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Abstract: Multivariate varying-coefficient models are popular statistical tools for
analyzing the relationship between multiple responses and covariates. Nevertheless,
estimating large numbers of coefficient functions is challenging, especially with
limited samples. In this work, we propose a reduced-dimension model based on
the Tucker decomposition that unifies several existing models. In addition, we
use sparse predictor effects, in the sense that only a few predictors are related
to the responses, to achieve an interpretable model and sufficiently reduce the
number of unknown functions to be estimated. These dimension-reduction and
sparsity considerations are integrated into a penalized least squares problem on the
constraint domain of third-order tensors. To compute the proposed estimator, we
propose a block updating algorithm based on the alternating direction method of
multipliers and manifold optimization. We also establish the oracle inequality for
the prediction risk of the proposed estimator. A real data set from the Framingham
Heart Study is used to demonstrate the good predictive performance of the proposed
method.
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1. Introduction

Varying-coefficient models (VCMs, |Hastie and Tibshirani (1993))) are popular
structured regression models that have reasonably flexible nonparametric com-
ponents and can be estimated well with a moderate amount of data (Ruppert,
Wand and Carroll| (2003))). In VCMs, the regression coefficients of the predictors
vary with an observable exposure variable. VCMs have been studied extensively
in literature and are widely used in practice; see, for example, Hoover et al.
(1998), [Huang, Wu and Zhou| (2002), Park et al. (2015, and the references
therein. For settings with a large number of predictors (possibly larger than the
sample size), Wang, Li and Huang (2008]) use basis function expansions and the
smoothly clipped absolute deviation (SCAD) penalty to address the problem of
variable selection. |Wei, Huang and Li (2011) and Lian (2012) apply an adaptive
group least absolute shrinkage and selection operator (lasso) and spline function
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approximations to simultaneously identify the relevant predictors and estimate
the varying-coefficient functions of those that have been selected. The latter
works also obtain the rate of convergence and variable-selection consistency for
their estimators under suitable conditions. Xue and Qu (2012)) use a truncated
¢1-penalty (TLP) to select variables, and obtain the oracle properties for their
varying-coefficient estimator. To enhance the computational scalability, feature
screening techniques for the VCM are considered in |[Fan, Ma and Dai| (2014)
and Liu, Li and Wu (2014), who propose to rank the marginal nonparametric
contributions of each predictor, given the exposure variable, and investigate sure
independent screening properties.

In many applications, multiple responses are jointly observed with the
predictors and the exposure variable. For instance, the Framingham Heart
Study (Dawber, Meadors and Moore Jr| (1951)) collected multiple phenotype
variables from patients to identify common factors related to cardiovascular
diseases. Obviously, one can simply model each response variable separately
using VCMs. Together, these models are viewed as a regression model for
the multivariate response, called an unstructured multivariate varying-coefficient
model (MVCM). One challenge associated with such models is the significant
number of coefficient functions required to be estimated. More specifically, we
need to estimate pg functions if there are p covariates and ¢ responses. To
circumvent this problem, one may use structures among these pq functions.
He et al.| (2018a) propose a principal-component-based approach in which they
assume the coefficient functions can all be approximated by linear combinations of
a much smaller number of unknown functions. However, they do not explore the
correlations between the responses, and their method cannot handle the settings
with a large number of responses. |Lian and Ma| (2013 assume a low-rank
structure in the conditional means of the responses of the samples. However,
their model does not consider the correlations between the predictors and/or the
varying coefficients. Furthermore, they do not propose an efficient algorithm to
solve their penalized least squares problem.

In this work, we propose a novel method using dimension-reduction tools of
tensors (Kolda and Bader| (2009))) to handle an MVCM in a high-dimensional
setting. In particular, we show that dimension reductions in the predictors,
the space of the coefficient functions, and the responses correspond to the low
rankness in the first, second, and third modes, respectively, of a third-order
tensor. Thus, we propose using the Tucker decomposition (Tucker| (1966)) to
integrate these three dimension reductions into a simple notion of low multilinear
rank. The models of He et al| (2018a) and [Lian and Ma/ (2013 can be viewed
as special cases of our proposed model. In addition, sparse predictor effects,
in the sense that only a few predictors are related to the responses, is often
a reasonable assumption in high-dimensional settings. The aforementioned
dimension-reduction and sparsity considerations can be incorporated into the
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estimation procedure by using a penalized least squares problem on the constraint
domain of third-order tensors. To compute the proposed estimator, we design a
block updating algorithm based on the alternating direction method of multipliers
(ADMM, Boyd et al.| (2011) and manifold optimization (Edelman, Arias and
Smith (1998); Absil, Mahony and Sepulchre| (2009)). We also establish the oracle
inequality for the prediction risk of the proposed estimator.

The rest of the paper is organized as follows. In Section 2, we introduce
the proposed reduced MVCM using the Tucker decomposition. The estimation
method and computational details are presented in Sections 3 and 4, respectively.
We establish the oracle inequality for the prediction risk of the proposed estimator
in Section 5. We use both a simulation study and a real-data application
in Section 6 to illustrate the practical performance of the proposed method.
The main contributions of this paper are summarized in Section 7 with some
concluding remarks. Technical details are provided in the online Supplementary
Material.

2. Model

Let y = (y1,...,Y,)7, * = (x1,...,2,)7, and ¢ be the g-dimensional vector
of responses, the p-dimensional vector of predictors, and the exposure variable
with compact domain 7, respectively. Without loss of generality, we assume
T = [0,1]. Each response is posited to follow a univariate-response VCM, that
is,

p
Ui :ijl(t)flfj—i-q, lzl,...,q, (21)
j=1

where {f;,(t)} are the coefficient functions and {¢;} are the noise variables, with
mean zero and variance o7. These noise variables are independent of (x,t). By
setting x; = 1, the model can accommodate an intercept function. In vector-
matrix notation, can be written as

y=F()"x +e¢, (2.2)

where F(t) = (fji(t))pxq and € = (€1,...,¢6,)T. We call the full model
of MVCM, in which pq varying-coefficient functions need to be estimated
nonparametrically.

When pq is relatively large, there are huge numbers of nonparametric
functions, which are difficult to estimate accurately with a small or moderate
amount of data. To cope with this challenge, Lian and Ma| (2013) assume a
rank-R3 structure on the matrix of coefficient functions, with R; < ¢, aiming
to reduce the model complexity among the responses. Specifically, |[Lian and Mal
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(2013) proposed reducing the full MVCM (2.2) to
y=CF(t)"x +¢, (2.3)

where C' € R% | with CTC = Ip,, and F(t) is a matrix of p x R unknown
functions. Model implies that the means of the responses conditional on
the predictors and the exposure variable are Rs linearly dependent among the
samples. Compared with , the number of parameters is reduced to pRs
functions, together with a g x R3 coefficient matrix. |He et al. (2018al) propose
a functional principal-component-based approach that assumes all pq coefficient
functions can be well approximated by a small number of R, unknown data-driven
principal functions B(t) = (51(t), ..., Br,(t))T. More precisely, they assume that
the vectorized F'(t) can be represented by vec{F(t)} = D3(t), with a coefficient
matrix D € RP9*F2. Then, the conditional mean of the responses in the full

MVCM reduces to
E(y|z,t) = vec{x"F(t)} = (I, @ x")vec{F(t)} = (I, ® 7)) DJ(t). (2.4)

For model identifiability, the principal functions 3(t) are required to be orthonor-
mal, that is,

/ BHBM)T dt = In,.
:

Thus, one only needs to estimate R, principal functions and a px Ry X g coefficient
tensor for a reduced MVCM in . In the univariate-response VCM, that is,
q = 1, Jiang et al.|(2013) propose another principal component VCM. Specifically,
treating the [th response in as a single response, the model of [Jiang et al.
(2013)) is equivalent to

y = filt)TATxT + ¢, (2.5)

where fi(t) is a vector of R; unknown functions, and A € RP*f is the principal
loading matrix. Overall, Models , , and encompass dimension
reductions within the responses, the coefficient functions, and the predictors,
respectively.

