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Abstract: We consider the problem of calculating power and sample size for tests

based on generalized estimating equations (GEE), that arise in studies involving

clustered or correlated data (e.g., longitudinal studies and sibling studies). Previous

approaches approximate the power of such tests using the asymptotic behavior of

the test statistics under fixed alternatives. We develop a more accurate approach in

which the asymptotic behavior is studied under a sequence of local alternatives that

converge to the null hypothesis at root-m rate, where m is the number of clusters.

Based on this approach, explicit sample size formulae are derived for Wald and

quasi-score test statistics in a variety of GEE settings. Simulation results show that

in the important special case of logistic regression with exchangeable correlation

structure, previous approaches can inflate the projected sample size (to obtain

nominal 90% power using the Wald statistic) by over 10%, whereas the proposed

approach provides an accuracy of around 2%.

Key words and phrases: Clustered and correlated data, GEE, local alternatives,

longitudinal data analysis, marginal models.

1. Introduction

Power and sample size formulae play an important role in the design of ex-

perimental and observational studies. There is an extensive literature on this

topic, especially for hypothesis tests based on the method of generalized esti-

mating equations (GEE), as introduced by Liang and Zeger (1986) for handling

correlated longitudinal or clustered data. In this setting, however, all previous

sample size formulae have been derived using the asymptotic behavior of test

statistics under fixed alternatives. In particular, fixed alternatives were used by

Liu and Liang (1997) (henceforth LL) to derive sample size formulae for quasi-

score statistics, and by Shih (1997) (henceforth Shih) for Wald test statistics, see

also Rochon (1998), Pan (2001), Liu, Shih, and Gehan (2002), Jung and Ahn

(2003, 2005) and Kim, Williamson, and Lyles (2005).

In this article, a more accurate approach to power and sample size

calculations in the GEE setting is developed using local asymptotic theory

http://dx.doi.org/10.5705/ss.2011.081
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(Le Cam (1960)). That is, rather than directly calculating the power of a test of

H0 : ψ = ψ0 vs. a fixed alternative H1 : ψ = ψ1, where ψ is a p-vector representing

the parameters of interest, we first calculate the asymptotic power of the test un-

der a sequence of local alternatives H1m : ψ = ψ0+h/
√
m, where m is the sample

size (the number of clusters) and h is a fixed p-vector (the local parameter). The

local asymptotic approach is considered to be standard in settings that do not

involve clusters of correlated data (van der Vaart (1998); Lehmann and Romano

(2005)), but it has not previously been attempted in the GEE setting as far as

we know. For use of the approach in a survival analysis setting, see Lin, Yao,

and Ying (1999).

The justification for our approach is provided by a result showing that in

general GEE settings the Wald and quasi-score test statistics are asymptotically

noncentral chi-squared under A sequence of local alternatives. This result also

provides a suitable small sample approximation to the asymptotic power function

involving a weighted average of the gradient of the estimating equation. Under

marginal models, this approximation can be expressed directly in terms of the

distribution of the covariates. This leads to explicit sample size formulae by

inverting the small sample approximation to the asymptotic power function at

the local parameter value h =
√
m(ψ1 −ψ0), and solving for m in the usual way.

Our approach has several advantages over previous approaches. For the

quasi-score test, previous methods of power calculation depend on knowing the

limiting value of the nuisance parameter estimator under H1; such estimators

are generally inconsistent under fixed alternatives, cf. Self and Mauritsen (1988).

This can involve the additional burden of having to numerically find the root

of a nonlinear equation; our approach, on the other hand, does not require this

extra step because the nuisance parameter estimator is consistent under the local

alternatives. For the Wald test, our approach has better accuracy. Detailed

comparisons of our results with those of LL and Shih are made in the setting of

marginal models with exchangeable correlation structure under various sampling

designs.

The paper is organized as follows. Preliminary material about GEE is pro-

vided in Section 2. Our main results are stated and discussed in Section 3. In

Section 4, we compare the sample size formulae provided by our approach with

those of LL and Shih. The results of a simulation study comparing the accuracy

of the various formulae are reported in Section 5. An application involving ex-

posure to arsenic in drinking water is given in Section 6. Concluding remarks

appear in Section 7.
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2. Preliminaries

In this section we provide the background material we need on the GEE

method and marginal models (see Diggle et al. (2002); Fitzmaurice et al. (2009)).

For convenience, we consider longitudinal data as a special type of clustered data

in which “cluster” can refer to (repeated measures on) a single subject, or a group

of subjects.

2.1. Generalized estimating equations and marginal models

Let m be the number of clusters and ni the number of units in the ith

cluster, i = 1, . . . ,m. Let yij denote the outcome, xij the p-vector of covariates

of interest, zij the q-vector of confounding covariates, and µij the conditional

mean for the jth unit in the ith cluster. The GEE approach of Liang and Zeger

(1986) produces consistent parameter estimates given that the model for the

marginal means µij is correctly specified, regardless of misspecification of the

intracluster correlation matrix. The marginal model assumes

g(µij) = zTijκ+ xTijψ, i = 1, 2, . . . ,m, j = 1, 2, . . . , ni, (2.1)

where g is a known link function, ψ contains the parameters of interest, and κ con-

tains nuisance parameters, including the intercept. Let ϕ denote the univariate

dispersion parameter of the model, an s-dimensional vector α denote the correla-

tion parameters. The full vector of parameters is denoted β = (ϕ, αT , κT , ψT )T .

