessary that ¢t = 0, in which case

£(2) = bexp(=2/2).

5. Characterization of a Multivariate Gamma Distribution by the
Mean Vector

In this section we extend the result of Teicher (1961) in two directions. One
extension is from the exponential distribution to the gamma distribution; the
other is from univariate to multivariate. We wish to acknowledge our debt to
Teicher in that the extension borrows heavily from his proof.
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Some notation will simplify many expressions. Retain the notation a o z =
(a121,...,apzp), and write a=l o0 z = (%,...,-Zf) when a; # 0,7 =1,...,p. By

2> 0 (or z > 0) we mean z; > 0(z; > 0), 7 = 1,...,p. Denote the vectors
e=(1,...,1), 2(9) = (zl,...,z]-_l,zj+1,...,zp), 2l = (1,...,1,2_7',1,...,1).

Theorem 5.1. Let {F(%, cen, ;f), o > 0} be a scale parameter family of distri-
butions such that
(i) For some § > 0, f(z) > 0 for all z such that 0 < z < &, and

tim £2°2) _ iy

z-0  f(z)
ezists and is finite in some neighborhood /\51 <A<, Ap>1,5=1,...,p.
(ii) for all samples o = (Z1a,...,Tpa), ® =1,...,n of size n, &; = Yoo Tia/Tin,
ri > 0, is a mazimum likelihood estimate of 0;, 1 =1,...,p.

Then f is the density of a multivariate gamma distribution, where

flz) =b71 (]_f_[z:"”l) exp ( - %—iz;).

1

Proof. Notice first that (ii) implies F'(z) = 0 for any z; < 0,5 =1,...,p, so it is
sufficient to consider only z > 0. From (ii) it follows that for all , > 0, ¢; > 0,
a=1,...,nandi=1,...,p,

(ﬁ"f”)ﬁf<%,%’f> > (Izl"[ag‘") If[f(%'z:"‘) (5.1)

1 P

Let Yia = mia/&i’ Ya = (yla)“-aypa)’ Ai = &i/ai’ o; > 0’ a = 1’-"an and
1=1,...,p, so that (5.1) becomes

n ) n
7w > ( m) [[7(Aowa), (5.2)
1 1 1

for all A; > 0, 9ia > 0, X 0_1%ia =7mn, 1 =1,...,pand o = 1,...,n. Let
Yia = ki/m, a = 1,...,m; yia = (rin — k;i)/(n = m), « = m +1,...,n, where
0 <k; <rn, m <n. Then >} 7_; yia = rin and (5.2) becomes

fm(ﬂ’._,’ﬁ>fn—m<7‘ln_kl,m,rp“"kp>
m m

n—m n—m

L k k rn—k ron —k
> (HA?)f’"(AlEI,...,Apgp>f"‘"‘()\1—l——l,...,)\p%nf>. (5.3)
1

n—m n
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Let m — oo, n — oo, ki — oo in such a way that k;/m — a;, m/n — ¢,0 < ¢ < 1,

where 0 < a; < r;/c,i=1,...,p. Because f is continuous, it follows from (5.3)
that
gcfT1—a1C Tp — a,,c)
flaype(Boe, T
F ¢ &le r1 — aic Tp — ApC
(HA,-I/)f(Aoa)f/ (Al L e ) (5.4)
1

where ¢ =1 —c.

To show that f(z) > 0 for all z > 0, suppose that for some z > 0, f(z) = 0.
Choose ¢ € (0, min; 7;/2;) and let a; = (r; —&z;)/c; because of the constraints on
¢, it must be that 0 < a; < r;j/c, and moreover, z; = (r; — a;c)/¢, j =1,...,p.
It follows by assumption that the left hand side of (5.4) is zero. Now take Aj
sufficiently small so that Aje; < 65, Ajz; < 6, 7 = 1,...,p. By (i), the right
hand side of (5.4) is positive, a contradiction. Hence f (z) > 0 for all z > 0.