However, it is difficult to compare the above models because they employ
different methods for dimension reduction. In this work, we observe that these
models can be unified into a general model that allows simultaneous reductions
and provides a coherent understanding of these methods. To illustrate this idea,
we begin with the form of . Denote § € RP*F2%4 a5 a third-order tensor
satisfying 5’(2) = DT. Model can be written as

y=1{S x:8(t)}x +e, (2.6)

where X, denotes the 2-mode (vector) product of a tensor with a vector (Kolda
and Bader| (2009))). More precisely, the result of the d-mode (vector) product of a
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S € RP*R2xq B(t) ERRz  §X, B(t) € RP*4

Figure 1. An illustration plot of the coefficient functions matrix in (2.6)) using a tensor
formulation and the 2-mode (vector) product.

S € RR1XR2%R3 A € RP*R1 S XlA € RP*Rz2XRs

Figure 2. An illustration plot of the d-mode (matrix) product of a tensor and a matrix.

generic Nth-order tensor & = (g, i, i) € RI¥2X %IV and a vector v € R is
a tensor of order N — 1, with dimension Iy X +-- X Iy 1 X I411 X -+ X Iy, such that
its (i1, ..+, 0d—1,%d+1,- - ., iy )th element is Eszl Vi, Givia,...in - Lhis reformulation
shows that exploring the correlations between the varying-coefficient functions is
equivalent to the dimension reduction on the second mode of a third-order tensor.
Figure 1 illustrates the corresponding matrix of coefficient functions in using
this tensor-vector product. Similarly, the correlations between the predictors and
the responses are related to dimension reductions on the first and third modes,
respectively.
Therefore, to simultaneously explore all reductions, we propose

y:{S X1A><3C >7<2,6(t)} ;(1.’17"‘6, (27)

where X, denotes the d-mode (matrix) product of a tensor with a matrix (Kolda
and Bader| (2009))), for d = 1,2,3; B(t) is a vector of R, unknown principal
functions; and § € Rf1xF2xRBs = A ¢ RP>*Fr and C € R¥*%s are coefficients to
be estimated. We depict S x; A in Figure 2 to illustrate the d-mode (matrix)
product of a tensor with a matrix.

Similarly to |Jiang et al. (2013), |Lian and Ma] (2013), and [He et al.| (2018a)),
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we require A, C, and 3(t) to be orthonormal, that is,
ATA=1I,, C'C=1In, and / BUHBWNTdl = In,.  (28)
T

The multilinear structure of the varying coefficients S x; A x3C X, 3(t) coincides
with the Tucker decomposition (Tucker| (1966)) for a third-order tensor. We

observe that Models (2.3)), (2.4), and (2.5)) are all special cases of Model (2.7). In

particular, removing the first and second mode reductions in (2.7) and writing

S x, A X,8(t) = F(t), 27) can recover (2.3). Furthermore, (2.4) can be

obtained directly by letting S = S x; A x3 C. Finally, singling out A and
treating ¢ = 1 in S x5 C X, 3(t) recovers (2.5). Therefore, each mode in the
decomposition S x; A x3 C X, 3(t) corresponds to one of the aforementioned
reduced models.

Note that the constraint does not guarantee the identifiability of the
proposed model . Indeed for any U € RF2*R2 with UUT = Iy,, we have

{8 x1 Ax3C %3 B(t)}Tx = [(Sx,U) x; A x3 C %2 {UB(1)}] .

In other words, (S,A,C,3(t)) and (S x2 U, A,C,UB(t)) result in the same
reduced MVCM model. However, we need only identify the regression coefficient
functions F'(t) to understand the reduced MVCM , which is fulfilled, because
F(t) = 8 x; A x3 C X33(t). In terms of computation, these identifiability
issues may lead to algorithmic instability. Therefore, we introduce some further
regularizations on (S, A, C, 3(t)) in Section 3 to obtain an efficient algorithm.

3. Penalized Least Squares Estimation

To estimate the parameters in our reduced MVCM , we first approximate
the principal component functions 3(t) using splines. Specifically, let b(t) =
(bi(t),...,bx(t))T be a vector of orthonormal B-spline basis functions with
dimension K. For the rth principal component function f,,(t), we write

K
187‘2 (t) ~ Z kazbk(t)’
k=1

where { By, ., } are the corresponding spline coefficients. Denote B,, = (B, .-,
Bk .,)T. We stack B,,, for 7, = 1,..., Ry, into a matrix of coefficients, and let
B = (By,...,Bg,) € REX2 Moreover, we require B satisfies the constraint
B™B = Ig,, which leads to the orthonormality of 3(t) in . Ignoring the
approximation error, Model can then be written as

Yy = {S X1 A >7<2BTb(t) X3 C}TZB + €

_ 3.1
:{S XlAXQBX3C ng(t)}T$+€. ( )
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The above basis expansion enables us to recast the problem of estimating
the varying coeflicients of the reduced model as that of estimating the
parameters (S, A, B,C), where § € Rfttxf2xRs = A ¢ RP¥M with ATA = Iy,
B € RE*f2 with BTB = Ig,, and C € R%”%: with CTC = Ip,. Given
independent and identically distributed (i.i.d.) copies {(y;,®:,t;)}" of (y,x,1),
we consider the constrained least squares estimator

argminz ly: = {S x1 A x5 B x5C X, b(ti)}T:sz’
i=1

S,A,B,C ‘=

st. ATA=1I,, BTB=1Ip, C°C =1,

(3.2)

In and (3.2)), S x; A x5 B x5 C is the Tucker decomposition of a third-
order tensor. In particular, letting G = Sx; Ax,Bx3C, we have rank; (G) < Ry,
ranks(G) < R,, and rank;(G) < Rs, where rank,(-) denotes the d-rank of a tensor
(Kolda and Bader| (2009))), for d = 1,2,3. We depict the Tucker decomposition
representation of model in Figure 3. For further discussions on the Tucker
decomposition and its relationship with other tensor decompositions, such as the
CANDECOMP /PARAFAC (CP) decomposition (Harshman| (1970])) and tensor-
train decomposition (Oseledets| (2011))), we refer the readers to |[Kolda and Bader
(2009). Using the form of the Tucker decomposition, the least squares problem

(3.2) is equivalent to
argmin ¥ _ ||y, — {G %2 b(t;)}Tz,|, st ranky(G) < Ry, d=1,2,3. (3.3)
G =1

The benefits of using a low-rank structure in tensor regression models rather than
simply flattening the covariate tensor to a matrix or a vector are discussed in
Zhou, Li and Zhu| (2013)), [Li et al. (2018)), and /Ahmed, Raja and Bajwa, (2020).
Note that our problem is different from those in existing works on the Tucker
tensor regression (Li et al. (2018)) and its generalizations (Lu, Zhu and Lian
(2020); Ahmed, Raja and Bajwa| (2020)) in two aspects. First, is not the
proposed model, but merely an approximation of the target nonparametric model
. Second, we study a multivariate response y, whereas |Li et al.| (2018); [Lu,
Zhu and Lian (2020); Ahmed, Raja and Bajwa (2020) all assume the response
variable is a scalar.

