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Abstract: Multivariate varying-coefficient models are popular statistical tools for

analyzing the relationship between multiple responses and covariates. Nevertheless,

estimating large numbers of coefficient functions is challenging, especially with

limited samples. In this work, we propose a reduced-dimension model based on

the Tucker decomposition that unifies several existing models. In addition, we

use sparse predictor effects, in the sense that only a few predictors are related

to the responses, to achieve an interpretable model and sufficiently reduce the

number of unknown functions to be estimated. These dimension-reduction and

sparsity considerations are integrated into a penalized least squares problem on the

constraint domain of third-order tensors. To compute the proposed estimator, we

propose a block updating algorithm based on the alternating direction method of

multipliers and manifold optimization. We also establish the oracle inequality for

the prediction risk of the proposed estimator. A real data set from the Framingham

Heart Study is used to demonstrate the good predictive performance of the proposed

method.

Key words and phrases: Dimensionality reduction, group Lasso, polynomial splines,

sparsity, Tucker low rank.

1. Introduction

Varying-coefficient models (VCMs, Hastie and Tibshirani (1993)) are popular

structured regression models that have reasonably flexible nonparametric com-

ponents and can be estimated well with a moderate amount of data (Ruppert,

Wand and Carroll (2003)). In VCMs, the regression coefficients of the predictors

vary with an observable exposure variable. VCMs have been studied extensively

in literature and are widely used in practice; see, for example, Hoover et al.

(1998), Huang, Wu and Zhou (2002), Park et al. (2015), and the references

therein. For settings with a large number of predictors (possibly larger than the

sample size), Wang, Li and Huang (2008) use basis function expansions and the

smoothly clipped absolute deviation (SCAD) penalty to address the problem of

variable selection. Wei, Huang and Li (2011) and Lian (2012) apply an adaptive

group least absolute shrinkage and selection operator (lasso) and spline function
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approximations to simultaneously identify the relevant predictors and estimate

the varying-coefficient functions of those that have been selected. The latter

works also obtain the rate of convergence and variable-selection consistency for

their estimators under suitable conditions. Xue and Qu (2012) use a truncated

ℓ1-penalty (TLP) to select variables, and obtain the oracle properties for their

varying-coefficient estimator. To enhance the computational scalability, feature

screening techniques for the VCM are considered in Fan, Ma and Dai (2014)

and Liu, Li and Wu (2014), who propose to rank the marginal nonparametric

contributions of each predictor, given the exposure variable, and investigate sure

independent screening properties.

In many applications, multiple responses are jointly observed with the

predictors and the exposure variable. For instance, the Framingham Heart

Study (Dawber, Meadors and Moore Jr (1951)) collected multiple phenotype

variables from patients to identify common factors related to cardiovascular

diseases. Obviously, one can simply model each response variable separately

using VCMs. Together, these models are viewed as a regression model for

the multivariate response, called an unstructured multivariate varying-coefficient

model (MVCM). One challenge associated with such models is the significant

number of coefficient functions required to be estimated. More specifically, we

need to estimate pq functions if there are p covariates and q responses. To

circumvent this problem, one may use structures among these pq functions.

He et al. (2018a) propose a principal-component-based approach in which they

assume the coefficient functions can all be approximated by linear combinations of

a much smaller number of unknown functions. However, they do not explore the

correlations between the responses, and their method cannot handle the settings

with a large number of responses. Lian and Ma (2013) assume a low-rank

structure in the conditional means of the responses of the samples. However,

their model does not consider the correlations between the predictors and/or the

varying coefficients. Furthermore, they do not propose an efficient algorithm to

solve their penalized least squares problem.

In this work, we propose a novel method using dimension-reduction tools of

tensors (Kolda and Bader (2009)) to handle an MVCM in a high-dimensional

setting. In particular, we show that dimension reductions in the predictors,

the space of the coefficient functions, and the responses correspond to the low

rankness in the first, second, and third modes, respectively, of a third-order

tensor. Thus, we propose using the Tucker decomposition (Tucker (1966)) to

integrate these three dimension reductions into a simple notion of low multilinear

rank. The models of He et al. (2018a) and Lian and Ma (2013) can be viewed

as special cases of our proposed model. In addition, sparse predictor effects,

in the sense that only a few predictors are related to the responses, is often

a reasonable assumption in high-dimensional settings. The aforementioned

dimension-reduction and sparsity considerations can be incorporated into the
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estimation procedure by using a penalized least squares problem on the constraint

domain of third-order tensors. To compute the proposed estimator, we design a

block updating algorithm based on the alternating direction method of multipliers

(ADMM, Boyd et al. (2011) and manifold optimization (Edelman, Arias and

Smith (1998); Absil, Mahony and Sepulchre (2009)). We also establish the oracle

inequality for the prediction risk of the proposed estimator.

The rest of the paper is organized as follows. In Section 2, we introduce

the proposed reduced MVCM using the Tucker decomposition. The estimation

method and computational details are presented in Sections 3 and 4, respectively.

We establish the oracle inequality for the prediction risk of the proposed estimator

in Section 5. We use both a simulation study and a real-data application

in Section 6 to illustrate the practical performance of the proposed method.

The main contributions of this paper are summarized in Section 7 with some

concluding remarks. Technical details are provided in the online Supplementary

Material.

2. Model

Let y = (y1, . . . , yq)
⊺, x = (x1, . . . , xp)

⊺, and t be the q-dimensional vector

of responses, the p-dimensional vector of predictors, and the exposure variable

with compact domain T , respectively. Without loss of generality, we assume

T = [0, 1]. Each response is posited to follow a univariate-response VCM, that

is,

yl =
p∑

j=1

fjl(t)xj + ϵl, l = 1, . . . , q, (2.1)

where {fjl(t)} are the coefficient functions and {ϵl} are the noise variables, with

mean zero and variance σ2
l . These noise variables are independent of (x, t). By

setting x1 = 1, the model can accommodate an intercept function. In vector-

matrix notation, (2.1) can be written as

y = F (t)⊺x+ ϵ, (2.2)

where F (t) = (fjl(t))p×q and ϵ = (ϵ1, . . . , ϵq)
⊺. We call (2.2) the full model

of MVCM, in which pq varying-coefficient functions need to be estimated

nonparametrically.

