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Abstract: The marginal proportional hazards frailty model for multivariate failure

time data characterizes the intracluster dependency with the frailty model while

formulating the marginal distributions with the proportional hazards model. The

gamma frailty distribution has been widely used to model intracluster dependency

because of its simple interpretation and mathematical tractability. Glidden (2000)

proposed a two-stage method for estimating the dependence parameter under the

marginal proportional hazards frailty model when the frailty follows a gamma dis-

tribution. The goodness of fit test for the marginal proportional hazards model

has been proposed by Spiekerman and Lin (1996). In this paper, we provide a

graphical as well as a numerical method for checking the adequacy of the gamma

frailty distribution. The test process is derived from the posterior expectation of

the frailty given the observable data. The critical value can be obtained by a Monte

Carlo simulation. Two examples from genetics studies are provided to illustrate the

proposed testing procedure.
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1. Introduction

Multivariate failure time data arise when there are clusters and the subjects
within each cluster are correlated. Examples include the tumor occurrence in the
litter-matched experiment, the onset of schizophrenia among family members and
the development of a disease to paired organs. In many statistical studies, it is of
particular interest to investigate the intracluster dependency. There has been a
substantial research effort toward describing the dependency structure for multi-
variate failure time data in recent years. A number of authors, including Vaupel,
Manton and Stallard (1979), Clayton and Cuzick (1985), Hougaard (1987), Oakes
(1989) and Nielsen, Gill, Andersen and Sørensen (1992), have studied frailty mod-
els in which the nature of dependence is modeled parametrically. However, these
models pose considerable difficulties with respect to estimation and goodness of
fit. To bypass the difficulties caused by the intracluster dependency, Wei, Lin and
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Weissfeld (1989) proposed the marginal proportional hazards model. It assumes
that the marginal distributions for the correlated failure times satisfy the Cox
model while leaving the dependence structure completely unspecified. Spieker-
man and Lin (1998) extended this idea to a more general setting and established
a large sample theory for the estimates of regression parameters and cumulative
baseline hazard functions.

Suppose that there are n independent clusters. Each cluster consists of K
distinct failure types, each of which has L exchangeable failure times. Let Tikl

and Cikl denote the failure and censoring times for the lth realization of the kth
failure type within the ith cluster. The p-dimensional vector Zikl denotes a set
of covariates. Let Ti be the vector (Tikl, k = 1, . . . ,K; l = 1, . . . , L) with Ci and
Zi defined similarly. Assume that (Ti, Ci, Zi), i = 1, . . . , n, are independent and
identically distributed with Ti and Ci independent given Zi. Assume that the
|Zi| are bounded almost surely and the censoring is noninformative conditional
on Zi. Write Xikl = Tikl

∧
Cikl and �ikl = I(Tikl ≤ Cikl), where a

∧
b = min(a, b)

and I(·) is the indicator function. Under right censoring, the observed data are
{Xikl,�ikl, Zikl, i = 1, . . . , n; k = 1, . . . ,K; l = 1, . . . , L}.

Under the frailty model of Vaupel, Manton and Stallard (1979), the intra-
cluster dependency is induced by a frailty variable, ξ, which is common to all
members of a cluster. Let ξi be a value of ξ associated with the ith cluster.
Conditional on ξi, the failure times within the cluster are independent. The
conditional hazard function of Tikl is given by

lim
h↓0

h−1Pr(t ≤ Tikl < t+ h | Tikl ≥ t, ξi, Zikl) = ξiαikl(t|Zikl), (1)

where {αikl(t|Zikl)} are termed basic hazard functions. Assume that the random
effects ξi follow a gamma distribution with mean one and variance θ0. Murphy
(1994, 1995) provided a asymptotic theory for the estimates of the dependence
parameter θ0 and the integrated version of the basic hazard functions. Nielsen
et al. (1992) studied (1) when the basic hazard functions follow the proportional
hazard model and the frailties ξi have a gamma distribution. A maximum like-
lihood estimate was proposed and implemented using the EM algorithm.

The marginal proportional hazards frailty model postulates the intracluster
dependency of (1) while formulating the marginal hazard functions λikl(t | Zikl)
for Tikl with the following proportional hazards model:

λikl(t | Zikl) = λ0k(t) exp(βT
0 Zikl), (2)

where λ0k(·), k = 1, . . . ,K, are the unspecified baseline functions and β0 is the
regression parameter. As discussed by Spiekerman and Lin (1998), (2) is very
flexible, easy to interpret and mathematically appealing. Under the gamma
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frailty distribution, the marginal hazard functions and the basic functions are
related by αikl(t|Zikl) = exp{θ0

∫ t
0 λikl(s|Zikl)ds}λikl(t|Zikl). Glidden (2000) pro-

posed a two-stage estimate for the dependence parameter θ0. The marginal
hazard functions λikl(t|Zikl) can be estimated by the method of Spiekerman and
Lin (1998).