For a large value of pq, the dimension reduction in terms of a low-rank Tucker
decomposition may not lead to an accurate estimation for the varying coefficients.
Many applications expect the responses to have similar/related structures, and
thus share many important predictors. Furthermore, the union of these important
predictors usually has a small size. In other words, we assume that only s (s <
p and unknown) predictors are relevant for predicting all the responses. This
assumption is shown to be suitable for many real-world applications; see, for
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Figure 3. The Tucker decomposition representation of model (3.1)).

example, [Wang, Li and Huang| (2008)); Wei, Huang and Li (2011)) and
, among many others. We use a sparsity-inducing penalization to filter out
the irrelevant predictors during the estimation. To formulate a suitable penalty
function, we use the Tucker decomposition G = S x; A X3 B x5 C again, and

rewrite (3.1)) as

y={G x:b(t)}Tx +e={I,®b(t)}G,)z + €, (3.4)

where G(1) € RP*9¥ is the mode-1 matricization (unfolding) of tensor G, and
® is the Kronecker product of matrices (]Kolda and Bader| (2009)). Let G’(Tl)) ;
denote the jth row of G, for j = 1,...,p. In light of (3.4), all unknown
coefficients associated with the jth predictor are contained in G’(T1 Therefore,
(1),3 = 0.
Borrowing the idea from the group lasso penalization (Yuan and Lin/ (2006)), we
propose the following penalized least squares problem:

the jth predictor becomes irrelevant whenever the coefficient matrix G

arg(r;ninz ||yl {G X, b(t;)}Tx; H + ZAHG 1,12
=1
s.t. rank,(G) < Ry, d = 1,2, 3, (3.5)

where || - ||2 is the group lasso penalty, and A > 0 is the penalty parameter.
Note that Gy = ASyH(C ® B)T. Let a] be the jth row of A. Then,
G{,); = a]S1)(C ® B)T. Due to the orthonormal conditions of B and C, we

have [|G1y,;ll2 = la] S1)(C ® B)T||; = ||aj S()|l2- Therefore, (3.5)) is equivalent
to

S,A,B,C

p
argmlnz ||yz — {S X1 A Xo B X3 C X2 (E)}T%Hi + Z )\”(IJS(UHQ,
=1

Gt ATA— In,, BB=1Iy, C'C = Iy, (3.6)
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Let (S’ A B C) be a solution of | - Correspondlngly, a solution of 1.’ can
be constructed as G = S><1A><QB ><3C' (or, equivalently, G(l) = AS’(U(C®B) ).
The resulting estimated f;;(t) becomes

K
f]l Z Gribr(t) (3.7)
k=1

where @jkl is the (j, k,1)th element of G. We provide a theoretical analysis of
the proposed estimation in Section 5.

4. Computation

To calculate the estimator, we propose a block updating algorithm to solve
the problem given in , that is, updating S, A, B, and C alternately while
keeping the other components fixed. To facilitate the discussion, we let £(S, A,
B, C) be the objective function in for a given A, and denote the squared
loss and the penalty by

H(S. A B.C) = 3l — (8 %1 A B s O %, b(t:)} i ;
and P(S,A) Z)\Ha Sz,

respectively. Denote S, A®) B® and C® as the tth iteration (t > 1) of S, A,
B, and C, respectively, in the proposed algorithm. When we update one block
with the other blocks fixed, we use H and/or P with suitable subscripts to simplify
the objective functions with respect to the target block. For example, when A®),
B® and CY are fixed, we let Haw pow.cw(S) = H(S,AY, B® C®) and
Pawy(S) = P(S, A®) be the functions with respect to S. Analogously, we have
HS(6+1)7B(t)’C(t)(A), Hs(t+1)7A(t+1)7c(t> (B), and Ps(t+1>(A). The details for each
block are discussed in the following subsections.

4.1. Updating S

Using the properties of vectorization (unfolding of a tensor) and the d-mode
(matrix) product (Kolda and Bader| (2009)), we can rewrite H o) g o (S) and
PA(t)(S) as

Haw po cn(S) = Z ly; — [CY @ {b7(t,) B} @ (2] AD)]vec{ S }||2

i=1

and Py (S) = )\ZH t) )TSw |2,
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respectively, where Sy € Rf*f2f ig the mode-1 matricization (unfolding) of
the tensor S, vec(-) is the vectorization operator, and (ag.t))T is the jth row of
A® . Thus, updating S is equivalent to obtaining the solution of

siin . Hawpo,cw (8) + Paw (S). (4.1)
Because P4 (S) is not differentiable, we propose using a majorization-minimiza-
tion (MM) algorithm. The acronym can also stand for minorization-maximization
if one aims to find the maximum of an objective function; see, for example, [Hunter
and Lange (2004). MM algorithms are useful extensions of the well-known class
of EM algorithms, in which the E-step is equivalent to a minorization step. To
construct the majorized function for Py (S), we extend the MM algorithm of the
lasso penalty (Hunter and Li (2005)) to the group lasso penalization. Moreover,
since is an objective function with respect to a tensor, some tensor operations
need to be considered and applied to this subproblem. See Section S.1.1 of the
Supplementary Material for more details, where Algorithm S.1 summarizes the
proposed MM algorithm to update S.

4.2. Updating A

Similarly to Section 4.1, we use the properties of vectorization and the d-mode
(matrix) product (Kolda and Bader| (2009)) to rewrite Hgus1) gy oo (A) as

Hyon o o (A) = 5 3 o= [{[CO0 b7 () BOY (S157) " 0T vee( 4)

To simplify the updating procedure for A, we first remove the orthonormal
constraint on A and update A in the Euclidean space. An orthonormalization
step is added in the outer loop to project the updated A back to an orthonormal
matrix. The subproblem of A without the orthonormal constraint can then be
written as

min { Hg ) pio oo (A) + Poen (4) } (4.2)

where Pgein(A) = AD2F_, H(§(<§)“>)Taj\|. Because there is no analytic solution
to , we propose using the ADMM (Gabay and Mercier| (1976)). Denote
g(z) = ||z|| and introduce the slack variable v; € Rf2fs for j = 1,...,p. We
rewrite the optimization problem as

p
Iglil{l {ngm,B(t),c(t) (A)+A Zlg(’)’j)} , st I'= AS((Srl)a (4.3)
j:

)

where T' = (v1,792,...,7,)7- In (4.3), the constraint is equivalent to ~; =
(S((f;rl))Taj, for j = 1,2,...,p. The corresponding augmented Lagrangian
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function is

2

 (4.4)

2

p
p 1
LoAT0) = Hso o con(4) + 3D gt + 5| 4850 -1+ L
j=1

where v € RP*F28s g the dual variable.