When pq is relatively large, there are huge numbers of nonparametric

functions, which are difficult to estimate accurately with a small or moderate

amount of data. To cope with this challenge, Lian and Ma (2013) assume a

rank-R3 structure on the matrix of coefficient functions, with R3 < q, aiming

to reduce the model complexity among the responses. Specifically, Lian and Ma
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(2013) proposed reducing the full MVCM (2.2) to

y = CF̃ (t)⊺x+ ϵ, (2.3)

where C ∈ Rq×R3 , with C⊺C = IR3
, and F̃ (t) is a matrix of p × R3 unknown

functions. Model (2.3) implies that the means of the responses conditional on

the predictors and the exposure variable are R3 linearly dependent among the

samples. Compared with (2.2), the number of parameters is reduced to pR3

functions, together with a q × R3 coefficient matrix. He et al. (2018a) propose

a functional principal-component-based approach that assumes all pq coefficient

functions can be well approximated by a small number of R2 unknown data-driven

principal functions β(t) = (β1(t), . . . , βR2
(t))⊺. More precisely, they assume that

the vectorized F (t) can be represented by vec{F (t)} = Dβ(t), with a coefficient

matrix D ∈ Rpq×R2 . Then, the conditional mean of the responses in the full

MVCM (2.2) reduces to

E(y|x, t) = vec{x⊺F (t)} = (Iq ⊗ x⊺)vec{F (t)} = (Iq ⊗ x⊺)Dβ(t). (2.4)

For model identifiability, the principal functions β(t) are required to be orthonor-

mal, that is, ∫
T
β(t)β(t)⊺ dt = IR2

.

Thus, one only needs to estimate R2 principal functions and a p×R2×q coefficient

tensor for a reduced MVCM in (2.4). In the univariate-response VCM, that is,

q = 1, Jiang et al. (2013) propose another principal component VCM. Specifically,

treating the lth response in (2.1) as a single response, the model of Jiang et al.

(2013) is equivalent to

yl = fl(t)
⊺A⊺x⊺ + ϵl, (2.5)

where fl(t) is a vector of R1 unknown functions, and A ∈ Rp×R1 is the principal

loading matrix. Overall, Models (2.3), (2.4), and (2.5) encompass dimension

reductions within the responses, the coefficient functions, and the predictors,

respectively.

However, it is difficult to compare the above models because they employ

different methods for dimension reduction. In this work, we observe that these

models can be unified into a general model that allows simultaneous reductions

and provides a coherent understanding of these methods. To illustrate this idea,

we begin with the form of (2.4). Denote S̄ ∈ Rp×R2×q as a third-order tensor

satisfying S̄(2) = D⊺. Model (2.4) can be written as

y = {S̄ ×̄2 β(t)}⊺x+ ϵ, (2.6)

where ×̄2 denotes the 2-mode (vector) product of a tensor with a vector (Kolda

and Bader (2009)). More precisely, the result of the d-mode (vector) product of a
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Figure 1. An illustration plot of the coefficient functions matrix in (2.6) using a tensor
formulation and the 2-mode (vector) product.

Figure 2. An illustration plot of the d-mode (matrix) product of a tensor and a matrix.

generic Nth-order tensor G = (gi1,i2,...,iN ) ∈ RI1×I2×···×IN and a vector v ∈ RId is

a tensor of order N −1, with dimension I1×· · ·×Id−1×Id+1×· · ·×IN , such that

its (i1, . . . , id−1, id+1, . . . , iN)th element is
∑Id

id=1 vid ·gi1,i2,...,iN . This reformulation

shows that exploring the correlations between the varying-coefficient functions is

equivalent to the dimension reduction on the second mode of a third-order tensor.

Figure 1 illustrates the corresponding matrix of coefficient functions in (2.6) using

this tensor-vector product. Similarly, the correlations between the predictors and

the responses are related to dimension reductions on the first and third modes,

respectively.

Therefore, to simultaneously explore all reductions, we propose

y = {S ×1 A×3 C ×̄2 β(t)} ×̄1 x+ ϵ, (2.7)

where ×d denotes the d-mode (matrix) product of a tensor with a matrix (Kolda

and Bader (2009)), for d = 1, 2, 3; β(t) is a vector of R2 unknown principal

functions; and S ∈ RR1×R2×R3 , A ∈ Rp×R1 , and C ∈ Rq×R3 are coefficients to

be estimated. We depict S ×1 A in Figure 2 to illustrate the d-mode (matrix)

product of a tensor with a matrix.

Similarly to Jiang et al. (2013), Lian and Ma (2013), and He et al. (2018a),
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we require A, C, and β(t) to be orthonormal, that is,

A⊺A = IR1
, C⊺C = IR3

, and

∫
T
β(t)β(t)⊺ dt = IR2

. (2.8)

The multilinear structure of the varying coefficients S×1A×3C ×̄2 β(t) coincides

with the Tucker decomposition (Tucker (1966)) for a third-order tensor. We

observe that Models (2.3), (2.4), and (2.5) are all special cases of Model (2.7). In

particular, removing the first and second mode reductions in (2.7) and writing

S ×1 A ×̄2 β(t) = F̃ (t), (2.7) can recover (2.3). Furthermore, (2.4) can be

obtained directly by letting S̄ = S ×1 A ×3 C. Finally, singling out A and

treating q = 1 in S ×3 C ×̄2 β(t) recovers (2.5). Therefore, each mode in the

decomposition S ×1 A ×3 C ×̄2 β(t) corresponds to one of the aforementioned

reduced models.

Note that the constraint (2.8) does not guarantee the identifiability of the

proposed model (2.7). Indeed for any U ∈ RR2×R2 with UU⊺ = IR2
, we have

{S ×1 A×3 C ×̄2 β(t)}⊺x =
[
(S ×2 U)×1 A×3 C ×̄2 {Uβ(t)}

]⊺
x.