Consequently, from (5.4) it follows that

fa/c<"'1 —ajc Tp — apc)
—
c

c
(ﬁ/\'l/c) f(Ao a)fa/c()\ln —ac ) Tp— apc)
VA C) e TP e )
which, together with the continuity of f and (i) yields
P
(2 2) 2 (TIV) Bouse( 22, 8
f <E 2)> 1’11,\z B(\)f Mo 7 )» forall A>0. (5.5)
Let 7;/€ = 2; (so that z > r) and rewrite (5.5) as
P = -
£ 2 (TINF)BONFf(o2), 227 A>0,  (56)
1

where the validity of (5.6) for z; = r; (i = 1,...,p) is a consequence of continuity.
From the definition of B(A) in (i) it follows that

BO)B(A™Y) =1. (5.7)

Thus B(A) >0, A > 0.
Let h = log f. Because the factors in (5.6) are positive, (5.6) is equivalent to

P
h(z) —h(Ao2) > %Zlog Ai + glog B(A), z>», A>0. (5.8)
1



MAXIMUM LIKELIHOOD CHARACTERIZATIONS 169

With A replaced by A~! together with (5.7), it follows that

1 & c
h(z) — h(A™1 > == logX; — —log B(A). :
(2) ~h(Atoz) > s 2 log X = log B\ (5.9)
The addition of (5.8) and (5.9) yields
h(Aoz)+ h(A'l ° z) <2h(z), z>7, A>0. (5.10)

Let A; = eb, zj = e¥,j =1,...,p, and H(y) = h(e®,...,e%). Then (5.10)

becomes H(b+y) + H(—b+y) < 2H(y), which together with the continuity of

f says that H(y) is concave in y > (logr1,...,log rp). Consequently, A is differ-

entiable in x¥_, (r;, 00), except possibly for a countable subset D of xE_1(r,00).
If A; < 1, then from (5.8)

h(z) — k(Ao 2) S Y log A 4 clog B(A\)

h . 5.11
H0-%) 2 am-Xy) T amoy) (5:11)
From (5.7) B(e) =1, so that with \; =1, ¢ # j,
B(e) — log B(AV]
hi(z) > —— — < iy 108 B(e) ~log BAT) (5.12)
Cz; Tz Tl 1=

From (5.8) with A~! in place of ), it follows that

h(z)—h(A_loz)Z—ZEIf)—géi+glogB(A_l), z>2r, A>0;

c
and with Zi/Ai =t,i1=1,...,p,

. P .
h(Aot) — h(t) > —Z—l—léf’ig-ﬁ ~ZlogB(\), t>Alor, A>0:

C

so that if A; < 1,

h(z) — h(A o 2) < Y llog A clog B(\)

S = -~ , zZA'lor, A>0
zi(1 = j) zj(1 = A;)  ezi(1—Xy)

which is the reversal of (5.9), and leads to a reversal of (5.10).

Because B is differentiable at e, we obtain

1 ch(A[ﬂ)
M T e

(5.13)
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Recall that r;/¢ = z;, so that (5.13) becomes

hi(z) = _rlj - Q—_:?;LZJQBj (,\[J‘])
j

1+ B, (AU B (2] ‘
——( i ))+ i ), ji=1,...,p. (5.14)
T 23

With the continuity of h, it follows that

(1 + B;(A7))

Tj

h(z) = —

zj+Bj(A[j])logz]-+q(z.(j)), i=1,...,p. (5.15)

Because (5.15) holds for each j = 1,---,p, it follows (e.g., by an iterative argu-
ment) that

P [4] P _
h(z) = Z 1+ B;(AY))]z; +3 B, ()‘[J]) log z; + constant,

Tj

whereby
P P
f(z) = sz;j_l exp ( - ijzj), (5.16)
1 1

where a; =1+ Bj()\[j]) and §; = a;/r;.
A direct computation of limz_.o[f (Ao 2)/f(z)] shows that B(A) = []? )\aJ_l,

so that B(Al) = z\;j—l. But in order for 3°7_; z;o/rin to be a maximum likeli-
hood estimate of o; it is necessary that a; = r;, in which case

P P
f(z)=b"1 sz’ exp ( - Z{jzj),
1 1

where b = [J§[¢;T(r;)]. But note that & is a MLE for this distribution only if
E=1,7=1,...,n
The following theorem is a minor variant of Theorem 5.1.

Theorem 5.2. Suppose that all of the conditions of Theorem 5.1 are satisfied
except that &; = (0, 22, /rin)Y/2, where r; is an odd integer, i = 1,2,...,p.
Then the density of F has the form

B 1
f(x) = (constant) H 27"l exp (— Em?)

i=1

The proof of Theorem 5.2 mimics that of Theorem 5.1 and is omitted.
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With r; = 1,7 =1,...,p in Theorem 5.2, f is just a product of standard
univariate normal densities. In case p = 1, this is the result of Teicher (1961)
described under Il.a in the Introduction.
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