The gamma frailty distribution has been widely used on parametric mod-
eling of intracluster dependency because of its simple interpretation and math-
ematical tractability (Vaupel, Manton and Stallard (1979), Clayton (1978) and
Oakes (1982, 1986)), although many other parametric distributions are possible
(Hougaard (1986a, 1986b, 1987), Vaupel (1990) and Aalen (1990)). In some
settings there is justification for the assumption that the frailty follows a distri-
bution skewed to the right, such as the gamma or lognormal distribution (Aalen
(1988)). Under a gamma frailty structure, some key joint quantities can be
efficiently estimated (Glidden and Self (1999)). However, the simplicity and effi-
ciency may be offset by the sensitivity of the estimation to the assumed frailty
distribution. Shih and Louis (1995a) showed that different frailty distributions
induce quite different dependence structure. Therefore, it is necessary to exam-
ine the adequacy of the gamma frailty distribution for intracluster dependence
when applying the statistical procedures.

Shih and Louis (1995b) proposed a graphical method for assessing the gamma
distribution assumption when the basic functions are parametric and do not de-
pend on covariates. Glidden (1999) developed a test for the gamma frailty model
without parameterizing the basic hazard functions when covariates are not in-
volved. In this paper, we suggest a two-stage method for checking the adequacy
of the marginal proportional hazards gamma frailty model. In the first stage, the
goodness of fit test from Spiekerman and Lin (1996) can be applied for checking
the marginal proportional hazards assumption. This paper focuses on the sec-
ond stage, which is to test for the gamma frailty model. We extend Glidden’s
(1999) idea for checking the semiparametric gamma frailty model to the marginal
proportional hazards frailty model. The two-stage testing procedure provides a
model check for using the two-stage method of Glidden (2000). A graphical, as
well as a numerical, method for checking the gamma frailty distribution is de-
veloped. The proposed test is based on the posterior expectation of the frailties
given the observable data over time. Its distribution under the assumed model
can be approximated through simulating certain zero-mean Gaussian processes.
The Monte Carlo simulations show that the proposed test has reasonable sizes
and powers.

The rest of this article is organized as follows. In Section 2, the model check-
ing test process is derived from the posterior expectation of the frailties given the
observable data over time and a supremum-type test statistic is proposed. The
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asymptotic properties of the test process are examined. We show that the test
process can be approximated by the sum of independent identically distributed
(i.i.d.) processes, which provides a basis for simulating the distributions of the
test process and the test statistic, under the gamma frailty model. In Section
3, the finite sample performance of the supremum test is studied under some
gamma frailty models and through a few specific alternative models. The graph-
ical diagnoses for these models are also demonstrated. In Section 4, the graphical
and numerical techniques for model checking are illustrated through two exam-
ples. Finally, the relevant asymptotic results and their proofs are sketched in the
Appendix.

2. Test for the Gamma Frailty Distribution

2.1. Test statistic

Based on the posterior expectation of the frailty given the observed data,
Glidden (1999) proposed model checking of the gamma frailty model for multi-
variate failure times without considering covariate variables. We extend his idea
to model checking for (1) and (2) where covariate effects are modeled through the
marginal proportional hazards model. We focus on checking whether the frailty
random effects, ξi, i = 1, . . . , n, follow a gamma distribution. For identification
purposes, we assume that the gamma distribution has mean one and variance θ,
denoted by Gamma(1, θ). The true value of θ is denoted by θ0.

Let Yikl(t) = I(Xikl ≥ t) and Nikl(t) = �iklI(Xikl ≤ t). The observed data
up to time t is represented by the filtration Ft = σ{Nikl(s), Yikl(s), Zikl : 0 ≤ s ≤
t; i = 1, · · · , n; k = 1, · · · ,K; l = 1, · · · , L}. Let ξi0(t) = E(ξi|Ft) be the posterior
expectation of ξi given Ft. Then theMi(t) = Ni..(t)−∑K

k=1

∑L
l=1

∫ t
0 ξi0(s−)Yikl(s)

exp{θ0Λikl(s)} dΛikl(s) are Ft-martingales, where Λikl(t) =
∫ t
0 λikl(s|Zikl) ds and

Ni··(t) is the summation of Nikl(t) over indices l and k; see Nielsen et al. (1992).
Throughout the paper, we denote the summation over a subscript by replacing
the subscript with “·”.

Let Ri(t, θ0) =
∑K

k=1

∑L
l=1 exp{θ0Λ0k(t ∧ Xikl)eβ

T
0 Zikl} − KL + 1. Under

the gamma frailty model, by the arguments of Nielsen et al. (1992), condi-
tional on Ft, ξi has the gamma distribution with parameters θ0−1 +Ni..(t) and
θ0

−1Ri(t, θ0). Thus, ξi0(t) = E(ξi|Ft) = {1 + θ0Ni..(t)}/Ri(t, θ0). The processes
ξ10(t), . . . , ξn0(t) are independent and identically distributed with mean one. De-
note the normalized sum of the ξi0’s by

Wn(t) = n−1/2
n∑

i=1

{
1 + θ0Ni..(t)
Ri(t; θ0)

− 1
}
. (3)

It follows from Glidden (1999) that Wn(t) = n−1/2 ∑n
i=1

∫ t
0 Hi(s)dMi(s), where

the Hi(t) = θ0/Ri(t; θ0) are Ft-predictable processes. The process Wn(·) is the
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sum of n independent and identically distributed Ft-martingales. Standard mar-
tingale theory shows that Wn(·) converges to a zero mean Gaussian process. The
processWn(·) given in (3) provides a natural basis for model checking procedures.
Replacing the unknown parameters and functions in Wn(t) by their respective
sample estimates, we define the test process