In other words, (S,A,C,β(t)) and (S ×2 U ,A,C,Uβ(t)) result in the same

reduced MVCM model. However, we need only identify the regression coefficient

functions F (t) to understand the reduced MVCM (2.7), which is fulfilled, because

F (t) = S ×1 A ×3 C ×̄2 β(t). In terms of computation, these identifiability

issues may lead to algorithmic instability. Therefore, we introduce some further

regularizations on (S,A,C,β(t)) in Section 3 to obtain an efficient algorithm.

3. Penalized Least Squares Estimation

To estimate the parameters in our reduced MVCM (2.7), we first approximate

the principal component functions β(t) using splines. Specifically, let b(t) =

(b1(t), . . . , bK(t))
⊺ be a vector of orthonormal B-spline basis functions with

dimension K. For the r2th principal component function βr2(t), we write

βr2(t) ≈
K∑

k=1

Bk,r2bk(t),

where {Bk,r2} are the corresponding spline coefficients. Denote Br2 = (B1,r1 , . . . ,

BK,r2)
⊺. We stack Br2 , for r2 = 1, . . . , R2, into a matrix of coefficients, and let

B = (B1, . . . ,BR2
) ∈ RK×R2 . Moreover, we require B satisfies the constraint

B⊺B = IR2
, which leads to the orthonormality of β(t) in (2.8). Ignoring the

approximation error, Model (2.7) can then be written as

y = {S ×1 A ×̄2 B
⊺b(t)×3 C}⊺x+ ϵ

= {S ×1 A×2 B ×3 C ×̄2 b(t)}⊺x+ ϵ.
(3.1)
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The above basis expansion enables us to recast the problem of estimating

the varying coefficients of the reduced model (2.7) as that of estimating the

parameters (S,A,B,C), where S ∈ RR1×R2×R3 , A ∈ Rp×R1 with A⊺A = IR1
,

B ∈ RK×R2 with B⊺B = IR2
, and C ∈ Rq×R3 with C⊺C = IR3

. Given

independent and identically distributed (i.i.d.) copies {(yi,xi, ti)}ni=1 of (y,x, t),

we consider the constrained least squares estimator

argmin
S,A,B,C

n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}⊺xi

∥∥2
2
,

s.t. A⊺A = IR1
, B⊺B = IR2

, C⊺C = IR3
.

(3.2)

In (3.1) and (3.2), S×1A×2B×3C is the Tucker decomposition of a third-

order tensor. In particular, lettingG = S×1A×2B×3C, we have rank1(G) ≤ R1,

rank2(G) ≤ R2, and rank3(G) ≤ R3, where rankd(·) denotes the d-rank of a tensor

(Kolda and Bader (2009)), for d = 1, 2, 3. We depict the Tucker decomposition

representation of model (3.1) in Figure 3. For further discussions on the Tucker

decomposition and its relationship with other tensor decompositions, such as the

CANDECOMP/PARAFAC (CP) decomposition (Harshman (1970)) and tensor-

train decomposition (Oseledets (2011)), we refer the readers to Kolda and Bader

(2009). Using the form of the Tucker decomposition, the least squares problem

(3.2) is equivalent to

argmin
G

n∑
i=1

∥∥yi − {G ×̄2 b(ti)}⊺xi

∥∥2
2

s.t. rankd(G) ≤ Rd, d = 1, 2, 3. (3.3)

The benefits of using a low-rank structure in tensor regression models rather than

simply flattening the covariate tensor to a matrix or a vector are discussed in

Zhou, Li and Zhu (2013), Li et al. (2018), and Ahmed, Raja and Bajwa (2020).

Note that our problem is different from those in existing works on the Tucker

tensor regression (Li et al. (2018)) and its generalizations (Lu, Zhu and Lian

(2020); Ahmed, Raja and Bajwa (2020)) in two aspects. First, (3.1) is not the

proposed model, but merely an approximation of the target nonparametric model

(2.7). Second, we study a multivariate response y, whereas Li et al. (2018); Lu,

Zhu and Lian (2020); Ahmed, Raja and Bajwa (2020) all assume the response

variable is a scalar.

For a large value of pq, the dimension reduction in terms of a low-rank Tucker

decomposition may not lead to an accurate estimation for the varying coefficients.

Many applications expect the responses to have similar/related structures, and

thus share many important predictors. Furthermore, the union of these important

predictors usually has a small size. In other words, we assume that only s (s <

p and unknown) predictors are relevant for predicting all the responses. This

assumption is shown to be suitable for many real-world applications; see, for
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Figure 3. The Tucker decomposition representation of model (3.1).

example, Wang, Li and Huang (2008); Wei, Huang and Li (2011) and He et al.

(2018a), among many others. We use a sparsity-inducing penalization to filter out

the irrelevant predictors during the estimation. To formulate a suitable penalty

function, we use the Tucker decomposition G = S ×1 A ×2 B ×3 C again, and

rewrite (3.1) as

y = {G ×̄2 b(t)}⊺x+ ϵ = {Iq ⊗ b(t)⊺}G⊺
(1)x+ ϵ, (3.4)

where G(1) ∈ Rp×qK is the mode-1 matricization (unfolding) of tensor G, and

⊗ is the Kronecker product of matrices (Kolda and Bader (2009)). Let G⊺
(1),j

denote the jth row of G(1), for j = 1, . . . , p. In light of (3.4), all unknown

coefficients associated with the jth predictor are contained in G⊺
(1),j. Therefore,

the jth predictor becomes irrelevant whenever the coefficient matrix G⊺
(1),j = 0.

Borrowing the idea from the group lasso penalization (Yuan and Lin (2006)), we

propose the following penalized least squares problem:

argmin
G

n∑
i=1

∥∥yi − {G ×̄2 b(ti)}⊺xi

∥∥2
2
+

p∑
j=1

λ∥G(1),j∥2,

s.t. rankd(G) ≤ Rd, d = 1, 2, 3, (3.5)

where ∥ · ∥2 is the group lasso penalty, and λ ≥ 0 is the penalty parameter.