Let θ = (κT , ψT )T . The GEE approach provides a consistent estimator

of θ by solving the following estimating equation, for given values of α and ϕ,

regardless of misspecification of the intracluster correlation matrix:

m∑
i=1

Ui(θ, α, ϕ) = 0, (2.2)

where Ui(θ, α, ϕ)=D
T
i V

−1
i Si, Di=∂µi/∂θ, Si=yi−µi, and Vi=∆

1/2
i Ri(α)∆

1/2
i

is the working covariance matrix. Here ∆i = diag[Var(yi1), . . . ,Var(yini)] and

Ri(α) is the working correlation matrix (all such quantities being conditional on

the covariates and cluster sizes). The parameters α and ϕ are usually unknown.

Further estimating equations can be introduced to estimate them; see Fitzmau-

rice et al. (2009, Chap. 3) for detailed discussion. This results in a combined

estimating equation for the full set of parameters β. Numerical methods to solve

for β are widely implemented in statistical packages.

2.2. General setting

The dimension ni of yi is assumed to be uniformly bounded. We are inter-

ested in estimating β ∈ B ⊂ Rk, a k-vector of unknown parameters indexing the
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conditional marginal means and variance-covariance matrices of the yi, where B
is compact. Let Ψi be a Borel function from Rni × B to Rk, i = 1, . . . ,m, and

sm(b) =
m∑
i=1

Ψi(yi, b), b ∈ B, (2.3)

where the estimating function Ψi also depends on covariates (suppressed in the

notation; all expectations and variances are taken to be conditional on the co-

variates and the dimension ni). Suppose that Eβ{Ψi(yi, β)} = 0 for all i, where

the subscript β indicates the true value of the parameter. The GEE estimator,

β̂ ∈ B, satisfies sm(β̂) = 0. Under mild conditions, see Shao (2003, Sec. 5.4)

(henceforth Shao),
√
m(β̂ − β)

d→ Nk(0,Σβ) (2.4)

asm→∞, where Σβ=limm→∞m{Mm(β)}−1[
∑m

i=1Varβ{Ψi(yi, β)}]{Mm(β)}−1,

Mm(β) = −Eβ{∇βsm(β)} and ∇βsm(β) = ∂sm(β)/∂β. The limiting covariance

matrix Σβ can be consistently estimated by replacing β with β̂ and Varβ{Ψi(yi,

β)} with Ψi(yi, β̂){Ψi(yi, β̂)}T ; the resulting estimator is denoted by Σ̂.

3. Power and Sample Size Calculation Method

In this section we first develop the local asymptotic behavior of the GEE

estimators and the Wald and quasi-score statistics under the general setting in

Section 2.2. Based on that, we propose a power and sample size calculation pro-

cedure for the GEE under marginal models. Throughout we restrict attention to

the testing of a simple null hypothesis of the form H0 : ψ = ψ0 vs. the alternative

H1 : ψ ̸= ψ0, where ψ is the vector consisting of the last p components of β. Let

λ be the vector of the first k − p components of β, so β = (λT , ψT )T , and for

marginal models λ = (ϕ, αT , κT )T .

The Wald statistic is given by

Wm = m(ψ̂ − ψ0)
T (BΣ̂BT )−1(ψ̂ − ψ0),

where B = (0p×(k−p), Ip), 0p×(k−p) is the p × (k − p) zero matrix and Ip is the

p × p identity matrix. Here and elsewhere, expressions involving B are simply

used to extract the relevant submatrix or subvector. The quasi-score statistic

or generalized score statistic (Rotnitzky and Jewell (1990, p.488) or Boos (1992,

p.329)) is given by

Tm = {Bsm(β̃)}TV −1
T {Bsm(β̃)},
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where

VT = {BMm(β̃)
−1BT }−1

×

[
BMm(β̃)

−1

{
m∑
i=1

Ψi(yi, β̃)Ψi(yi, β̃)
T

}
Mm(β̃)

−1BT

]
×{BMm(β̃)

−1BT }−1,

β̃ = (λ̃T , ψT0 )
T and λ̃, constructed in the Appendix, is a consistent estimator of

λ under H0. Both Wm and Tm converge in distribution under H0 to χ2
p, and H0

is rejected at significance level ζ if the test statistic is greater than χ2
p,1−ζ , where

χ2
p,1−ζ is the 100(1− ζ)th percentile of χ2

p.

We illustrate our approach to obtaining power and sample size for the quasi-

score test; the procedure is the same for the Wald test and the power and sample

size formulae for both tests coincide. The power function of the quasi-score

test is ψ 7→ πm(ψ) = P (Tm ≥ χ2
p,1−ζ |ψ ̸= ψ0), the probability of rejecting

the null hypothesis given that the true value of the parameter ψ belongs to

the alternative. To obtain power or sample size under a specific value of ψ,

say ψ = ψA, we propose to study the power based on a sequence of alternatives

H1m : ψ = ψ1m = ψ0+h/
√
m that converge at root-m rate to the null hypothesis;

here h is an arbitrarily fixed p-vector. We show that Wm is asymptotically

noncentral chi-squared under H1m and approximate the power πm(ψ1m) under

ψ = ψ1m based on this result. The power under the fixed alternative ψ = ψA
given a sample sizem is then obtained by specifying h so that ψ1m = ψA, in which

case πm(ψ1m) becomes identically πm(ψA). This approach calculates power and

sample sizes under the fixed value ψA although it is based on local asymptotic

theory since ψA is on the path along which ψ1m converges to ψ0 as m→ ∞. The

justification for this procedure depends on finding the asymptotic behavior of ψ̂

under H1m, and we do this by extending the approach in Shao to a sequence of

contiguous alternatives.