Ŵn(t) = n−1/2
n∑

i=1

{
1 + θ̂Ni..(t)
R̂i(t, θ̂)

− 1
}
, (4)

where θ̂ is the Glidden two stage estimate of frailty parameters for the marginal
proportional hazards frailty model (Glidden (2000)), R̂i(t, θ̂) =

∑K
k=1

∑L
l=1 exp

{θ̂Λ̂0k(t ∧ Xikl)eβ̂
T Zikl} −KL + 1, β̂ is the maximum likelihood estimate (mle)

based on the quasi-partial likelihood function, and Λ̂0k is the Aalen-Breslow
type estimate (Spiekerman and Lin (1998)). The estimating functions for these
estimates are omitted to save space. Note that Ŵn(t) is the normalized difference
between the estimates of the posterior mean of frailties and the mean of frailties
under the null hypothesis H0 that the frailties follow a gamma distribution. We
propose the following supremum type test statistic to measure the maximum
derivation of “the observed” from “the expected” given by

Sn = sup
0≤t≤τ

|Ŵn(t)|, (5)

where τ > 0 is some constant, which can be considered as the end of follow-up
time. A large value of Sn indicates that the frailties do not follow a gamma
distribution. In subsequent subsections, we study the asymptotic distributions
for Ŵn(t), 0 ≤ t ≤ τ , and Sn and propose a Monte Carlo procedure to estimate
the asymptotic critical values for the test statistic Sn.

2.2. Asymptotic representation for Ŵn(t)

Assume the regularity conditions (a)−(c) stated in the Appendix. We now
introduce the following notations for the convenience of derivation. For k =
1, . . . ,K and r = 0, 1, 2, let S(r)

k (β, t) = n−1 ∑n
i=1

∑L
l=1 Yikl(t)eβ

T ZiklZ⊗r
ikl , Ek(β, t)

= S
(1)
k (β, t)/S(0)

k (β, t) and Vk(β, t) = S
(2)
k (β, t)/S(0)

k (β, t) − Ek(β, t)⊗2, where
a⊗0 = 1, a⊗1 = a and a⊗2 = aaT . Let s(r)k (β, t) = E{S(r)

k (β, t)}, where E denotes
expectation. Let ek(β, t) and vk(β, t) be similarly defined as Ek(β, t) and Vk(β, t)
by replacing S(r)

k (β, t), r = 0, 1, 2, with their respective expectations. Define the
norm ‖f(t)‖ = supt∈[0,τ ] |f(t)| for a function f : [0, τ ] → R.

In the following, we show that the test process Ŵn(t) can be approximated
by the sum of i.i.d. processes. Let

f̃(t) =
1
n

n∑
i=1

1
Ri(t, θ0)

[
Ni..(t) − ξi0(t)

K∑
k=1

L∑
l=1

exp{θ0Λ0k(t ∧Xikl)eβ
T Zikl}
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×Λ0k(t ∧Xikl)eβ
T Zikl

]
,

g̃k(u, t) = − 1
n

n∑
i=1

L∑
l=1

θ0R
−1
i (t, θ0)ξi0(t) exp{θ0Λ0k(t∧Xikl)eβ

T Zikl}eβT ZiklYikl(u),

h̃(t) = − 1
n

n∑
i=1

K∑
k=1

L∑
l=1

[
θ0ξi0(t)R−1

i (t, θ0) exp{θ0Λ0k(t ∧Xikl)eβ
T Zikl}

×Λ0k(t ∧Xikl)eβ
T ZiklZikl

]
.

Replace θ0, β0 and Λ0k(t) above, respectively, by θ̂, β̂ and Λ̂0k(t) to obtain f̂(t),
ĥ(t) and ĝk(u, t). By Example 2.11.14 of van der Vaart and Wellner (1996), under
conditions (a)−(c), f̃(t), h̃(t) and g̃k(u, t) converge in probability uniformly to
some cadlag functions f(t), h(t) and gk(u, t) as n→ ∞. By the consistency of θ̂,
β̂ and Λ̂0k(·) and conditions (a)−(c), it also follows that f̂(t), ĥ(t) and ĝk(u, t)
converge in probability uniformly to f(t), h(t) and gk(u, t) as n→ ∞.

By Theorem 2 of Spiekerman and Lin (1998) and some probability arguments
similar to Glidden (1999), we have Ŵn(t) = W 0

n(t)+op(1), uniformly in t ∈ [0, τ ],
where

W 0
n(t) =Wn(t) + n1/2f(t)(θ̂ − θ0) + n1/2

K∑
k=1

∫ t

0
gk(u, t)d{Λ̂0k(u) − Λ0k(u)}

+n1/2hT (t)(β̂ − β0). (6)

Now, we note that each of the terms n1/2(θ̂−θ0), n1/2(β̂−β0) and n1/2(Λ̂0k(t)
−Λ0k(t)) can be approximated by the sums of i.i.d. random processes according
to Spiekerman and Lin (1998) and Glidden (2000). Let Mikl(t) = Nikl(t) −∫ t
0 Yikl(u)λ0k(u)eβ

T
0 Zikl(u)du and wi.. =

∑K
k=1

∑L
l=1

∫ τ
0 {Zikl − ek(β0, u)}dMikl(u).