Note that G(1) = AS(1)(C ⊗ B)⊺. Let a⊺
j be the jth row of A. Then,

G⊺
(1),j = a⊺

jS(1)(C ⊗ B)⊺. Due to the orthonormal conditions of B and C, we

have ∥G(1),j∥2 = ∥a⊺
jS(1)(C ⊗B)⊺∥2 = ∥a⊺

jS(1)∥2. Therefore, (3.5) is equivalent

to

argmin
S,A,B,C

n∑
i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}⊺xi

∥∥2
2
+

p∑
j=1

λ∥a⊺
jS(1)∥2,

s.t. A⊺A = IR1
, B⊺B = IR2

, C⊺C = IR3
. (3.6)
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Let (Ŝ, Â, B̂, Ĉ) be a solution of (3.6). Correspondingly, a solution of (3.5) can

be constructed as Ĝ = Ŝ×1Â×2B̂×3Ĉ (or, equivalently, Ĝ(1) = ÂŜ(1)(Ĉ⊗B̂)⊺).

The resulting estimated fjl(t) becomes

f̂jl(t) =
K∑

k=1

Ĝjklbk(t), (3.7)

where Ĝjkl is the (j, k, l)th element of Ĝ. We provide a theoretical analysis of

the proposed estimation in Section 5.

4. Computation

To calculate the estimator, we propose a block updating algorithm to solve

the problem given in (3.6), that is, updating S, A, B, and C alternately while

keeping the other components fixed. To facilitate the discussion, we let L(S,A,

B,C) be the objective function in (3.6) for a given λ, and denote the squared

loss and the penalty by

H(S,A,B,C) =
n∑

i=1

∥∥yi − {S ×1 A×2 B ×3 C ×̄2 b(ti)}⊺xi

∥∥2
2

and P (S,A) =
p∑

j=1

λ∥a⊺
jS(1)∥2,

respectively. Denote S(t),A(t),B(t), and C(t) as the tth iteration (t ≥ 1) of S, A,

B, and C, respectively, in the proposed algorithm. When we update one block

with the other blocks fixed, we useH and/or P with suitable subscripts to simplify

the objective functions with respect to the target block. For example, when A(t),

B(t), and C(t) are fixed, we let HA(t),B(t),C(t)(S) = H(S,A(t),B(t),C(t)) and

PA(t)(S) = P (S,A(t)) be the functions with respect to S. Analogously, we have

HS(t+1),B(t),C(t)(A), HS(t+1),A(t+1),C(t)(B), and PS(t+1)(A). The details for each

block are discussed in the following subsections.

4.1. Updating S

Using the properties of vectorization (unfolding of a tensor) and the d-mode

(matrix) product (Kolda and Bader (2009)), we can rewrite HA(t),B(t),C(t)(S) and

PA(t)(S) as

HA(t),B(t),C(t)(S) =
n∑

i=1

∥yi − [C(t) ⊗ {b⊺(ti)B(t)} ⊗ (x⊺
i A

(t))]vec{S(1)}∥22

and PA(t)(S) = λ
p∑

j=1

∥(a(t)
j )⊺S(1)∥2,
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respectively, where S(1) ∈ RR1×R2R3 is the mode-1 matricization (unfolding) of

the tensor S, vec(·) is the vectorization operator, and (a
(t)
j )⊺ is the jth row of

A(t). Thus, updating S is equivalent to obtaining the solution of

min
S∈RR1×R2×R3

HA(t),B(t),C(t)(S) + PA(t)(S). (4.1)

Because PA(t)(S) is not differentiable, we propose using a majorization-minimiza-

tion (MM) algorithm. The acronym can also stand for minorization-maximization

if one aims to find the maximum of an objective function; see, for example, Hunter

and Lange (2004). MM algorithms are useful extensions of the well-known class

of EM algorithms, in which the E-step is equivalent to a minorization step. To

construct the majorized function for PA(t)(S), we extend the MM algorithm of the

lasso penalty (Hunter and Li (2005)) to the group lasso penalization. Moreover,

since (4.1) is an objective function with respect to a tensor, some tensor operations

need to be considered and applied to this subproblem. See Section S.1.1 of the

Supplementary Material for more details, where Algorithm S.1 summarizes the

proposed MM algorithm to update S.

4.2. Updating A

Similarly to Section 4.1, we use the properties of vectorization and the d-mode

(matrix) product (Kolda and Bader (2009)) to rewrite HS̃(t+1),B(t),C(t)(A) as

HS̃(t+1),B(t),C(t)(A) =
1

2

n∑
i=1

∥∥yi−
[{[

C(t)⊗{b⊺(ti)B(t)}
](
S̃

(t+1)
(1)

)⊺}⊗x⊺
i

]
vec(A)

∥∥2.
To simplify the updating procedure for A, we first remove the orthonormal

constraint on A and update A in the Euclidean space. An orthonormalization

step is added in the outer loop to project the updated A back to an orthonormal

matrix. The subproblem of A without the orthonormal constraint can then be

written as

min
A

{
HS̃(t+1),B(t),C(t)(A) + PS(t+1)(A)

}
, (4.2)

where PS(t+1)(A) = λ
∑p

j=1 ∥(S̃
(t+1)
(1) )⊺aj∥. Because there is no analytic solution

to (4.2), we propose using the ADMM (Gabay and Mercier (1976)). Denote

g(x) = ∥x∥ and introduce the slack variable γj ∈ RR2R3 , for j = 1, . . . , p. We

rewrite the optimization problem (4.2) as

min
A,Γ

{
HS̃(t+1),B(t),C(t)(A) + λ

p∑
j=1

g(γj)

}
, s.t. Γ = AS̃

(t+1)
(1) , (4.3)

where Γ = (γ1,γ2, . . . ,γp)
⊺. In (4.3), the constraint is equivalent to γj =

(S̃
(t+1)
(1) )⊺aj, for j = 1, 2, . . . , p. The corresponding augmented Lagrangian
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function is

Lρ(A,Γ;ν) = HS̃(t+1),B(t),C(t)(A) + λ
p∑

j=1

g(γj) +
ρ

2

∥∥∥∥AS̃
(t+1)
(1) − Γ+

1

ρ
ν

∥∥∥∥2
2

, (4.4)

where ν ∈ Rp×R2R3 is the dual variable.