3.1. Local asymptotics

The results in this section are developed under the general setting described

in Section 2.2. Various regularity conditions are needed, as provided in the

Appendix. Let Pm denote the joint distribution of {yi}i=1,2,...,m under H1m

conditional on the covariates. Let β0 = (λT0 , ψ
T
0 )

T and βm = (λT0 , ψ
T
1m)

T , where

λ0 is the true value of λ. Our first result establishes the asymptotic behavior of

ψ̂ under Pm as m→ ∞; a sketch of the proof is given in the Appendix.

Theorem 1. Under regularity conditions (C1)−(C9) in the Appendix,
√
m(ψ̂ −

ψ0) converges to Np(h,BΣβ0B
T ) in distribution under Pm.
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Remark 1. In the special case that the yi are i.i.d. and β̂ is the MLE of β, the

limiting covariance matrix Σβ0 is the inverse of the Fisher information matrix,

and our result for the local asymptotic distribution of
√
m(β̂−β0) reduces to the

classical result obtained by applying Le Cam’s third lemma; see, e.g., Chapter 7

of van der Vaart (1998).

Remark 2. Theorem 5.14 in Shao can be considered as a special case of the

above theorem with h = 0, where the asymptotic behavior of the GEE estimator

ψ̂ is provided under a fixed value of ψ, see (2.4). The limiting covariance matrix

remains the same under the local alternatives, namely the submatrix of Σβ0
corresponding to the components in ψ0. The major extra challenge to show the

above result, beyond the theorem in Shao, is that the distributions of the yi are

allowed to vary.

We now state our result giving the asymptotic behavior of Tm andWm under

H1m; a sketch of the proof is given in the Appendix. The result is the basis of

our approach to obtain power and sample size.

Theorem 2. Under regularity conditions (C1)−(C9) in the Appendix, the test

statistics Tm and Wm converge under Pm in distribution to a noncentral chi-

squared random variable χ2
p(ν) with non-centrality parameter ν = hT (BΣβ0B

T )−1

h.

3.2. Power and sample size calculation procedure

In this section, we propose a power and sample size calculation procedure for

GEE under marginal models. To carry out the calculations at the design stage of

a study, we first need a good approximation to finite sample distributions of Tm
and Wm. Theorem 2 provides such an approximation, but we propose to replace

the non-centrality parameter ν by what we consider to be a better approximation

for a given sample size m:

νm =mξTmψΣ
−1
mψξmψ, (3.1)

where

ξmψ = B{Mm(β0)}−1Eβm{sm(β0)}, (3.2)

Σmψ =mB{Mm(β0)}−1Varβm{sm(β0)}{Mm(β0)}−1BT . (3.3)

From the proof of Theorem 1 provided in the supplementary material, we have√
mξmψ, Σmψ, and νm converge to h, BΣβ0B

T , and ν respectively.

Note that expressions (3.1)–(3.3) are conditional on the covariates and cluster

sizes. If the design is non-random and prespecified, then these expressions could

be used directly. However, in general, these expressions would not be available
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and would need to be estimated from pilot data. For the rest of this section we

restrict attention to the case that the covariates and cluster sizes (zi,xi, ni), i =

1, . . . ,m, are i.i.d., where xi = (xi1,xi2, . . . ,xini) and zi = (zi1, zi2, . . . , zini).

Suppose it is of interest to achieve nominal power 1 − η at significance level ζ

under ψ = ψA. As mentioned, we replace h in the expression of νm by
√
m(ψA−

ψ0). Ideally, for the purpose of sample size calculation, we would integrate Mm,

Eβm{sm(β0)} and Varβm{sm(β0)} over the distribution of (z1,x1, n1). After those

steps (details are provided in Section 2 of the supplementary material), under

the marginal model described in Section 2.1, the non-centrality parameter νm
can be approximated by ν̃m = mξ̃Tψ Σ̃

−1
ψ ξ̃ψ, where

ξ̃ψ = B̄{E(DT
1 V

−1
1 D1)}−1E[DT

1 V
−1
1 {µ1(θA)− µ1(θ0)}], (3.4)

µ1(θ) is the conditional mean vector of y1 given (z1,x1, n1) and the value of θ,

and

Σ̃ψ = B̄{E(DT
1 V

−1
1 D1)}−1

×
[
E{DT

1 V
−1
1 VarβA(y1|z1,x1, n1)V

−1
1 D1}

]
{E(DT

1 V
−1
1 D1)}−1B̄T . (3.5)

Here D1 and V1 are evaluated under H0, the expectations are taken with respect

to the pre-specified distribution of (z1,x1, n1), θA = (κT0 , ψ
T
A)

T , βA = (λT0 , ψ
T
A)

T ,

B̄ = (0p×q, Ip), and λ0 = (ϕ0, α
T
0 , κ

T
0 )
T is the true value of the nuisance parame-

ter. The power at ψ = ψA is given by

πm(ψA) = P
{
χ2
p

(
mξ̃Tψ Σ̃

−1
ψ ξ̃ψ

)
≥ χ2

p,1−ζ

}
.