Then n1/2(β̂−β0) = Σ−1
1 n−1/2 ∑n

i=1 wi..+op(1), where Σ1 =
∑K

k=1

∫ τ
0 vk(β0, u)s

(0)
k

(β0, u)λ0k(u)du. It also follows that n1/2[Λ̂0k(t) − Λ0k(t)] = n−1/2 ∑n
i=1 Ψik(t) +

op(1), where Ψik(t) =
∫ t
0 (s(0)k (β0, u))−1dMik.(u) + rk(t)T Σ1

−1wi.. and rk(t) =
− ∫ t

0 ek(β0, u)λ0k(u)du.
Let Hikl =

∫ τ
0 Yikl(u)eβ

T
0 ZikldΛ0k(u) and Ri(θ) =

∑K
k=1

∑L
l=1 e

θHikl −KL+1.
The Ĥikl and R̂i(θ) are obtained by replacing β0 with β̂ and Λ0k(t) with Λ̂0k(t).
The pseudo log-likelihood function for θ is given by

l̂n(θ) = n−1
n∑

i=1

[ ∫ τ

0
log(1 + θNi..(u))dNi..(u) +

K∑
k=1

L∑
l=1

θNikl(τ)Ĥikl

−{θ−1 +Ni..(τ)} log(R̂i(θ))
]
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for θ 	= 0, and l̂n(0) is defined as the limit of l̂n(θ) as θ → 0, which is −n−1 ∑n
i=1∑K

k=1 Ĥikl. The estimate θ̂ of θ0 maximizes l̂n(θ). Let In(θ) be the negative
second derivative of the log-likelihood l̂n(θ) with respect to θ, and let I(θ) be
its limit as n → ∞. Then

√
n(θ̂ − θ0) = n−1/2I−1(θ0)

∑n
i=1 ri + Op(1), where

Υi = εi(θ0) +
∑K

k=1

∫ τ
0 πk(u)dΨik(u) + F T Σ−1

1 wi..,

εi(θ0) =
∫ τ

0

Ni..(u−)
1 + θ0Ni..(u−)

dNi..(u) +
K∑

k=1

L∑
l=1

Nikl(τ)Hikl

−{θ−1
0 +Ni..(τ)}R−1

i (θ0)
K∑

k=1

L∑
l=1

Hikle
θ0Hikl + θ−2 log{Ri(θ0)},

for θ0 	= 0, and εi(0) is the limit of εi(θ0) as θ0 goes to 0. The πk(t) and F are
defined in Glidden (2000, p.147) as the limits in probability of the π̃k(t) and F̃

in the following:

π̃k(t) = n−1
n∑

i=1

L∑
l=1

eβ
T ZiklYikl(t)

[
− {θ−1

0 +Ni..(τ)}R−1
i (θ0)(1 + θ0Hikl)eθ0Hikl

+θ−1
0 R−1

i (θ0)eθ0Hikl +Nikl(τ)

+{1 + θ0Ni..(τ)}eθ0HiklR−2
i (θ0){

K∑
k=1

L∑
l=1

Hikle
θ0Hikl}

]
,

F̃ = n−1
n∑

i=1

K∑
k=1

L∑
l=1

ZiklHikl

[
− {θ−1

0 +Ni..(τ)}R−1
i (θ0)(1 + θ0Hikl)eθ0Hikl

+θ−1
0 R−1

i (θ0)eθ0Hikl +Nikl(τ)

+{1 + θ0Ni..(τ)}eθ0HiklR−2
i (θ0){

K∑
k=1

L∑
l=1

Hikle
θ0Hikl}

]
.

Again, the values of π̃k(t) and F̃ at θ0 = 0 are defined as their respective limits
as θ0 → 0. Replacing β, θ0 and Λ0k(t) by β̂, θ̂ and Λ̂0k(t) in π̃k(t) and F̃ to
obtain π̂k(t) and F̂ , respectively. Some simple probability arguments show that
π̂k(t) and F̂ are consistent estimates of πk(t) and F .

Note that Wn(t) is the sum of independent and identically distributed Ft-
martingales. From previous arguments, we have

Ŵn(t) = n−1/2
n∑

i=1

Φi(t) + op(1), (7)

Φi(t) =
∫ t

0
Hi(u)dMi(u)+f(t)I−1(θ0)Υi +

K∑
k=1

∫ t

0
gk(u, t)dΨik(u)+hT (t)Σ−1

1 wi...

(8)
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It can be shown that the finite dimensional distributions of Ŵn(t) converge to
those of a Gaussian process. Along with the tightness of Ŵn(t), the weak con-
vergence of Ŵn(t) to a mean zero Gaussian process G(t) can be established; see
the Appendix for the details.

2.3 Test procedure

Based on the weak convergence of the test process Ŵn(t) to the mean zero
Gaussian process G(t), 0 ≤ t ≤ τ , it follows from the Continuous Mapping The-
orem that Sn = sup0≤t≤τ |Ŵn(t)| d−→ sup0≤t≤τ |G(t)| under H0 as n→ ∞. Since
the limiting distribution of the test statistic Sn under H0 is very complicated, we
apply a similar simulation idea of Lin, Wei and Ying (1993) to approximate the
limiting distribution of Ŵn(t), and thus the critical values of the test.