We defer the detailed analysis of (4.4) to Section S.1.2 of the Supplementary

Material, in which Algorithm S.2 summarizes the proposed ADMM algorithm.

Let Ã(t+1) denote the output of Algorithm S.2 for A. To project Ã(t+1) onto the

space of orthonormal matrices, we further let qr.Q(Ã(t+1)) and qr.R(Ã(t+1)) be

the Q and R factors of the QR decomposition of Ã(t+1), respectively. Here, we

require the R factor to have positive diagonal elements for the QR identifiability.

We update A(t+1) as qr.Q(Ã(t+1)), and then update S
(t+1)
(1) as qr.R(Ã(t+1))·S̃(t+1)

(1) .

By using the inverse of the mode-1 unfolding on S
(t+1)
(1) , S(t+1) is also obtained.

Note that the direct output of Algorithm S.2 does not result in the exact row

sparsity of Ã(t+1)S̃
(t+1)
(1) . To select the variables in our algorithm, we output

the slack variable Γ(t+1) in Algorithm S.2 as an auxiliary result, and replace

Ã(t+1)S̃
(t+1)
(1) with Γ(t+1). Due to the constraint of the slack variable in (4.3), the

difference between these two terms is sufficiently small. The output of Γ(t+1) in

Algorithm S.2 remains unchanged after applying the above orthonormalization

step.

4.3. Updating B

We let the orthogonal Stiefel manifold be

St(R2,K) = {B ∈ RK×R2 : B⊺B = IR2
}. (4.5)

Using the properties of the d-mode product of a tensor and a matrix (Kolda and

Bader (2009)), we can rewrite HS(t+1),A(t+1),C(t)(B), and update B from solving

the optimization problem

B(t+1) = (4.6)

argmin
B∈St(R2,K)

n∑
i=1

∥∥∥yi − ([{C(t) ⊗ (x⊺
i A

(t+1))}{S(t+1)
(2) }⊺]⊗ b⊺(ti))vec(B)

∥∥∥2
2
,

where S(2) is the mode-2 matricization of tensor S. Note that the objective

function in (4.6) is a smooth function with respect to B on the Stiefel manifold

(4.5), so we can use the manifold gradient method (Absil, Mahony and Sepulchre

(2009)), which is an extension of the gradient descent algorithm to the manifold

space. Algorithm S.3 in Section S.1.3 of the Supplementary Material specializes

our implementation to use the gradient descent algorithm on the Stiefel manifold.
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4.4. Updating C

Using S(3) as the mode-3 matricization (unfolding) of tensor S, we can rewrite

(3.1) as

y = CS(3){(b⊺(t)B)⊗ (x⊺A)}⊺ + ϵ.

Denote Y = (y1, . . . ,yn)
⊺ ∈ Rn×q and M

(t)
C = (M

(t)
C,1, . . . ,M

(t)
C,n)

⊺ ∈ Rn×R3 ,

where M
(t)
C,i = {b⊺(ti)B(t+1) ⊗ (x⊺

i A
(t+1))}(S(t+1)

(3) ) ∈ RR3 , for i = 1, . . . , n. We

then focus the following subproblem to update C:

C(t+1) = argmin
C⊺C=I

∥∥Y −M
(t)
C C⊺

∥∥2
F
, (4.7)

which is known as the orthonormal Procrustes problem (Gower and Dijksterhuis

(2004)). Fining the solution to this problem is equivalent to determining the

nearest orthonormal matrix of Y ⊺M
(t)
C . Therefore, write the singular value

decomposition of Y ⊺M
(t)
C as

Y ⊺M
(t)
C = UΣV ⊺, (4.8)

where U ∈ Rq×R3 and V ∈ RR3×R3 are orthonormal matrices, and Σ ∈ RR3×R3 is

a diagonal matrix with nonnegative values in its diagonal. The analytic solution

to (4.7) can be obtained as

C(t+1) = UV ⊺. (4.9)

4.5. Summary and initializations

Here, we summarize the block updating algorithm in Algorithm 1. To achieve

a sparse solution, the output of Algorithm 1 is Ĝ(1) = Γ̂(Ĉ ⊗ B̂)⊺. We can

then reconstruct Ĝ from the estimated Ĝ(1) by using the inverse of the mode-1

unfolding, and obtain the estimator of the varying coefficients using (3.7).

For the subproblems of S and A, owing to convexity, we can show that

the corresponding MM algorithm generates a sequence converging to the unique

minimizer of each subproblem, using similar arguments to those for Corollary

3.3 of Hunter and Li (2005). We thus use random initializations for S and A

at the first iteration of the outer loop. Then, we set the outputs of S and A

from the preceding iteration of the outer loop as the initialization values for the

next iteration of the outer loop. For C, the corresponding subproblem for this

component can be written as an orthogonal Procrustes problem that has a closed-

form solution and, thus, no initialization is needed for C. Finally, the subproblem

for B is not convex due to the orthonormal constraint, and the proposed manifold

gradient descent algorithm uses only the first-order information on the objective

function, which may not guarantee the convergence to a local minimizer (Absil,

Mahony and Sepulchre (2009)). Therefore, although Algorithm 1 can guarantee a

sequence of decreasing values of the objective function, it is unclear whether this
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Algorithm 1: Block Updating Algorithm to Solve (3.6).

Input: Data set {yi,Xi, ti}ni=1; Random initial points
S(0) ∈ RR1×R2×R3 ,A(0) ∈ Rp×R1 ,B(0) ∈ St(R2,K),C(0) ∈ St(R3, q),
and t = 0.