The final step is to solve an equation for sample sizem for achieving 1−η nominal

power at significance level ζ:

πm(ψA) = 1− η, (3.6)

where ν̃ satisfies P
{
χ2
p(ν̃) ≥ χ2

p,1−ζ

}
= 1− η, and then the sample size is given

by

m =
ν̃

ξ̃Tψ Σ̃
−1
ψ ξ̃ψ

. (3.7)

Remark 3. The vector h is chosen to be
√
m(ψA−ψ0), so the fixed value ψA is

on the path along which H1m converges to H0. The method calculates power and

sample sizes under a fixed value ψA of ψ although it is based on local asymptotic

theory since ψA is on the path along which ψ1m converges to ψ0 as m → ∞.

We will see that our proposed method works better than previous approaches

in various commonly seen cases with fixed alternative values, as discussed in a

simulation study later.
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Remark 4. An alternative approach is to calculate the power πm(ψ1m) with

νm replaced by ν (cf., van der Vaart (1998); Lehmann and Romano (2005)).

To calculate ν, this approach uses the limiting variance BΣβ0B
T that does not

depend on the alternative value ψA. However, the variance of
√
m(ψ̂ − ψ0) may

depend on the alternative value ψA for a given sample size m under some models,

e.g., logistic regression models, where variance of the outcome is a function of its

mean.

In summary, our sample size calculation proceeds as follows,

1. Choose type I error rate ζ and power 1− η.

2. Specify the joint distribution of covariates and cluster size.

3. Give ψ0, ψA and λ0 and specify the working correlation matrix (based on pilot

data if available). Calculate D1 and V1 in (2.2) under β = β0.

4. Calculate VarβA(y1|z1,x1, n1) using the choice of the working correlation ma-

trix (in Step 3) in place of the true correlation matrix.

5. Based on the results in Steps 3 and 4, find, using numerical integration meth-

ods if necessary, the expectations within (3.5) under the joint distribution of

the covariates and cluster size given in Step 2.

6. Calculate ξ̃ψ, Σ̃ψ, ν̃ and the sample size m according to (3.4), (3.5), (3.6), and

(3.7).

The joint distribution in Step 2 and values of the nuisance parameters in

Step 3 may need to be estimated from pilot data. One possibility in Step 2

would simply be to use the empirical distribution of the pilot data; alternatively,

a parametric model could be fit to the pilot data (e.g., the normal distribution

in the arsenic study discussed in Section 6), in which case numerical integration

might be needed in Step 5. Of course, if the true correlation matrix is known,

it could be used in Step 4, but typically such information is not available at

the design stage (cf., Liu and Liang (1997); Shih (1997); Liu, Shih, and Gehan

(2002); Jung and Ahn (2005)). As mentioned by LL, sensitivity analysis should

also be carried out to assess how the sample size varies according to changes of

the specified working correlation matrix. Sample size re-estimation (SSR) is often

carried out when interim data are available for updating design parameters (e.g.,

Shih (2001); Friede and Kieser (2006)). SSR for studies with correlated data

have been actively discussed (e.g., Shih and Gould (1995); Lake et al. (2002);

Zucker and Denne (2002); Yin and Shen (2005)).
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4. Comparison with Previous Approaches

In this section, we compare our approach with LL’s and Shih’s for several

important examples of marginal models. The working correlation matrix is as-

sumed to be the true correlation matrix. Background and discussion of LL’s and

Shih’s approaches are provided in Section 3 and Section 4 of the supplementary

material.

LL restricted attention to the case of discrete covariates, but for continuous

covariates their approach requires an initial (ad hoc) discretization. As pointed

out by Shieh (2000), there is no consensus in how the discretization should be

done. For LL’s approach, it is also necessary to derive the limiting value of the

nuisance parameter estimator under the alternative hypothesis. Compared to

Shih’s approach, our approach has much better accuracy under various circum-

stances.

4.1. Continuous outcomes and cluster level covariates

Consider a study with common cluster size n, continuous outcomes and

covariates: xij ≡ xi, zij ≡ 1 (intercept), j = 1, . . . , n. For simplicity, suppose

that the working correlation matrix Ri ≡ R coincides with the true correlation

matrix. The standard linear regression version of (2.1) is µij = κ + xiψ, i =

1, 2, . . . ,m, j = 1, 2, . . . , n, and there is a constant conditional marginal variance

Var(yij |xi) = σ2. The null hypothesis of interest is H0 : ψ = ψ0. To obtain a

desired power 1− η at significance level ζ for detecting ψ = ψA, the sample size

from our approach (3.7) is

m =
(z1−ζ/2 + z1−η)

2(1TnR
−11n)

−1σ2

(ψA − ψ0)2Var(x1)
, (4.1)

where 1n is the n-vector of 1’s. Derivation of this formula is provided in Section

8 of the supplementary material. When the correlation has an exchangeable

correlation structure with ρij = ρ, the numerator in (4.1) is (z1−ζ/2+ z1−η)
2{1+