We defer the detailed analysis of to Section S.1.2 of the Supplementary
Material, in which Algorithm S.2 summarizes the proposed ADMM algorithm.
Let A®+D denote the output of Algorithm S.2 for A. To project A**+D onto the
space of orthonormal matrices, we further let qr. Q( A+ ) and qr. R(A (t+1)) be
the Q and R factors of the QR decomposition of At+D), respectively. Here, we
require the R factor to have positive diagonal elements for the QR identiﬁability.
We update AY as qr.Q(A™), and then update S(t+1 as qr.R(AD). S'((;Ll).
By using the inverse of the mode-1 unfolding on S((Srl), S+ is also obtained.
Note that the direct output of Algorithm S.2 does not result in the exact row
sparsity of Av(t“)g((fﬂ). To select the variables in our algorithm, we output
the slack variable I'**!) in Algorithm S.2 as an auxiliary result, and replace
Av(t“)g((i)ﬂ) with T**D. Due to the constraint of the slack variable in (4.3)), the
difference between these two terms is sufficiently small. The output of T'*+1) in
Algorithm S.2 remains unchanged after applying the above orthonormalization
step.

4.3. Updating B
We let the orthogonal Stiefel manifold be

St(Ry, K) = {B € R"*2 . BTB = Iy, }. (4.5)

Using the properties of the d-mode product of a tensor and a matrix (Kolda and
Bader| (2009)), we can rewrite Hge+1) ac+n o (B), and update B from solving
the optimization problem

B = (4.6)
2

argmin Hy — ({CV @ (2T AT HSEV YT @ b7 (k) vee(B))|

BeSH(Ry,K) —] 2

where S,y is the mode-2 matricization of tensor S§. Note that the objective
function in is a smooth function with respect to B on the Stiefel manifold
, so we can use the manifold gradient method (Absil, Mahony and Sepulchre
(2009))), which is an extension of the gradient descent algorithm to the manifold
space. Algorithm S.3 in Section S.1.3 of the Supplementary Material specializes
our implementation to use the gradient descent algorithm on the Stiefel manifold.
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4.4. Updating C

Using S(3) as the mode-3 matricization (unfolding) of tensor S, we can rewrite

BD) s

y=CS{(b"(t)B) ® (xTA)}T + €.

Denote Y = (y1,...,y.)T € R™? and MY = (Mg)l,,Mg)n)T € RxFs
where M), = {bT(t;)BU*) (w}A(t+1))}(S((;rl)) € Rfs fori=1,...,n. We
then focus the following subproblem to update C':

CY = argmin [[Y - Mlcr, (4.7)
which is known as the orthonormal Procrustes problem (Gower and Dijksterhuis
(2004)). Fining the solution to this problem is equivalent to determining the
nearest orthonormal matrix of YTM((;). Therefore, write the singular value
decomposition of YTMg ) as

Y MY =USVT, (4.8)

where U € R?”*fs and V' € R¥*%s are orthonormal matrices, and 3 € Rfs*%s g
a diagonal matrix with nonnegative values in its diagonal. The analytic solution

to (4.7) can be obtained as
ct) =yvT, (4.9)

4.5. Summary and initializations

Here, we summarize the block updating algorlthm in Algorlthm 1. To achieve
a sparse solution, the output of Algorlthm 1is G 1 = I‘(C ® B) . We can
then reconstruct G from the estimated G(l by using the inverse of the mode-1
unfolding, and obtain the estimator of the varying coefficients using .

For the subproblems of S and A, owing to convexity, we can show that
the corresponding MM algorithm generates a sequence converging to the unique
minimizer of each subproblem, using similar arguments to those for Corollary
3.3 of [Hunter and Li (2005). We thus use random initializations for S and A
at the first iteration of the outer loop. Then, we set the outputs of S and A
from the preceding iteration of the outer loop as the initialization values for the
next iteration of the outer loop. For C, the corresponding subproblem for this
component can be written as an orthogonal Procrustes problem that has a closed-
form solution and, thus, no initialization is needed for C'. Finally, the subproblem
for B is not convex due to the orthonormal constraint, and the proposed manifold
gradient descent algorithm uses only the first-order information on the objective
function, which may not guarantee the convergence to a local minimizer (Absil,
Mahony and Sepulchre| (2009)). Therefore, although Algorithm 1 can guarantee a
sequence of decreasing values of the objective function, it is unclear whether this
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Algorithm 1: Block Updating Algorithm to Solve (3.6]).
Input: Data set {y;, X;,;}7 ;; Random initial points
SO ¢ RExxR2xRs A(0) ¢ RpxFr BO) € St(Ry, K),C© € St(Rs, q),
andt=0.
Output: Gy =T(C ® B)T.
repeat
1. Update S+1) using Algorithm S.1.

2. Update A(+1) using Algorithm S.2 and THD for variable selection.
3. After the QR decomposition of A¢+D  let AG+D and S((Srl) be
qr.Q(A®D)Y and qr.R(AHD). §((i)+1), repectively.

4. Update B**Y using the manifold gradient descent method (Algorithm
S.3).

5. Update C**Y) = UVT as in (£.9), with U and V defined in (&.8).
6. t=t+ 1.

until £(SE) A+ B+ ) _ £(8§® A® B® C®) < e. Denote
T =T+, € =CctY, and B = Bt+D,

algorithm can guarantee the convergence to a global minimizer. Nevertheless,
Absil, Mahony and Sepulchre (2009)) show that using any sub-sequence of the
iterations generated by the manifold gradient descent algorithm converges to the
stationary point of the subproblem. We can thus run Algorithm 1 from multiple
initializations of B and return the best result. However, this is computationally
expensive. Instead, we propose using a rough estimator B™ as an initial point
for the manifold optimization of B. Specifically, at the (¢ 4 1)th iteration, define

é = argmin _HS(t+1)7A(t+1)7c(t) (B),
BERKXR2
which can be solved easily, since the objective function is differentiable with
respect to B in the Euclidean space. Next, we simply project B onto the Stiefel
manifold, and let the projection be the initial point, that is,

Binit — PSt(Rg,K) (é) _ é(éré)—l/z‘

We use the above B™ as the initial value in Algorithm S.3 when we update B.
Our numerical experiments show that this strategy is not only faster than using
multiple random initializations but also generates stable iteration sequences.
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4.6. Tuning parameters