First, we propose a consistent estimate for the covariance function Cov {G(t),
G(s)} for s, t∈ [0, τ ]. Notice that the covariance function is equal to E{Φ1(t)Φ1(s)}.
Replace the unknown functions and parameters by their corresponding estimates
in Φi(t) to get Φ̂i(t). Specifically, this involves the following replacements: f(t),
gk(u, t), h(t), πk(t), F , I(θ0) by f̂(t), ĝk(u, t), ĥ(t), π̂k(t), F̂ , In(θ̂), respectively;
and β, θ0, Λ0k(t), s

(r)
k (t, β) for r = 0, 1, 2, ek(t, β) and vk(t, β) by β̂, θ̂, Λ̂0k(t),

S
(r)
k (t, β̂) for r = 0, 1, 2, Ek(t, β̂) and Vk(t, β̂), respectively. We show in the

Appendix that n−1 ∑n
i=1 Φ̂i(t)Φ̂i(s) is a consistent estimate of the covariance

function E{Φ1(t)Φ1(s)}.
Let {G1, . . . , Gn} be independent standard normal random variables, inde-

pendent of the original multivariate failure time data. Define

W̃n(t) = n−1/2
n∑

i=1

Φ̂i(t)Gi. (9)

It follows that W̃n(t) given on the observed multivariate failure time data is a
Gaussian process with covariance at the times s, t equal to n−1 ∑n

i=1 Φ̂i(t)Φ̂i(s),
which converges to the asymptotic covariance function of Ŵn(t). Some details
are given in the Appendix that, under H0, the conditional distribution of W̃n(t)
given the observed data approximates the distribution of Ŵn(t) as n→ ∞.

Thus, to approximate the null distribution of Ŵn(t), 0 ≤ t ≤ τ , we can
obtain a number of simulated realizations from W̃n(t), 0 ≤ t ≤ τ , by repeatedly
generating independent normal random samples {Gi, i = 1, . . . , n} while holding
the observed data fixed. Lack of fit of the hypothesized gamma frailty model
could be checked graphically by plotting Ŵn(t) along with a number of realiza-
tions, say 20, from W̃n(t) conditional on the observed data. Any unusual pattern
from the plots of Ŵn(t) in comparing with those from W̃n(t), would suggest a
lack of fit.
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A formal numerical test based on the test statistic Sn given in (5) can be ob-
tained by using the Monte Carlo simulation technique to approximate its critical
values. Let S̃n = supt∈[0,τ ] |W̃n(t)|, and cn(α) be the (1 − α)th sample quantile
calculated from B replications of S̃n, each of which is obtained by generating
i.i.d. standard normal random variables. The value of cn(α) depends on the ob-
served data. The proposed test rejects the null hypothesisH0 if Sn > cn(α). Note
that cn(α) converges in probability to the (1 − α)th quantile of sup0≤t≤τ |G(t)|
under H0 when the sample sizes n and B both tend to infinity. This implies that
the significance level of the proposed test converges to its nominal level α. In
practice, we recommend B ≥ 1000 for approximation of a critical value.

3. Numerical Studies

In this section, we carry out a Monte Carlo study to assess the finite sample
performance of the proposed test for several models with various sample sizes
and different censorship. The empirical sizes and powers are calculated based
on 1000 repetitions. The critical values of the test Sn is estimated from 500
simulated realizations from W̃n(t).

To examining the size of the proposed test, we consider two null models.
For the first model, we assume that the covariate is discrete, and the failure
times within each cluster share a common baseline hazard function, i.e., K =
1. The number of failure times within each cluster is L = 2. Specifically, we
let the two failure times within a cluster share the common marginal baseline
function λ01(t) = 1 and let β0 = 1. The covariates are given by Zi11 = 0
and Zi12 = 1. If the frailty follows the gamma distribution with mean 1 and
variance θ0, then the joint survival function for the failure times (Ti11, Ti12) is
S(t1, t2; θ0) = {exp(θ0t1) + exp(θ0e1t2) − 1}−θ−1

0 .

The second model has continuous covariates with L = 1 and K = 2, i.e.,
the two failure times in each cluster have different baseline hazard functions.
Assume that λ01 = 1, λ02 = 2 and β0 = 1, and that the continuous covariates
Zikl, (i = 1, . . . , n; k = 1, 2; l = 1) are generated from the uniform distribution
on [0, 1]. Then the marginal hazards for Ti11 and Ti21 are λi11 = eZi11 and
λi21 = 2eZi21 , respectively. Under the gamma frailty, the joint survivor function

of Ti11 and Ti21 is S(t1, t2; θ0) =
[
exp{θ0eZi11t1} + exp{2θ0eZi21t2} − 1

]−θ−1
0
.

The empirical sizes of the proposed test are given in Table 1 under gamma
frailty model for three different sample sizes (n = 50, 100, 200), three different
degrees of association (θ0 = 2, 4, 6) and two types of censorship (0% and 20%).