(n−1)ρ}σ2. Note that the presence of the intracluster correlation has effectively

increased the noise variance from σ2 to {1 + (n − 1)ρ}σ2. The inflation factor

1 + (n− 1)ρ is known as the design effect (Scott and Holt (1982)), and provides

a direct measure of how the sample size (needed to achieve a fixed nominal

power) increases as a function of the intracluster correlation. The formula (4.1)

agrees with Shih’s. In this example, LL’s approach requires (a) x1 has a discrete

distribution, or (b) an ad hoc discretization is made to its continuous distribution

if x1 is a continuous variable; in the former case, LL’s result agrees with (4.1).
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4.2. Binary outcomes and cluster level covariates

This example uses the same assumptions as 4.1 above except that we use the

logistic regression version of (2.1):

logit(µij) = κ+ xiψ, i = 1, 2, . . . ,m; j = 1, 2, . . . , n. (4.2)

The null hypothesis of interest is H0 : ψ = ψ0. To obtain a desired power 1 − η

for detecting ψ = ψA, the sample size from (3.7) is

m = (z1−ζ/2 + z1−η)
2(1TnR

−11n)
−1

×{E(v1x)(E(xv0x))
2 + E(x2v1x)(E(v0x))

2 − 2E(xv1x)E(xv0x)E(v0x)}
[E(v0x)E(xp1x)− E(v0x)E(xp0x)−E(xv0x){E(p1x)− E(p0x)}]2

,

where p0x = expit(κ0 + xψ0), p1x = expit(κ0 + xψA), v0x = p0x(1 − p0x) and

v1x = p1x(1 − p1x). Here p0x and p1x are the risks of disease at exposure level

x under ψ = ψ0 and ψ = ψA, respecively, expit(·) is the inverse of the logit

function, and the expectations are taken under the distribution of x1. Derivation

of this formula is provided in Section 9 of the supplementary material. Shih’s

approach gives

m =
(z1−ζ/2 + z1−η)

2E(v1x)(1
T
nR

−11n)
−1

(ψA − ψ0)2[E(v1x)E(x2v1x)− {E(xv1x)}2]
.

Again, LL’s approach requires (a) x1 has a discrete distribution, or (b) an ad

hoc discretization is made to its continuous distribution; in both cases, LL’s

approach requires a solution to a nonlinear equation for κ∗ in terms of a discrete

distribution P (x1 = ul) = ωl, l = 1, . . . , L:

L∑
l=1

ωl{expit(κ0 + ulψA)− expit(κ∗ + ulψ0)} = 0.

However, if the null hypothesis of interest is ψ0 = 0, this equation has an explicit

solution and their result agrees with ours in case (a). In this example, there is

a one-dimensional nuisance parameter and the equation is readily solved, but in

general it would be more challenging to reach a solution. Moreover, the solution

of this nonlinear equation is sensitive to the choice of discretization.

4.3. Sibling studies with binary outcomes and unit level binary covari-

ates

Consider a cohort study of m pairs of siblings in which one sibling is exposed

and the other unexposed, and the outcome is binary (disease or non-disease).

The covariates are xi = (xi1, xi2)
T = (1, 0)T , where 1 and 0 designate exposed
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and unexposed, respectively, and zi = (zi1, zi2)
T with zi1 = zi2 = 1 (intercept)

for i = 1, . . . ,m. Let ρ denote the common correlation between siblings. Logistic

regression is used, and the cluster size n = 2. Let p0 and p1 denote the risk of

the disease in unexposed and exposed subjects, respectively. Suppose the null

hypothesis of interest is H0 : ψ = ψ0. To obtain a desired power 1−η for detecting
ψ = ψA, the sample size m from (3.7) is

m =
(z1−ζ/2 + z1−η)

2(v20v1 + v0ṽ
2
0 − 2ρv0ṽ0

√
v0v1)

v20(p1 − p̃0)2
,

where p̃0 = expit(κ0 +ψ0), ṽ0 = p̃0(1− p̃0), p0 = expit(κ0), p1 = expit(κ0 +ψA),

v0 = p0(1 − p0), and v1 = p1(1 − p1). Derivation of this formula is provided in

Section 10 of the supplementary material. Shih’s method leads to

m =
(z1−ζ/2 + z1−η)

2(v0 + v1 − 2ρ
√
v0v1)

(ψA − ψ0)2v0v1
.

LL’s approach requires solving an equation for κ∗:(
1− ρp∗1

c0p∗0

)
(p0 − p∗0) +

(
1− ρc0p

∗
0

p∗1

)
(p1 − p∗1) = 0, (4.3)

where c0 = exp(ψ0/2), p
∗
0 = expit(κ∗), and p∗1 = expit(κ∗ + ψ0). Again, if

the null hypothesis of interest is ψ0 = 0, (4.3) has the explicit solution κ∗ =

logit[(p0 + p1)/2], and their result agrees with ours.

5. Simulation Study

In this section we report the results of a simulation study for some of the

examples in the previous section in which the sample size formulae from previous

approaches disagree with that from our approach. We generated 10, 000 repli-

cated samples according to the marginal model in each setting. For each sample,

we estimated the parameters and implemented the tests. The empirical power

is given by the proportion of samples with test statistic value exceeding χ2
p,1−ζ .