Our model has a total of six tuning parameters (m, K, Ry, Ry, R, \), where
m is the order of the spline basis, K is the number of basis functions, (R, R2, R3)
are the Tucker ranks, and A is the regularization parameter. We first fix the spline
order m = 4 (cubic spline) to alleviate the computational burden of estimating
nonparametric functions (Ruppert, Wand and Carroll (2003)). For the number K
of spline basis functions, many data-driven methods have been proposed to decide
K based on the sample size (see, e.g., Huang, Wu and Zhou! (2002, [2004)); Ruppert,
Wand and Carroll| (2003)), and the references therein) in empirical studies. To be
computationally simple, we follow the strategy used in Fan, Ma and Dail (2014)
by letting K = [2n!/®], where [-] denotes rounding to the nearest integer. The
knots of spline basis functions are also data-driven, and chosen as equally spaced
quantiles. We find this empirical rule works well in all of our experiments. For
the choice of Rs, which corresponds to the dimension reduction associated with
the responses, we conduct a singular value decomposition of the response matrix
Y € R*"*%. We then choose R3 such that the first R; dominant singular values
together account for at least 90% of the sum of all singular values. For (Ry, R)
and A, we apply the hold-out method (He et al.| (2018b); Hannun et al.| (2019)) in
our numerical study, for its computational efficiency. More precisely, we randomly
split the available data into two subsets: a training set with 75% of the samples,
and a validation set with 25% of the samples. We set the validation samples
aside, and use Algorithm 1 to fit our proposed method on the training set. The
parameters (R, Ry) and \ are selected by minimizing the validation error

1 Nvalid

(yvalid,i - gvalidﬂ‘ ) 2
=1

Tvalid

over the grids of the corresponding tuning parameters, where n.,1q is the size of
the validation set, and Yyaya,; is the prediction value of the ith observation yyaiia ;
in the validation set.

5. Theory

In this section, we establish the oracle inequality for the prediction accuracy
of the proposed estimator. For readability, we first show the oracle inequality
under a fized-design setting, where the predictors and the exposure variable
are fixed. Similarly, we say a setting is random-design if these variables are
distributed randomly. To extend our results to random-design settings, we show
that the corresponding assumption on the design (that is, Condition M(7,d7)
presented below) can be satisfied with high probability (tending to one) when
x and ¢ are random, under some mild regularity conditions. The result under
the fixed-design setting is presented below; we defer the theoretical result for the
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random design to Section S.4 of the Supplementary Material.

Let ¥ = Z7Z/n, Z = (z1,...,2,)7, where z; = x; @ b(t;) € RPK. We use
Amax(+) and Apin () to denote the maximum and minimum eigenvalues of a matrix,
respectively. Denote by Sy, Ag, Cy, and By the true values of S, A, C, and 3
in (2.7), respectively. Denote by s the number of nonzero rows in Ay, which
corresponds to the relevant predictors. We also write Hy = Sy x; Ay x3 Cy €
RP*H2xa - and correspondingly, the true coefficient functions are (fo ji(t))pxq =
Fy(t) = Hy x5 By(t). Let

Y =(y1,...,y,)T € R"™* and E = (€,...,€,)T € R™™,

Now, we state a condition required to describe the oracle inequality in our
theoretical results.

Condition 1 (M(J,067)). We say the design matriz 3 satisfies Condition
M(T,67) for an index set J C {1,...,p} and a positive number 7 if

tr(MTEM) > 67 Y | M7,
JjET

for all M € RP**? satisfying 25~ ; IM;||lr > 3¢ 7 | M| p, where M is the
collection of rows related to the jth predictor in M, and tr(-) denotes the trace

of a matriz.

Condition M(7,d7) is similar to the one used in Bunea, She and Wegkamp
(2012)) for reduced rank regression models. In particular, Condition M (7,4 7)
is motivated by the “restricted eigenvalue” (RE) condition introduced in Bickel,
Ritov and Tsybakov| (2009) for studying the asymptotic properties of high-
dimensional linear regression. This condition implies that the least eigenvalue of
the relevant predictors is greater than or equal to d; by letting M; = 0, for j €
J¢. Note that the constant 2 in the inequality 23, ; [|M;llr > 3 c 7o [|M;lr
of Condition M(J,d7) is chosen merely for neat presentation of the statements,
and it can be replaced by any positive constant greater than one. Lemma S.3
of the Supplementary Material shows that when n is at least as large as the
magnitude of |7|?¢*K? +|J|?¢K log p, Condition M(JT,d.7) holds for a constant
07 > 0 with probability tending to one, under some mild conditions of random

design.
The following assumptions are needed in our analysis.

Assumption 1. The entries of the noise matriz E are i.i.d. Gaussian random
variables with mean zero and variance o>.

Assumption 2. The columns of the true parameters Hy o) (mode-2 matriciza-
tion of Hy) have Fuclidean norms bounded by a constant.
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Assumption 3. The domain of the exposure variable t is T = [0,1]. The order
of the B-spline satisfies ( > 7+ 1/2. Let 0 =& < & < -+ < €kx_¢42 = 1 denote
the knots of the B-spline basis. Furthermore, there exists a positive constant Sy
such that
— h’n
h, = max & — &I <K' and < S;.

k=1,..K=¢+1 ming—; __ x—¢ct1 &1 — &kl

Assumption 4. The true principal functions By,., € H, for ro = 1,..., Rs.
Here, H is the space of functions from [0,1] to R satisfying the Holder condition
of order w, that is,

H={g:3C € (0,00) s.t. |g)(x1) — g (w2)| < Clwy — 32]%, ¥V 21,25 € [0,1]},

where ¢ is a nonnegative integer and g\ is the vth derivative of g, such that
we (0,1 and T =1+w>1/2.

Assumptions 1-4 are common in the literature on nonparametric regressions
(Huang, Horowitz and Wei (2010); He et al. (2018a)). Specifically, Assumption 1
controls the stochastic error. Under Assumptions 3 and 4, it follows from Lemma
5 of Stone| (1985) that there exists By, = (Bory.1,---,Bor.x)T such that, for
some constant Sy,

K
Sa
=S Boosbel <22 r=1,... R, 5.1
‘50,2 ;o, e T2 2 (5.1)
where || - || is the uniform norm of functions. Let By = (Bo1,...,Bor,)T €

RE*R2 and
GO = SO X1 AO X BO X3 CO S RPXKXQ.

Note that {Gy x2b(t)}Tx is only an approximation of the true regression func-
tion, owing to the nonparametric nature of the MVCM. Using the matricization
operator of a tensor (Kolda and Bader| (2009)), it can be shown that

{GO >22 b(ti)}T.'L'i = GO,(3)Z1'7 7= 1, oy, (52)

where G| (3) is the mode-3 matricization of Gy. By (5.1), (5.2)), and Assumption
2, the approximation error over n observations, R:=Y — FE — Z G(T)’(:j), satisfies

nsq
IR|7 =Y — E - ZGS,(S)H%‘ < st, (5.3)

for some positive constant Ss3, where s is the number of relevant predictors.
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In addition, for any G € RP*K*? with rank restrictions rank,(G) < Ry, for
d=1,2,3, we write

n 1/2
B = {Z MG % b(t)}Ta; — Gy x2b<ti>mﬁ} 6.9

as the discrepancy between G and Gy in terms of prediction. Similarly, we write

. 1/2
Ap = { Z | F(t;)T2; — F()(ti)TmiHQ} (5.5)

as the discrepancy between the coefficient functions F(-), with F(-) = G X3 b(-)
and Fy(-). The following Theorem 1 shows the prediction accuracy for a solution
G of (3.5)); and its proof is deferred to Section S.2 of the Supplementary Material.