Output: Ĝ(1) = Γ̂(Ĉ ⊗ B̂)⊺.

repeat

1. Update S̃(t+1) using Algorithm S.1.

2. Update Ã(t+1) using Algorithm S.2 and Γ(t+1) for variable selection.

3. After the QR decomposition of Ã(t+1), let A(t+1) and S
(t+1)
(1) be

qr.Q(Ã(t+1)) and qr.R(Ã(t+1)) · S̃(t+1)
(1) , repectively.

4. Update B(t+1) using the manifold gradient descent method (Algorithm
S.3).

5. Update C(t+1) = UV ⊺ as in (4.9), with U and V defined in (4.8).

6. t = t+ 1.

until L(S(t+1),A(t+1),B(t+1),C(t+1)) − L(S(t),A(t),B(t),C(t)) < ϵ. Denote

Γ̂ = Γ(t+1), Ĉ = C(t+1), and B̂ = B(t+1).

algorithm can guarantee the convergence to a global minimizer. Nevertheless,

Absil, Mahony and Sepulchre (2009) show that using any sub-sequence of the

iterations generated by the manifold gradient descent algorithm converges to the

stationary point of the subproblem. We can thus run Algorithm 1 from multiple

initializations of B and return the best result. However, this is computationally

expensive. Instead, we propose using a rough estimator Binit as an initial point

for the manifold optimization of B. Specifically, at the (t+1)th iteration, define

B̃ := argmin
B∈RK×R2

HS(t+1),A(t+1),C(t)(B),

which can be solved easily, since the objective function is differentiable with

respect to B in the Euclidean space. Next, we simply project B̃ onto the Stiefel

manifold, and let the projection be the initial point, that is,

Binit = PSt(R2,K)(B̃) = B̃(B̃⊺B̃)−1/2.

We use the above Binit as the initial value in Algorithm S.3 when we update B.

Our numerical experiments show that this strategy is not only faster than using

multiple random initializations but also generates stable iteration sequences.
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4.6. Tuning parameters

Our model has a total of six tuning parameters (m,K,R1, R2, R3, λ), where

m is the order of the spline basis, K is the number of basis functions, (R1, R2, R3)

are the Tucker ranks, and λ is the regularization parameter. We first fix the spline

order m = 4 (cubic spline) to alleviate the computational burden of estimating

nonparametric functions (Ruppert, Wand and Carroll (2003)). For the number K

of spline basis functions, many data-driven methods have been proposed to decide

K based on the sample size (see, e.g., Huang, Wu and Zhou (2002, 2004); Ruppert,

Wand and Carroll (2003), and the references therein) in empirical studies. To be

computationally simple, we follow the strategy used in Fan, Ma and Dai (2014)

by letting K = [2n1/5], where [·] denotes rounding to the nearest integer. The

knots of spline basis functions are also data-driven, and chosen as equally spaced

quantiles. We find this empirical rule works well in all of our experiments. For

the choice of R3, which corresponds to the dimension reduction associated with

the responses, we conduct a singular value decomposition of the response matrix

Y ∈ Rn×q. We then choose R3 such that the first R3 dominant singular values

together account for at least 90% of the sum of all singular values. For (R1, R2)

and λ, we apply the hold-out method (He et al. (2018b); Hannun et al. (2019)) in

our numerical study, for its computational efficiency. More precisely, we randomly

split the available data into two subsets: a training set with 75% of the samples,

and a validation set with 25% of the samples. We set the validation samples

aside, and use Algorithm 1 to fit our proposed method on the training set. The

parameters (R1, R2) and λ are selected by minimizing the validation error

1

nvalid

nvalid∑
i=1

(yvalid,i − ŷvalid,i)
2

over the grids of the corresponding tuning parameters, where nvalid is the size of

the validation set, and ŷvalid,i is the prediction value of the ith observation yvalid,i
in the validation set.

5. Theory

In this section, we establish the oracle inequality for the prediction accuracy

of the proposed estimator. For readability, we first show the oracle inequality

under a fixed-design setting, where the predictors and the exposure variable

are fixed. Similarly, we say a setting is random-design if these variables are

distributed randomly. To extend our results to random-design settings, we show

that the corresponding assumption on the design (that is, Condition M(J , δJ )

presented below) can be satisfied with high probability (tending to one) when

x and t are random, under some mild regularity conditions. The result under

the fixed-design setting is presented below; we defer the theoretical result for the
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random design to Section S.4 of the Supplementary Material.

Let Σ = Z⊺Z/n, Z = (z1, . . . ,zn)
⊺, where zi = xi ⊗ b(ti) ∈ RpK . We use

λmax(·) and λmin(·) to denote the maximum and minimum eigenvalues of a matrix,

respectively. Denote by S0, A0, C0, and β0 the true values of S, A, C, and β

in (2.7), respectively. Denote by s the number of nonzero rows in A0, which

corresponds to the relevant predictors. We also write H0 = S0 ×1 A0 ×3 C0 ∈
Rp×R2×q, and correspondingly, the true coefficient functions are (f0,jl(t))p×q =

F0(t) = H0 ×̄2 β0(t). Let

Y = (y1, . . . ,yn)
⊺ ∈ Rn×q and E = (ϵ1, . . . , ϵn)

⊺ ∈ Rn×q.

Now, we state a condition required to describe the oracle inequality in our

theoretical results.

Condition 1 (M(J , δJ )). We say the design matrix Σ satisfies Condition

M(J , δJ ) for an index set J ⊂ {1, . . . , p} and a positive number δJ if

tr(M⊺ΣM) ≥ δJ
∑
j∈J

∥Mj∥2F ,

for all M ∈ RpK×q satisfying 2
∑

j∈J ∥Mj∥F ≥
∑

j∈J c ∥Mj∥F , where Mj is the

collection of rows related to the jth predictor in M , and tr(·) denotes the trace

of a matrix.