To check the power of the test, we consider two alternative models with the
same marginal models as the two null models described, except that the frailties
are generated from a positive stable distribution with parameter a, say P (a),
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given by the Laplace transform E{exp(−sξ)} = exp(−sa). The powers of the
proposed test are also given in Table 1 under the stable model for three different
sample sizes (n = 50, 100, 200), three different values of a (a = 0.1, 0.2, 0.3) and
two types of censorship (0% and 20%).

Table 1. Empirical sizes/power of the proposed test under different models
at nominal level α = 0.05.

Sample size n = 50 n = 100 n = 200
Censoring 0% 20% 0% 20% 0% 20%

Gamma frailty model Size of test

Discrete θ0=2.0 0.017 0.019 0.020 0.011 0.019 0.020
K = 1, L = 2 θ0=4.0 0.025 0.028 0.041 0.032 0.029 0.020

θ0=6.0 0.042 0.034 0.056 0.044 0.042 0.030

Continuous θ0=2.0 0.012 0.012 0.016 0.016 0.013 0.026
K = 2, L = 1 θ0=4.0 0.053 0.025 0.051 0.031 0.040 0.025

θ0=6.0 0.068 0.034 0.079 0.053 0.090 0.048

Positive stable model Power of test

Discrete a0=0.1 0.622 0.411 0.919 0.708 0.998 0.922
K = 1, L = 2 a0=0.2 0.590 0.417 0.918 0.709 1.000 0.949

a0=0.3 0.479 0.341 0.827 0.588 0.994 0.881

Continuous a0=0.1 0.744 0.440 0.996 0.924 1.000 0.999
K = 2, L = 1 a0=0.2 0.808 0.582 0.993 0.946 1.000 1.000

a0=0.3 0.643 0.437 0.953 0.831 1.000 0.993

The proposed tests have acceptable sizes in most settings, although they tend
to be more conservative when θ0 is small. The powers are reasonable in both cases
when the covariates are chosen to be discrete or continuous. In a simulation study
not reported here, we find that as L gets larger, more information is contained
in each cluster for the unknown parameters and both empirical size and power
of the test improve significantly.

The plots of Ŵn(t) for a typical sample of n = 100 from each of the two null
models, with β0 = 1.0, θ0 = 2 and 20% of censoring, along with 20 realizations
from W̃n(t) are given in Figure 1(a) and Figure 1(b), respectively. The p-values
shown on these plots are calculated based on 1,000 simulated realizations from
W̃n(t). These p-values along with the plots indicate that the gamma frailty model
is suitable for describing the dependence structure in the sample data. The plots
of Ŵn(t) for a typical sample of n = 100 from each of the two alternative models,
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with β0 = 1.0, a = 0.3 and 20% of censoring, along with 20 realizations from
W̃n(t), are given in Figures 2(a) and Figure 2(b), respectively. Each of these
figures shows clearly that the observed test process departs significantly from
the 20 realizations of W̃n(t) which, along with the p-value, indicates that the
dependence structure within the clusters is not induced by the gamma frailty
model.
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Figure 1(a). Graphical displays of Ŵn(t) versus 20 realizations of W̃n(t) for
a typical sample from the first null model with discrete covariate for K = 1,
L = 2, θ0 = 2.0, β0 = 1.0 and sample size n = 100.
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Figure 1(b). Graphical displays of Ŵn(t) versus 20 realizations of W̃n(t) for
a typical sample from the second null model with continuous covariate for
K = 2, L = 1, θ0 = 2.0, β0 = 1.0 and sample size n = 100.
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Figure 2(a). Graphical displays of Ŵn(t) versus 20 realizations of W̃n(t) for
a typical sample from the first alternative model with discrete covariate for
K = 1, L = 2, a0 = 0.3, β0 = 1.0 and sample size n = 100.
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Figure 2(b). Graphical displays of Ŵn(t) versus 20 realizations of W̃n(t) for a
typical sample from the second alternative model with continuous covariate
for K = 2, L = 1, a0 = 0.3, β0 = 1.0 and sample size n = 100.

4. Examples

In this section, we apply our model checking methods to two previously ana-
lyzed data sets in the literature. The main interest lies in checking the goodness
of fit of the marginal proportional hazards frailty model, and studying a possible
correlation between the individuals under study. In our illustration, the p-value
for the supremum-type test is always based on 1,000 simulated samples from
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supt∈[0,τ ] |W̃n(t)|. In each graphical display, the observed process Ŵn(t) is indi-
cated by a solid curve and 20 simulated realizations from W̃n(t) are plotted in
dotted grey curves. The p-values for the supremum test are shown on the graph.

4.1. The schizophrenia study

Dr. Ann E. Pulver of Johns Hopkins University conducted a genetic epidemi-
ological study of schizophrenia (Pulver and Liang (1991)). In the study, 487 first
degree relatives (273 males, 214 females) of 93 female schizophrenic probands
were enrolled. The number of relatives of a single proband ranges from 1 to
12. There are 31 episodes of affective illness (depression or mania or both) out
of the 487 relatives in the current database. An important question is whether
the risk of affective illness in the relatives is associated with the age at onset of
schizophrenia of the proband.