The software SAS v9.2 was used to generate the data sets and calculate the test

statistics. Accuracy of the sample size formula is then determined by how close

the empirical power is to the nominal power. We set the type I error rate to be

ζ = 0.05 and the nominal power at 90%. The Monte Carlo standard errors of

the empirical powers reported in the simulation study are about 0.3%. In each

example, we also provide the sample size that generates empirical power closest

to the nominal power 90% in the simulation study and call it the “actual” sample

size.



242 ZHIGANG LI AND IAN W. MCKEAGUE

Table 1. Simulation results comparing our approach with Shih’s approach
in the two-sample comparison problem with a binary outcome and a cluster
level binary exposure. Sample sizes are for achieving a nominal power 90%
to detect different relative risks (p1/p0) at 0.05 significance level for different
correlations ρ. The reference risk p0 is fixed at 0.1 and ψ0 = 0. Empirical
powers are based on the Wald test. The “actual” are the sample sizes with
empirical powers closest to the nominal power 90%.

Our approach Shih’s approach “Actual”
RR ρ m Power (%) m Power (%) m Power (%)
2.5 0.20 156 89.82 172 92.43 158 89.96

0.50 195 89.47 215 92.28 196 90.03
0.80 234 89.40 258 92.68 238 90.06

3.0 0.20 95 89.32 110 93.65 96 90.11
0.50 119 89.52 138 93.52 122 90.49
0.80 142 89.45 165 93.25 144 89.86

3.5 0.20 65 89.11 79 93.85 66 89.87
0.50 81 88.20 99 94.28 84 89.62
0.80 97 88.76 118 94.45 100 89.98

5.1. Simulation results for binary outcomes and cluster level binary

exposures

Consider a special case of Example 4.2 involving a two-group comparison

study with common cluster size 2, binary outcomes (disease or non-disease) and

covariates xij ≡ xi = 1 (exposed) or 0 (unexposed), and zij ≡ 1 (intercept),

j = 1, 2. Suppose half of the clusters are unexposed and the other half exposed.

We set the reference risk of disease in the unexposed group to be p0 = 0.1, and

set ψ0 = 0. The simulation results are presented in Table 1. The empirical

powers of the sample sizes from Shih’s approach are substantially larger than the

nominal power 90%, whereas from our approach they are mostly within one or

two Monte Carlo standard errors of the nominal power. The sample sizes from

our approach almost coincide with the “actual”. Shih’s approach overestimates

the sample sizes by over 8% for the first three cases, and over 10% for the last six

cases. In particular, for the last three cases the sample sizes are overestimated

by about 18%. On the other hand, our approach is accurate to within about

1–3% for the first six cases and 1–4% for the last three cases. The reason for the

overestimation of sample size based on Shih’s method is unclear, but perhaps it

is due to the use of the limiting variance of
√
m(ψ̂−ψA) in the calculation of the

non-centrality parameter, as discussed in Remark 4 of Section 3.
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Table 2. Simulation results comparing our approach with Shih’s approach
in the sibling study with a binary outcome and a binary exposure. Sample
sizes are for achieving a nominal power 90% to detect different relative risks
(p1/p0) at 0.05 significance level for different correlations ρ. The reference
risk p0 is fixed at 0.1 and ψ0 = 0. Empirical powers are based on the Wald
test.

Our approach Shih’s approach “Actual”
RR ρ m Power (%) m Power (%) m Power (%)
2.0 0.10 238 90.34 251 91.72 236 90.02

0.15 225 90.31 238 91.85 220 90.03
0.20 213 90.93 225 91.95 209 89.96

2.5 0.10 118 90.16 130 92.91 118 90.16
0.15 112 90.69 124 93.18 109 90.08
0.20 106 90.70 117 93.37 102 89.96

3.0 0.10 72 90.05 84 93.67 72 90.05
0.15 68 89.75 79 93.90 68 89.75
0.20 65 90.36 75 93.88 64 90.00

5.2. Simulation results for sibling studies with binary outcomes and

binary exposures

First consider the sibling study (Example 4.3) with p0 = 0.1 and ψ0 = 0,

see Table 2. Shih’s approach still overestimates the sample size. The sample

sizes from our approach are all accurate to within 1–4% compared to the actual,

whereas Shih’s approach overestimates the sample sizes by 6–18%. Table 3 com-

pares our approach with LL when ψ0 changes to 0.5 (LL’s approach agrees with

ours when ψ0 = 0). The empirical powers of the sample sizes from our approach

are mostly within one Monte Carlo standard error of the nominal power, whereas

those from LL’s approach fall outside such limits.

6. Application to an Arsenic Study

Exposure to arsenic through drinking water represents a major threat to

human health (Karagas (2010)). Recently, a cohort study has been initiated by

the Children’s Environmental Health and Disease Prevention Center and Super-

fund Basic Research Program at Dartmouth College to investigate the impact of

arsenic exposure on the health of pregnant women and children in New England.

A primary aim of the study is to assess the association between arsenic expo-

sure during pregnancy and infant growth. Suppose the binary outcome ‘short

stature’ is to be recorded at 0.5, 1, 1.5, and 2 years of age, giving the clus-

ter size of n = 4 in model (4.2). The proportion of ‘short’ children (<5 years

of age) in New Hampshire is estimated to be 6.2% according to the Pediatric

Nutrition Surveillance (2009), and we use this information to specify the inter-

cept κ0 = log{0.062/(1 − 0.062)} = −2.717 corresponding to xi = 0 in (4.2).
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Table 3. Simulation results comparing our approach with LL’s approach in
the sibling study with a binary outcome and a binary exposure. Sample sizes
are for achieving a nominal power 90% to detect different effect sizes relative
risks (p1/p0) at 0.05 significance level for different correlations ρ. Risk p0 is
fixed at 0.1 and ψ0 = 0.5. Empirical powers are based on the quasi-score
test.