Theorem 1. Let J(G) be the index set of nonzero rows of G(iy, the mode-
1 matricization of G with ranky;(G) < Ry, for d = 1,2,3, and denote R =
min(Ry Ry, R3). Suppose Assumptions 1-4 hold. Taking

A = S RsRn) o (Z) Ko {1 +1og(p)}, (5.6)

for some constant S, > 0, we then have

RsRK|J (G)|Amax(3)0? log(p)
d7(@)

ns
AL < S;AL + SgqRo® + S + SSKTz’ (5.7)

with probability at least
~ Sexp(—g/2)
3K log(p) ’
provided % satisfies Condition M(J(G),d7c)), where Ss,...,Ss are positive
constants.

(5.8)

Theorem 1 shows the finite-sample oracle inequality for the prediction error
between the proposed estimator and its oracle spline approximation. Because the
proposed Algorithm 1 may not guarantee that the generated sequence converges
to a global minimum of the optimization problem, we remark that there is a gap
between the oracle inequality for the global optimizer and the practical output
from the proposed block updating algorithm.

For the coefficient functions, we correspondingly denote F(t) = G X, b(t),
where G is a solution to (3.5). Theorem 1 can then be generalized to the
prediction error for ﬁ’(t) in terms of , as shown in the following corollary.
The proof of Corollary 1 is deferred to Section S.3 of the Supplementary Material.
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Corollary 1. We have

R3RK|TJ (G)| Amax(X)0? log(p)
07(G)

nsq
K2T

AL < 255A% +2SeqRo* + 25, + (285 +255)

with probability at least (5.8), under the same conditions as those of Theorem 1.

One direct application of Theorem 1 is to obtain the rate of convergence
for the prediction accuracy of the proposed estimator. We can also show that
the relevant predictors can be identified, with probability tending to one. In the
following, let || fo /|2 be the Ly-norm of f; j under the Lebesgue measure, and j/t;l
be the estimated coefficient function of f; ;; from . The proof of Corollary 2
is deferred to Section S.3 of the Supplementary Material.

Corollary 2. Suppose Assumptions 1-4 hold and X satisfies Condition
M(T(Go),07(c,))- If we let

I { N0 7(Go) 4 }1/(%“)
R3Rmax (Z) log(p) ’

and N? is given as in (5.6]), then the prediction error AQﬁ/n of the estimated

coefficient functions F satisfies

AZ R [ RyRApan (D)1 2r/(2T+1)
- F _ Op <q + { 3 ax( ) Og(p) } Sql/(27'+1) ) (59)
n n N7 (Go)

Furthermore, if

gD/ @) 5 R RE R Amax(E) log(p) } /(D
n
5(2T+1)/qu/(2f>5}%331)/(27)333)%%(2) log(p)

n

+ -0 (5.10)

asn — oo and Y. i, || fojill3 > So, for some constant Sy > 0, Vj € J(Gy), we
then have
P{F;(t) # 0, j € J(Go)} — 1 as n — oo,

where I?‘J-T(t) = (fjl, ce f;q) is the jth row F.

As discussed in Section 2, Models (Lian and Ma/ (2013))) and (He
et al.| (2018a)) can be regarded as special cases of our proposed all-mode reduction
method. The derived rate of convergence in (5.9) includes those of He et al.
(2018a) and |Lian and Ma| (2013) as special cases, with an extra logp term due
to the use of a different penalization method. Condition for the variable
selection consistency indicates that the sample size n should be sufficiently large
relative to the numbers of relevant predictors s and responses ¢q. A simple and
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sufficient condition for (5.10]) to hold is that n should be larger than the magnitude
of ¢*s* R3RApmax(X) log(p)égfco).

6. Experiments
6.1. Synthetic data

We conduct a simulation study to evaluate the performance of the proposed
model. The data are simulated from the following model:

P
Yil :ijl(ti)xil+5il7 i=1...,n0l=1,...,q,
=1

where {€;} are i.i.d. random variables with normal distribution A(0,0?). We
set x;; = 1 as the intercept for all 4, and the remaining p — 1 predictors
are generated from a multivariate Gaussian distribution with mean zero and
covariance Cov(zj,,%ij,) = p"7921 1 < j;,jo < p— 1. The exposure variable
t; is generated from the uniform distribution on [0,1], for ¢ = 1,...,n, and
{fi} are generated according to the all-mode reduction model, as in . In
particular, the elements of § € RFf1*f2xRs and C € R are i.i.d. NV(0,1)
random variables. We let the first s predictors, including the intercept, be the
truly relevant predictor variables, and the remaining p — s predictors have no
effect on the responses {y;;}. Therefore, we generated the entries of the first s
rows of A € RP*f1 independently from N'(0,1), and the remaining rows are set
as zero.

We set R = Ry, = R; = 2, p = 51 or 201, s = 11, ¢ = 15,
and p = 0.3. We choose o2 according to the signal-to-noise ratio (SNR),
trace{Var(3_7_, fj(ti)xa)}/qo?. More specifically, we investigate two SNRs, 20
and 2, in our simulation study. The normalized principal functions are specified
as B(t) = (Bi(t), B2(t))T = (V2cos(nt), /2sin(27t))T on the domain t € [0, 1],
which satisfy [ B(t)B3(¢)T dt = I, a 2 x 2 identity matrix. We consider two
sample sizes, 200 and 400. For each scenario, we generate 50 replicates of data
sets.

To fit our model on each simulated data set, all the tuning parameters of
the proposed method are selected as discussed in Section 4.6. We refer to our
proposed method as the all-mode reduction in the following discussion.

We compare the all-mode reduction with four alternative methods: the mode-
3 reduction model (Lian and Ma, (2013)), the mode-2 reduction model (He et al.
(2018a)), the full model, and the linear model. Here, the full model refers to
(2.2)) with the group lasso method (Yuan and Lin (2006)) employed to select
the relevant predictors. We can set R; = p, R, = K, and R3 = ¢ in our model
and use Algorithm S.1 of the Supplementary Material to solve the estimator of
the full model. In the linear model, the regression coefficients are assumed to
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be constants, and the group lasso method is also employed. Both the full model
and the linear model have the tuning parameter A. To select A, we use the same
hold-out method as in our model for the full model, and cross-validation for the
linear model. The mode-3 reduction model corresponds to dimension reduction
in the responses. Therefore, its estimator can be obtained by setting R; = p
and Ry = K in our model and iteratively updating S and C' using Algorithm
S.1 of the Supplementary Material and . The tuning parameters Rz and A
are selected using the hold-out method. As for the mode-2 reduction model, we
apply the implementation provided in He et al.| (2018a)), who use cross-validation
to select the tuning parameters Ry and .