Lin (1994) analyzed this data set using the marginal proportional hazards
model where two covariates are considered. One covariate is the proband’s age
which is dichotomized at 16 years, the other is gender. From the result of pa-
rameter estimation, the proband’s age at onset is not significant whereas the
relative’s gender is. Glidden (2000) fit the data using the marginal proportional
frailty model. We perform a goodness-of-fit test of the marginal proportional
frailty model for the schizophrenia data.

The failure time here is the age at diagnosis of affective illness for the rel-
ative. Among relatives of the same proband, the failure times are expected to
be correlated. We assume that gender is the only characteristic that differen-
tiates relatives of the same proband. It is natural to define the covariates Zikl

(i = 1, . . . , 93; k = 1; l = 1, . . . , 12) as

Zikl =

{
1 if the lth relative to the ith proband is male
0 if the lth relative to the ith proband is female .

We fit the marginal proportional hazards frailty model with a common marginal
baseline hazard among all the relatives. The estimate of θ0 is 1.416 with an
estimated standard error 1.091, the estimate of β0 is −1.239 with an estimated
standard error 0.408. The p-value of the supremum test is equal to 0.609. Figure
3(a) displays the observed test process Ŵn(t) along with 20 simulated realizations
from W̃n(t). Neither graphical nor numerical results provide any evidence against
the marginal proportional hazards frailty model.

4.2. The litter-matched tumorigenesis experiment

The study published by Mantel, Bohidar and Ciminera (1977), see also Man-
tel and Ciminera (1979), is a litter-matched tumorigenesis experiment with one
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drug treated rat and two placebo treated rats per litter, 50 female litters and 50
male litters. One might expect that the risk of tumor formation depends on the
genetic background or the early environmental conditions shared within litters,
but differing between litters. There could be an intralitter correlation in time to
tumor appearance, the event of interest. Times are given in weeks and deaths
before tumor occurrence and yield right-censored observations. In a subset of 50
female litters in this experiment, 40 out of 150 female rats developed a tumor.

Nielsen et al. (1992) used the EM algorithm with the whole data set to
estimate the parameters in the proportional hazards frailty model. Restricting
attention to the female rates, Hougaard (1986a) analyzed the data based on both
a parametric model with Weibull margins and a Cox type model while Clayton
(1991) used Gibb’s sampling.

We fit the marginal proportional hazards frailty model with K = 1, L = 3
and a common baseline hazard among all the individuals in each cluster. The
covariates Zikl (i = 1, . . . , 50; k = 1; l = 1, 2, 3) are given by

Zikl =

{
1 if the rat has the drug treatment
0 if the rat has the placebo treatment.

The two-stage estimate of θ0 is 0.888 with an estimated standard error of 0.519.
The estimate of β0 is 0.856 with an estimated standard error of 0.297. The
p-value is 0.308. Figure 3(b) shows the plot of the observed test Ŵn(t) versus
20 simulated realizations from W̃n(t). Neither the p-value nor the plot indicate
lack-of-fit of the marginal proportional hazards frailty model.
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Figure 3(a). Graphical displays of Ŵn(t) versus 20 realizations of W̃n(t) for
the schizophrenia study data.
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Figure 3(b). Graphical displays of Ŵn(t) versus 20 realizations of W̃n(t) for
the litter-matched tumorigenesis study data.

Appendix

We present some asymptotic results of the proposed test procedure with
proofs. The following additional conditions are assumed. For some τ > 0: (a)
P{Xikl≥τ}>0 for all i, k and l; (b) each component of the variate Zikl is bounded
almost surely for all i, k and l; (c) Σ1 =

∑K
k=1

∫ τ
0 vk(β0, u)s

(0)
k (β0, u)λ0k(u) du is

positive definite. The conditions (a) to (c) with the i.i.d. assumption imply the
conditions a.-f. of Spiekerman and Lin (1998).

Let D[0, τ ] be the set of all uniformly bounded real-valued functions on
[0, τ ], endowed with the uniform metric. In the following, we state the relevant
asymptotic results and provide a sketch of the proofs.

Theorem 1. Under the gamma frailty model, Ŵn(t) converges weakly to a
mean zero Gaussian process G(t) in D[0, τ ], as n→ ∞, with covariance function
Cov {G(t),G(s)} = E{Φ1(t)Φ1(s)} for s, t ∈ [0, τ ], where Φ1(t) is given in (8).

Proof. From the arguments in Section 2, Ŵn(t), 0 ≤ t ≤ τ , is asymptotically
equivalent to W 0

n(t), 0 ≤ t ≤ τ , given in (6). So it is sufficient to show the
weak convergence of W 0

n(t), 0 ≤ t ≤ τ , which follows from the convergence of
the finite-dimensional distributions of W 0

n(t) to those of G(t) and the tightness
of W 0

n(t) by Theorem V.3 (Pollard (1984, p.92)).
By (7), (8) and the application of the Multivariate Central Limit Theorem

(Billingsley (1995, p.357)), the finite-dimensional distributions of the process
W 0

n(t), 0 ≤ t ≤ τ , converge to those of G(t), 0 ≤ t ≤ τ .
By the definition of tightness under the uniform metric, the tightness of

W 0
n(t), 0 ≤ t ≤ τ , will follow from the tightness of each of the following terms of
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(6) on 0 ≤ t ≤ τ . Let Q1(t) = n−1/2 ∑n
i=1

∫ t
0 Hi(s)dMi(s), Q2(t) = n1/2f(t)(θ̂ −

θ0), Q3k(t) = n1/2
∫ t
0 gk(s, t)d{Λ̂0k(s) − Λ0k(s)} and Q4(t) = n1/2hT (t)(β̂ − β0).