Our approach LL’s approach “Actual”
RR ρ m Power (%) m Power(%) m Power (%)
2.5 0.10 395 90.04 388 89.47 395 90.04

0.15 373 89.83 366 89.59 374 90.10
0.20 351 89.82 345 89.11 351 89.82

3.0 0.10 180 90.16 176 89.53 179 89.99
0.15 170 90.22 166 89.48 169 90.06
0.20 160 90.55 157 89.81 158 89.95

3.5 0.10 104 89.58 102 89.57 105 89.87
0.15 99 90.11 96 88.80 99 90.11
0.20 93 90.19 91 89.70 92 89.88

4.0 0.10 68 89.12 66 88.11 70 89.89
0.15 65 90.12 63 89.23 65 90.12
0.20 61 90.37 59 89.50 61 90.37

Data indicate that mean log-aresenic concentration (µg/L) in the water supply

in New Hampshire is −0.942, so in (4.2) we set xi = log-exposure−(−0.942).

Pilot data on the study population (Gilbert-Diamond et al. (2012)) show that

log-arsenic exposure is (approximately) distributed as N(−0.04, 4), so we specify

xi ∼ N(0.902, 4).

First we consider an AR(1) structure, ρij = ρ|i−j|. Pilot data on children’s

heights in this cohort were not provided, so it is not possible to estimate ρ and

we consider a range of values: ρ = 0.2, 0.5 and 0.8. For each ρ, we calculate

the sample size needed to detect an odds ratio of 1.5 (ψA = 0.406) due to a

unit increase in log-arsenic exposure (to achieve 90% power at significance level

0.05). Our approach gives sample sizes of 70, 105, and 157, and Shih’s gives

69, 103, and 154 for the values of ρ, respectively. Using LL’s approach with a

discretization of 150 equispaced values within 3 standard deviations of the mean

log-arsenic exposure, the sample sizes are 73, 109, and 164, respectively. Under

an exchangeable structure with ρij = ρ, for ρ = 0.2, 0.5 and 0.8, the sample

sizes are 84, 131, and 178 from our approach, 82, 128, and 174 from Shih’s, and

88, 137, and 185 from LL’s, respectively. In this example, we used Monte Carlo

integration in Step 5. SAS code is provided in the supplementary material.
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7. Discussion

We have developed a method to calculate sample size for studies with cor-

related data. Under the framework of marginal models, our approach gives the

same sample size formulae for the Wald and quasi-score tests. We study power

under a sequence of alternatives that converge at root-m rate to the null hy-

pothesis, and show that the statistics converge in distribution to a noncentral

chi-squared. Then we link the sequence of alternatives to a fixed alternative by

choosing a specific value of the local parameter vector h so that ψ1 is on the path

along which H1m converges to H0.

As shown in simulation study, our approach provides considerable improve-

ments in terms of accuracy. Hanfelt and Liang (1995) developed an approximate

likelihood ratio test for GEE, that could be used as the basis for power and sam-

ple size calculations. We conjecture that our approach could be extended to the

approximate likelihood ratio test and would lead to the same conclusion since

the likelihood ratio test is equivalent to the other two tests for independent data.

We used correlation to measure the association between binary outcomes.

An alternative to the correlation as a measure of association between pairs of

binary responses is the odds ratio, which has a more straightforward interpre-

tation. To estimate the odds ratio as a measure of association, a second set of

estimating equations (Lipsitz, Laird, and Harrington (1991); Carey, Zeger, and

Diggle (1993)) can be used. The power and sample size calculations approach

developed in the present paper can readily be adapted to these settings.

A referee raised the question of whether our approach could be extended to

ordinal or nominal outcomes. Lipsitz, Kim, and Zhao (1994) developed a GEE

for such outcomes; This could be handled under our local asymptotic approach,

but further work would be needed to develop a specific procedure. Another issue

raised by a referee concerns the handling of missing data. We refer the interested

reader to Robins, Rotnitzky, and Zhao (1995) who developed an inverse-weighted

GEE method for missing data. Again, further work would be needed to develop

a specific procedure.

Monte Carlo simulations are sometimes used to obtain power and sample size,

especially for complicated designs where explicit sample size formulae are hard to

derive. However, simulations have some serious disadvantages from a practical

perspective: they are time-consuming, computational expertise is needed and,

in the case of small sample sizes, the results can be highly sensitive to distribu-

tional assumptions. On the other hand, our formulae only require plugging a few

numbers into a calculator (or at most some routine numerical integrations), are

more appealing to practitioners, and distributional assumptions play a limited

role. With an explicit sample size formula, we are able to calculate the minimal

sample size to find the most efficient design strategy in the planning stages of
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a study. Even with complicated designs, where explicit formulae are not avail-

able, explicit sample size formulae are still useful for providing initial sample size

estimates that can later be refined using simulations.
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Appendix

Regularity conditions

(C1) The parameter space B is compact and β0 belongs to its interior.