Condition M(J , δJ ) is similar to the one used in Bunea, She and Wegkamp

(2012) for reduced rank regression models. In particular, Condition M(J , δJ )

is motivated by the “restricted eigenvalue” (RE) condition introduced in Bickel,

Ritov and Tsybakov (2009) for studying the asymptotic properties of high-

dimensional linear regression. This condition implies that the least eigenvalue of

the relevant predictors is greater than or equal to δJ by letting Mj = 0, for j ∈
J c. Note that the constant 2 in the inequality 2

∑
j∈J ∥Mj∥F ≥

∑
j∈J c ∥Mj∥F

of Condition M(J , δJ ) is chosen merely for neat presentation of the statements,

and it can be replaced by any positive constant greater than one. Lemma S.3

of the Supplementary Material shows that when n is at least as large as the

magnitude of |J |2q2K2 + |J |2qK log p, Condition M(J , δJ ) holds for a constant

δJ > 0 with probability tending to one, under some mild conditions of random

design.

The following assumptions are needed in our analysis.

Assumption 1. The entries of the noise matrix E are i.i.d. Gaussian random

variables with mean zero and variance σ2.

Assumption 2. The columns of the true parameters H0,(2) (mode-2 matriciza-

tion of H0) have Euclidean norms bounded by a constant.
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Assumption 3. The domain of the exposure variable t is T = [0, 1]. The order

of the B-spline satisfies ζ ≥ τ + 1/2. Let 0 = ξ1 < ξ2 < · · · < ξK−ζ+2 = 1 denote

the knots of the B-spline basis. Furthermore, there exists a positive constant S1

such that

hn = max
k=1,...,K−ζ+1

|ξk+1 − ξk| ≍ K−1 and
hn

mink=1,...,K−ζ+1 |ξk+1 − ξk|
≤ S1.

Assumption 4. The true principal functions β0,r2 ∈ H, for r2 = 1, . . . , R2.

Here, H is the space of functions from [0, 1] to R satisfying the Hölder condition

of order ω, that is,

H =
{
g : ∃C ∈ (0,∞) s.t. |g(ι)(x1)− g(ι)(x2)| ≤ C|x1 − x2|ω, ∀ x1, x2 ∈ [0, 1]

}
,

where ι is a nonnegative integer and g(ι) is the ιth derivative of g, such that

ω ∈ (0, 1] and τ = ι+ ω > 1/2.

Assumptions 1–4 are common in the literature on nonparametric regressions

(Huang, Horowitz and Wei (2010); He et al. (2018a)). Specifically, Assumption 1

controls the stochastic error. Under Assumptions 3 and 4, it follows from Lemma

5 of Stone (1985) that there exists B0,r2 = (B0,r2,1, . . . , B0,r2,K)
⊺ such that, for

some constant S2,∥∥∥∥β0,r2 −
K∑

k=1

B0,r2,kbk

∥∥∥∥
∞

≤ S2

Kτ
, r2 = 1, . . . , R2, (5.1)

where ∥ · ∥∞ is the uniform norm of functions. Let B0 = (B0,1, . . . ,B0,R2
)⊺ ∈

RK×R2 and

G0 = S0 ×1 A0 ×2 B0 ×3 C0 ∈ Rp×K×q.

Note that {G0 ×̄2 b(t)}⊺x is only an approximation of the true regression func-

tion, owing to the nonparametric nature of the MVCM. Using the matricization

operator of a tensor (Kolda and Bader (2009)), it can be shown that

{G0 ×̄2 b(ti)}⊺xi = G0,(3)zi, i = 1, . . . , n, (5.2)

where G0,(3) is the mode-3 matricization of G0. By (5.1), (5.2), and Assumption

2, the approximation error over n observations, R := Y −E −ZG⊺
0,(3), satisfies

∥R∥2F = ∥Y −E −ZG⊺
0,(3)∥

2
F ≤ S3

nsq

K2τ
, (5.3)

for some positive constant S3, where s is the number of relevant predictors.
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In addition, for any G ∈ Rp×K×q with rank restrictions rankd(G) ≤ Rd, for

d = 1, 2, 3, we write

∆G =

{
n∑

i=1

∥{G ×̄2 b(ti)}⊺xi − {G0 ×̄2 b(ti)}⊺xi∥2
}1/2

(5.4)

as the discrepancy between G and G0 in terms of prediction. Similarly, we write

∆F =

{
n∑

i=1

∥F (ti)
⊺xi − F0(ti)

⊺xi∥2
}1/2

(5.5)

as the discrepancy between the coefficient functions F (·), with F (·) = G ×̄2 b(·)
and F0(·). The following Theorem 1 shows the prediction accuracy for a solution

Ĝ of (3.5); and its proof is deferred to Section S.2 of the Supplementary Material.

Theorem 1. Let J (G) be the index set of nonzero rows of G(1), the mode-

1 matricization of G with rankd(G) ≤ Rd, for d = 1, 2, 3, and denote R =

min(R1R2, R3). Suppose Assumptions 1–4 hold. Taking

λ2 = S4R3Rnλmax(Σ)Kσ2{1 + log(p)}, (5.6)

for some constant S4 > 0, we then have

∆2
Ĝ
≤ S5∆

2
G + S6qRσ2 + S7

R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ S8

nsq

K2τ
, (5.7)

with probability at least

1− 8 exp(−q/2)

3K log(p)
, (5.8)

provided Σ satisfies Condition M(J (G), δJ (G)), where S5, . . . , S8 are positive

constants.

Theorem 1 shows the finite-sample oracle inequality for the prediction error

between the proposed estimator and its oracle spline approximation. Because the

proposed Algorithm 1 may not guarantee that the generated sequence converges

to a global minimum of the optimization problem, we remark that there is a gap

between the oracle inequality for the global optimizer and the practical output

from the proposed block updating algorithm.

For the coefficient functions, we correspondingly denote F̂ (t) = Ĝ ×̄2 b(t),

where Ĝ is a solution to (3.5). Theorem 1 can then be generalized to the

prediction error for F̂ (t) in terms of (5.5), as shown in the following corollary.