In terms of variable selection, we calculate “True Discovery” as the average
number of predictors selected by various methods that are actually relevant, and
used “False Discovery” to stand for the average number of predictors selected by
various methods that are actually irrelevant. The variable selection performance
of the competing methods is summarized in Tables 1 and 2 for sample sizes
n = 200 and n = 400, respectively, together with the performance of the
rank selection Rl, RQ, and ]§3 for the corresponding methods. Note that
the reported selected ranks are the average values of 50 replicates. Tables 1
and 2 show that the proposed all-mode reduction model identifies all nonzero
varying-coefficient functions with the fewest number of false discovery among
the competing methods. Though the full and linear models have high accuracy
in terms of identifying the relevant predictors, their poor performance in terms
of false discovery show that they falsely include many irrelevant predictors in
their estimators. The mode-2 and mode-3 reduction methods have similar
performance, and do not always correctly identify the true nonzero varying
coefficients, especially when the SNR is relatively small. For the rank selections,
it is shown that the third rank can be correctly selected as Ry =2 by using
our proposed model. For the first and second ranks, we find that the proposed
all-mode reduction method selects more than 76% and 80% of the 50 replicates
as the true rank 2, respectively, in the setting of p = 51, n = 200, and the SNR
is 20. On average, the proposed all-mode method may tend to select }Afl and Eg
slightly larger than their true values.

To evaluate the estimation accuracy, we calculate the average integrated
squared error (AISE) as

wisE= 235 [ 50 - gato)y

j=1 1=1

where fjl(t) denotes a generic estimator of f;;(t) using the various methods.
The above integrals are computed using the Monte Carlo method. Table 3
reports the AISEs of the competing methods, with the corresponding standard
errors. For benchmark, we add the oracle estimator which includes only the true
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Table 1. Dimension reduction and variable selection results for group lasso penalized
estimators for n = 200. The numbers in parentheses are the standard errors based on 50
replicates.

El ﬁg ﬁg True Discovery False Discovery

All-mode Reduction 2.34 2.14 2.00 11.00 (0.00) 3.26 (0.28)

Mode-3 Reduction - - 2.00 10.86 (0.55) 10.45 (0.83)

SNR=20 Mode-2 Reduction - 2.19 - 11.00 (0.00)  11.39 (0.70)
Full Model . 11.00 (0.00)  13.48 (0.93)

Linear Model - - - 11.00 (0.00) 19.07 (1.19)

p=51 All-mode Reduction 2.64 2.34 2.00  11.00 (0.00) 3.65 (0.34)
Mode-3 Reduction - - 2.00 10.34 (0.95) 14.43 (1.14)

SNR=2 Mode-2 Reduction - 225 - 11.00 (0.00)  18.75 (1.40)
Full Model - 11.00 (0.00)  21.31 (1.54)

Linear Model - - - 11.00 (0.00) 24.87 (1.60)

All-mode Reduction 2.67 2.58 2.00  11.00 (0.00)  12.08 (0.59)

Mode-3 Reduction - - 2.00 10.96 (0.54) 19.40 (1.15)

SNR=20 Mode-2 Reduction - 241 - 11.00 (0.00) 25.86 (1.46)
Full Model .- 11.00 (0.00)  28.47 (1.96)

01 Linear Model L 11.00 (0.00) 3151 (2.57)
All-mode Reduction 2.57 2.60 2.00 10.44 (0.39) 15.42 (1.32)

Mode-3 Reduction - - 2.00 9.96 (1.21) 19.87 (1.47)

SNR=2 Mode-2 Reduction - 2.84 - 9.83 (0.81)  23.17 (1.74)
Full Model L 11.00 (0.00)  36.48 (2.18)

Linear Model . 11.00 (0.00)  44.87 (2.45)

relevant predictors in its model. In other words, the true relevant predictors
are assumed to be known in the oracle setting. Therefore, we do not include
the penalization in the objective function, enabling us to use the least squares
method to estimate S and A. We use the same framework of block updating
Algorithm 1 to compute the oracle estimator. A box plot of the AISEs for the
various methods with sample size n = 400 is depicted in Figure 4. We conclude
from Table 3 and Figure 4 that the all-mode reduction model outperforms other
non-oracle estimators, with the smallest AISE. For example, when the sample
size n = 400, the all-mode reduction method reduces the AISE by 48%-94%
compared with the mode-3 reduction, and by 78%-98% compared with the mode-
2 reduction. The performance of the all-mode reduction method improves when
the sample size increases, which is consistent with our theoretical investigation.
Among the alternative methods, the full model and the linear model show the
worst performance.

6.2. Real data

We further illustrate the proposed method on the data set from the
Framingham Heart Study (FHS; Dawber, Meadors and Moore Jr| (1951)), which
aims to identify common factors that lead to cardiovascular diseases. The data
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Table 2. Similar to Table 1, but for n = 400.

]%1 ﬁg R; True Discovery False Discovery
Allmode Reduction 2.31 2.15 2.00  11.00 (0.00) 2.42 (0.28)
Mode-3 Reduction - - 2.00 11.00 (0.00) 8.64 (0.61)
SNR=20 Mode-2 Reduction - 220 - 11.00 (0.00) 8.78 (0.66)
Full Model - 11.00 (0.00)  11.52 (0.84)
=51 Linear Model - - - 11.00 (0.00) 17.87 (1.15)
All-mode Reduction 2.39 2.21 2.00 11.00 (0.00) 3.71 (0.34)
Mode-3 Reduction - - 2.00 10.52 (0.78) 10.72 (0.90)
SNR=2  Mode-2 Reduction - 223 - 11.00 (0.00) 12.38 (0.92)
Full Model .- 11.00 (0.00)  16.86 (1.01)
Linear Model . 11.00 (0.00)  21.87 (1.45)
All-mode Reduction 2.45 2.50 2.00 11.00 (0.00) 10.71 (0.58)
Mode-3 Reduction - - 2.00 11.00 (0.00) 18.85 (1.02)
SNR=20 Mode-2 Reduction -  2.38 - 11.00 (0.00)  20.32 (1.38)
Full Model . 11.00 (0.00)  23.10 (1.82)
=201 Linear Model - - - 11.00 (0.00) 30.51 (2.47)
All-mode Reduction 245 2.70 2.00  10.50 (0.24)  11.83 (1.00)
Mode-3 Reduction - - 2.00 10.12 (1.11) 17.57 (1.16)
SNR=2  Mode-2 Reduction - 249 - 10.33 (0.93) 19.48 (1.36)
Full Model .- 11.00 (0.00)  31.59 (2.28)
Linear Model - - - 11.00 (0.00) 43.07 (1.82)
p=51 p=201

- T
= % = %
1e-02- $ $

le-04 -

AISE

Oracle All-mode Mode-3 Mode-2 Full Linear Oracle All-mode Mode-3 Mode-2 Full Linear

Figure 4. A box plot of the AISEs for the competing methods when n = 400 and the
SNR is 20. The left and right panels represent the AISEs for p = 51 and for p = 201,
respectively. The y-axis is measured in logarithmic scale.

set collects the measurements on 15 phenotypes from 325 patients, in addition
to the single nucleotide polymorohism (SNP) information. All variables are
standardized with mean zero and variance one. After matching the SNP data
with the phenotypes and deleting observations with missing values and outliers,
we focus on a subset of 258 patients in our analysis. We preselected six phenotypes
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Table 3. The AISEs for the competing methods. The numbers in parentheses are the
standard errors based on 50 replicates.