(C2) There exists δ > 1 such that

c0 ≡ sup
m≥1

max
i=1,...,m

Eβm |hi(yi)|1+δ <∞ and c1 ≡ sup
m≥1

max
i=1,...,m

Eβm |yi|δ <∞,

where hi(yi) ≡ supb∈B |Ψi(yi, b)|.
(C3) For any bounded sequence {yi} with yi ∈ Rni , the functions b 7→ Ψi(yi, b)

are equicontinuous and uniformly bounded on B.
(C4) supi≥1 |Eb1{Ψi(yi, b)}−Eb∗1{Ψi(yi, b

∗)}| . |b1−b∗1|+|b−b∗| for all b1, b∗1, b, b∗
∈ B, where “.” means “smaller than up to a constant”.

(C5) For all ϵ > 0, infm≥1,|b−β0|>ϵ |fm,0(b)| > 0 = |fm,0(β0)|, where fm,0(b) =

Eβ0{m−1sm(b)}.
(C6) φi(y, b) = ∇bΨi(y, b) exists for all y ∈ Rni , b ∈ B, and its jth row (denoted

by φij(y, b) for later use) satisfies conditions (C1)–(C4) in place of Ψi(y, b),

for each j = 1, . . . , k.

(C7) There exists a neighborhood N of β0 such that supi≥1,j=1,...,k |Vij(b) −
Vij(β0)| . |b − β0| for all b ∈ N , where Vij(b) is the jth column of

Varb(Ψi(yi, β0)).

(C8) The elements of (1/m)Mm(β0) and (1/m)
∑m

i=1Varβ0(Ψi(yi, β0)) converge

to finite limits, where Mm(β) = −Eβ0{∇βsm(β)}.
(C9) M(β0) = limm→∞{m−1Mm(β0)} is non-singular.
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Remark 5. Condition (C2) is slightly stronger than the corresponding condition

in Shao, namely that supiE|hi(yi)|1+δ <∞ and supiE|yi|δ <∞ for some δ > 0;

we need the stronger condition because in our case the distribution of yi is

changing with sample size. The consistency result established in the first part

of the proof of Theorem 1 still holds if we replace δ > 1 by δ > 0 in (C2), but

we need δ > 1 for the asymptotic normality result. Condition (C3) is also a

little stronger because we make the additional assumption that the functions are

uniformly bounded on B. Similar to the existence of a well-separated point of

maximum in Theorem 5.7 in van der Vaart (1998), (C5) requires that fm(b) has

a unique zero β0, and only values close to β0 yield a value of fm(b) close to zero.

(C4) and (C7) are Lipschitz conditions.

Remark 6. Under marginal models, (1/m)Mm(β0) and (1/m)
∑m

i=1 varβ0(Ψi(yi,

β0)) in (C8) reduce to (1/m)
∑m

i=1D
T
i V

−1
i Di and

1

m

m∑
i=1

DT
i V

−1
i Cov(yi|zi,xi)V −1

i Di,

respectively; These are important components of the covariance matrix of the

GEE estimator developed in Liang and Zeger (1986). Also, the matrix M(β0) in

(C9) is the inverse of the asymptotic covariance of
√
m(β̂ − β0) if the working

correlation is correctly specified.

Sketch of proof of Theorem 1

The detailed proof is provided in Section 6 of the supplementary material. Under

(C1)–(C5), it can be shown that β̂
Pm→ β0 and ψ̂

Pm→ ψ0 by adapting the proof of

Theorem 5.7 of van der Vaart (1998).

By using the extra conditions (C6)–(C9), we can further show that
√
m(β̂−

β0) converges in distribution under Pm to N(h∗,Σβ0), where h
∗ = (0Tk−p, h

T )T

and 0k−p is the (k − p)-dimensional zero vector. The proof is completed by

noticing that ψ̂ = Bβ̂.

Sketch of proof of Theorem 2

The detailed proof is provided in Section 7 of the supplementary material.

Asymptotic distribution of Wm

The first step is to show that Σ̂ converges in probability under H1m to Σβ0 .

Thus BΣ̂BT converges in probability under H1m to BΣβ0B
T . From Theorem 1,√

m(ψ̂ − ψ0) converges in distribution under H1m to N(h,BΣβ0B
T ). There-

fore, by Slutsky’s Lemma and the Continuous Mapping Theorem, Wm con-

verges in distribution under H1m to noncentral χ2
p with non-centrality parameter

ν = hT (BΣβ0B
T )−1h.
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Asymptotic distribution of Tm
An estimate λ̃ of the nuisance parameter vector λ under H0 is needed to calcu-

late the quasi-score statistic. For this purpose it suffices to use the first k − p

estimating equations, so λ̃ can be taken as a solution of Csm(λ, ψ0) = 0, where

C = (I(k−p), 0(k−p)×p). Recall that λ̃ and ψ0 combine to form β̃. Write the

quasi-score statistic as

Tm =
{
m−1/2Bsm(β̃)

}T (
m−1VT

)−1
{
m−1/2Bsm(β̃)

}
.

It can be shown that Tm is asymptotically equivalent to Wm, concluding the

proof.

Contents of supplementary material

Detailed proofs, derivations of the sample size formulae, outlines of LL’s and

Shih’s approaches, and SAS code for calculating the sample sizes in the arsenic

example.
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