By Theorem VIII.13 (Pollard (1984, p.179)), we have the weak convergence of
Q1(t), which implies the tightness of Q1(t).

It can be easily checked that the functions f(t), h(t) and gk(s, t) are cadlag
functions on 0 ≤ s ≤ τ , 0 ≤ t ≤ τ . The tightness of Q2(t) and of Q4(t) follows
from the weak convergence of n1/2(θ̂ − θ0) and n1/2(β̂ − β0). Simple calculation
also shows that the functions gk(s, t), (s, t) ∈ [0, τ ]2 for 1 ≤ k ≤ K have bounded
variations. By the weak convergence of n1/2(Λ̂0k(t)−Λ0k(t)), 0 ≤ t ≤ τ , and the
Skorohod-Dudley-Wichura representation (Shorack and Wellner (1986, p.47)),
we have the weak convergence of Q3k(t), therefore the tightness of Q3k(t), on
0 ≤ t ≤ τ .

Theorem 2. Under the gamma frailty model, n−1 ∑n
i=1 Φ̂i(t)Φ̂i(s) converges in

probability to E{Φ1(t)Φ1(s)} as n→ ∞, uniformly for s, t ∈ [0, τ ].

Proof. By Example 2.11.14 of van der Vaart and Wellner (1996), under the
conditions (a)−(c), n−1 ∑n

i=1 Φi(t)Φi(s)
P−→E{Φ1(t)Φ1(s)}, uniformly for s, t ∈

[0, τ ]. So it suffices to show that |n−1 ∑n
i=1 Φ̂i(t)Φ̂i(s)−n−1 ∑n

i=1 Φi(t)Φi(s)| → 0
in probability as n→ ∞, uniformly for s, t ∈ [0, τ ]. Note that

n∑
i=1

{Φ̂i(t)Φ̂i(s)−Φi(t)Φi(s)} =
n∑

i=1

{Φ̂i(t)−Φi(t)}Φ̂i(s)+
n∑

i=1

{Φ̂i(s)−Φi(s)}Φi(t).

It remains to show that

max
1≤i≤n

sup
0≤t≤τ

|Φ̂i(t) − Φi(t)| = op(1),

max
1≤i≤n

sup
0≤t≤τ

|Φ̂i(t)| = Op(1), (10)

max
1≤i≤n

sup
0≤t≤τ

|Φi(t)| = Op(1).

Examining each term of Φi(t) given in (8) and each term of Φ̂i(t) as described
following (8), by the consistency of θ̂, β̂, Λ̂0k, and In(θ̂) and the conditions
(a)−(c), (10) follows from some routine probability arguments. We omit the
lengthy and tedious details.

Theorem 3. Under the gamma frailty model, conditional on the observed data
sequence, W̃n(t) converges weakly to G(t) in D[0, τ ] as n→ ∞.

Proof. By Theorem 3 and the Multivariate Central Limit Theorem (Billingsley
(1995, p.357)), the finite-dimensional distributions of W̃n(t), 0 ≤ t ≤ τ , given the
observed data sequence, converge to those of G(t), 0 ≤ t ≤ τ . Now we show that
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the process W̃n(t), 0 ≤ t ≤ τ , given the observed data sequence, is also tight.
We check the extension to the moment condition of Billingsley (1968, p.128)
established by McKeague and Zhang (1994, p.506). For t1 ≤ t ≤ t2,

E
[
{W̃n(t) − W̃n(t1)}2{W̃n(t2) − W̃n(t)}2

∣∣∣∣data
]

= 3n−2
n∑

i=1

{Φ̂i(t) − Φ̂i(t1)}2{Φ̂i(t2) − Φ̂i(t)}2

+3n−2
n∑

i,k=1,i�=k

{Φ̂i(t) − Φ̂i(t1)}2{Φ̂i(t2) − Φ̂i(t)}2

≤ 3n−1
n∑

i=1

{Φ̂i(t) − Φ̂i(t1)}2 n−1
n∑

i=1

{Φ̂i(t2) − Φ̂i(t)}2 + op(1)

P−→ E{Φi(t) − Φi(t1)}2 E{Φi(t2) − Φi(t)}2,

uniformly in 0 ≤ t1 ≤ t ≤ t2 ≤ τ by (10). By (8),

E{Φi(t) − Φi(t1)}2 ≤ 4E{
∫ t

t1
Hi(u)dMi(u)}2 + 4{f(t) − f(t1)}2I−2(θ0)EΥ2

i

+4E
[ K∑

k=1

{
∫ t

0
gk(u, t)dΨik(u) −

∫ t1

0
gk(u, t1)dΨik(u)}

]2

+E [hT (t)Σ−1
1 wi.. − hT (t1)Σ−1

1 wi..]2.

Examining each of the above terms carefully, under the conditions (a)−(c) we
can find a nondecreasing, continuous function ψ(t) on [0, τ ] such that E{Φi(t) −
Φi(t1)}2 ≤ ψ(t) − ψ(t1). This completes the proof.
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