All-mode Mode-3 Mode-2 Full Linear
n D SNR  Oracle . . .
Reduction Reduction Reduction Model Model
0.007 0.011 0.237 0.782 3.459 6.761
20
51 (0.002) (0.003) (0.019) (0.082) (0.339) (0.674)
0.031 0.085 0.314 1.484 6.348 10.197
2
200 (0.004) (0.007) (0.015) (0.104) (0.454) (0.568)
20 0.008 0.223 0.496 0.794 4.327 15.192
201 (0.004) (0.051) (0.052) (0.084) (0.453)  (0.961)
0.042 0.293 0.615 2.940 10.361  20.387
2
(0.006) (0.009) (0.063) (0.281) (0.972) (1.623)
0.004 0.010 0.164 0.501 2.240 4.933
20
51 (0.001) (0.002) (0.011) (0.042) (0.268)  (0.469)
9 0.018 0.022 0.281 0.841 4.418 8.910
400 (0.002) (0.002) (0.016) (0.065) (0.399) (0.457)
20 0.005 0.101 0.403 0.679 4.229 14.584
201 (0.001) (0.007) (0.042) (0.049) (0.532)  (0.567)
0.022 0.286 0.549 1.306 9.061 17.178
(0.002) (0.009) (0.065) (0.118) (0.895) (1.340)

of interest: height, bi-deltoid girth, right arm girth-upper third, waist girth, hip
girth, and thigh girth. The exposure variable is set as weight. We follow the
screening procedure in [Fan, Ma and Dai (2014) to select 200 SNPs as predictors
(the intercept is also included in the model). To fit our proposed method, all the
tuning parameters are selected as discussed in Section 4.6. Specifically, we split
the data set randomly into three subsets, namely, a training set, a validation set,
and a test set, of size 150, 50, and 58, respectively. The training and validation
sets are used to determine (R;, Ry) and A, and the test set is used to evaluate
the out-of-sample prediction performance. The recommended rule K = [2n'/?]
for the number of basis functions leads to K = 6. To evaluate the performance,
the corresponding prediction error is defined as

1 Ntest

Z 'y — gill3,

Nest i=1

Prediction Error =

where {y;} are the observed responses in the test set, §; = {G X,b(t)}Tx;
with the corresponding predictors x;, and ny. is the size of the test set. We
compare the proposed model, namely the all-mode reduction, with four non-
oracle alternatives in Section 6.1. Furthermore, we implement the elementwise-
sparsity method on the full model to fit this data set. Here, we can achieve
the full model with the elementwise-sparsity method by using the group lasso
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Table 4. Prediction error of the test data. The numbers in parentheses are the standard
errors based on 50 replicates of random splitting.

Prediction error 1/?:1 ﬁg §3

All-mode Reduction 0.4542 (0.0071) 2.7 3.1 2.0

Mode-3 Reduction 0.6011 (0.0196) - - 2.0
Mode-2 Reduction 0.6385 (0.0357) - 43 -

Full Model (row-sparsity) 1.0181 (0.0417) - - -
Full Model (elementwise-sparsity)  1.2106 (0.0403) - - -
Linear Model 1.2578 (0.0488) - - -

penalization (Yuan and Lin| (2006])) on each coefficient function in to select
the relevant predictors for the response variables. The performance of each
method is evaluated based on 50 random splittings of training, validation, and
test sets.

Table 4 records the average prediction error of the competing methods on
the test data and the performance of the dimension reduction. We observe
in Table 4 that the full model with the row-sparsity method outperforms the
elementwise-sparsity method, implying that the FHS data set may be better
fitted using the row-sparsity methods than the elementwise-sparsity methods.
In addition, the proposed all-mode reduction model has the highest prediction
accuracy, and achieves significant dimensionality reduction on each mode. This
result is consistent with that based on the synthetic data. To investigate a
biological interpretation of the identified SNPs, we input the submitted ssff of
the identified SNPs to the NCBI database (Sherry et al.| (2001))) to retrieve the
reference rsf records. The proposed all-mode reduction method identified 30
SNPs by combining the variable selection results of 50 random splits. Some of
these SNPs have been confirmed scientifically. For example, the reference SNP
rs4896044 is found to be associated with hypertension (Consortium| (2007)), and
759321440 has links with multiple heart diseases (Gagliardi (2011))). The mode-
3 reduction method identified 51 SNPs, including all 30 SNPs selected by the
all-mode reduction method. On the other hand, the mode-2 reduction method
identified 47 SNPs, with 25 of the SNPs selected by the all-mode reduction
method, including the scientifically confirmed rs4896044 and rs9321440.

6.3. Additional numerical results

To further demonstrate the utility of the proposed all-mode reduction
method, we conduct additional numerical experiments, and present the results
in Section S.5 of the Supplementary Material. More precisely, we extend our
simulation settings to larger numbers of response variables ¢, and plot the trend
of the performance of the proposed method when ¢ increases in Section S.5.1 of
the Supplementary Material. In Section S.5.2 of the Supplementary Material, we
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depict the fitted coefficient functions of the biologically confirmed SNP rs9321440
based on 50 replicates of random splitting. Our results show that rs9321440
may have different effects on the phenotypes of height, bi-deltoid girth, right arm
girth-upper third, hip girth, and thigh girth, given distinct body weights. For the
phenotype of waist girth, the effect of this SNP may not vary significantly with
body weight. We refer readers to Section S.5 of the Supplementary Material for
details.

7. Discussion

We have proposed a dimension-reduction method based on the Tucker
decomposition of a third-order tensor to estimate the varying coefficients of
an MVCM under a high-dimensional setting. The proposed model unifies
dimensionality reductions in three aspects: relevant predictors, coefficient
functions, and responses. To take sparsity into account, we integrate a sparsity-
inducing penalization into the estimation. The oracle inequality for the prediction
risk of the proposed estimator is derived under fixed and random designs. We
have used both simulated and real data sets to evaluate and compare the empirical
performance of the proposed model with that of other methods, and the results
illustrate the superior performance of our method.

One difficulty of applying the proposed method is the need to tune the
ranks of the Tucker decomposition, which may become computationally expensive
when the dimension is extremely high. Developing an efficient way to tune
the ranks requires further investigation. Furthermore, in some applications, the
relationships between responses can be determined using external covariates, such
as spatial locations, providing extra information for measuring the similarity
between responses, thus inducing a (weighted) graphical structure among the
tasks. Therefore, future research should extend the proposed model to the
problem of graph regularized multi-task learning. Finally, incorporating the
elementwise-sparsity method with the all-mode reduction model may be useful
in other real applications. This, too, is left as a future research topic.

Supplementary Material

The online Supplementary Material contains: (i) the details of updating S,
A, and B; (ii) the technical proofs of Theorem 1 and Corollaries 1-2; (iii) the
theoretical results for the random-design settings and the corresponding proofs;
and (iv) additional numerical results for the simulation study and the analysis of
real data set.
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