The proof of Corollary 1 is deferred to Section S.3 of the Supplementary Material.
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Corollary 1. We have

∆2
F̂
≤ 2S5∆

2
G +2S6qRσ2 +2S7

R3RK|J (G)|λmax(Σ)σ2 log(p)

δJ (G)

+ (2S8 +2S3)
nsq

K2τ

with probability at least (5.8), under the same conditions as those of Theorem 1.

One direct application of Theorem 1 is to obtain the rate of convergence

for the prediction accuracy of the proposed estimator. We can also show that

the relevant predictors can be identified, with probability tending to one. In the

following, let ∥f0,jl∥2 be the L2-norm of f0,jl under the Lebesgue measure, and f̂jl
be the estimated coefficient function of f0,jl from (3.7). The proof of Corollary 2

is deferred to Section S.3 of the Supplementary Material.

Corollary 2. Suppose Assumptions 1–4 hold and Σ satisfies Condition

M(J (G0), δJ (G0)). If we let

K ≍
{

nδJ (G0)q

R3Rλmax(Σ) log(p)

}1/(2τ+1)

,

and λ2 is given as in (5.6), then the prediction error ∆2
F̂
/n of the estimated

coefficient functions F̂ satisfies

∆2
F̂

n
= Op

(
qR

n
+

{
R3Rλmax(Σ) log(p)

nδJ (G0)

}2τ/(2τ+1)

sq1/(2τ+1)

)
. (5.9)

Furthermore, if

q(4τ+1)/(2τ+2)δ
−1/(2τ+2)
J (G0)

R{R3λmax(Σ) log(p)}−τ/(τ+1)

n

+
s(2τ+1)/τq1/(2τ)δ

−(4τ+1)/(2τ)
J (G0)

R3Rλmax(Σ) log(p)

n
→ 0 (5.10)

as n → ∞ and
∑q

l=1 ∥f0,jl∥22 ≥ S9, for some constant S9 > 0, ∀j ∈ J (G0), we

then have

P
{
F̂j(t) ̸= 0, j ∈ J (G0)} → 1 as n → ∞,

where F̂ ⊺
j (t) = (f̂j1, . . . , f̂jq) is the jth row F̂ .

As discussed in Section 2, Models (2.3) (Lian and Ma (2013)) and (2.4) (He

et al. (2018a)) can be regarded as special cases of our proposed all-mode reduction

method. The derived rate of convergence in (5.9) includes those of He et al.

(2018a) and Lian and Ma (2013) as special cases, with an extra log p term due

to the use of a different penalization method. Condition (5.10) for the variable

selection consistency indicates that the sample size n should be sufficiently large

relative to the numbers of relevant predictors s and responses q. A simple and
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sufficient condition for (5.10) to hold is that n should be larger than the magnitude

of q2s4R3Rλmax(Σ) log(p)δ−2
J (G0)

.

6. Experiments

6.1. Synthetic data

We conduct a simulation study to evaluate the performance of the proposed

model. The data are simulated from the following model:

yil =
p∑

j=1

fjl(ti)xil + εil, i = 1, . . . , n; l = 1, . . . , q,

where {εil} are i.i.d. random variables with normal distribution N (0, σ2). We

set xi1 = 1 as the intercept for all i, and the remaining p − 1 predictors

are generated from a multivariate Gaussian distribution with mean zero and

covariance Cov(xij1 , xij2) = ρ|j1−j2|, 1 ⩽ j1, j2 ⩽ p − 1. The exposure variable

ti is generated from the uniform distribution on [0, 1], for i = 1, . . . , n, and

{fjl} are generated according to the all-mode reduction model, as in (2.7). In

particular, the elements of S ∈ RR1×R2×R3 and C ∈ Rq×R3 are i.i.d. N (0, 1)

random variables. We let the first s predictors, including the intercept, be the

truly relevant predictor variables, and the remaining p − s predictors have no

effect on the responses {yil}. Therefore, we generated the entries of the first s

rows of A ∈ Rp×R1 independently from N (0, 1), and the remaining rows are set

as zero.

We set R1 = R2 = R3 = 2, p = 51 or 201, s = 11, q = 15,

and ρ = 0.3. We choose σ2 according to the signal-to-noise ratio (SNR),

trace{Var(
∑p

j=1 fjl(ti)xil)}/qσ2. More specifically, we investigate two SNRs, 20

and 2, in our simulation study. The normalized principal functions are specified

as β(t) = (β1(t), β2(t))
⊺ = (

√
2 cos(πt),

√
2 sin(2πt))⊺ on the domain t ∈ [0, 1],

which satisfy
∫
β(t)β(t)⊺ dt = I2, a 2 × 2 identity matrix. We consider two

sample sizes, 200 and 400. For each scenario, we generate 50 replicates of data

sets.

To fit our model on each simulated data set, all the tuning parameters of

the proposed method are selected as discussed in Section 4.6. We refer to our

proposed method as the all-mode reduction in the following discussion.

We compare the all-mode reduction with four alternative methods: the mode-

3 reduction model (Lian and Ma (2013)), the mode-2 reduction model (He et al.

(2018a)), the full model, and the linear model. Here, the full model refers to

(2.2)) with the group lasso method (Yuan and Lin (2006)) employed to select

the relevant predictors. We can set R1 = p, R2 = K, and R3 = q in our model

and use Algorithm S.1 of the Supplementary Material to solve the estimator of

the full model. In the linear model, the regression coefficients are assumed to
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be constants, and the group lasso method is also employed. Both the full model

and the linear model have the tuning parameter λ. To select λ, we use the same

hold-out method as in our model for the full model, and cross-validation for the

linear model. The mode-3 reduction model corresponds to dimension reduction

in the responses. Therefore, its estimator can be obtained by setting R1 = p

and R2 = K in our model and iteratively updating S and C using Algorithm

S.1 of the Supplementary Material and (4.9). The tuning parameters R3 and λ

are selected using the hold-out method. As for the mode-2 reduction model, we

apply the implementation provided in He et al. (2018a), who use cross-validation

to select the tuning parameters R2 and λ.

In terms of variable selection, we calculate “True Discovery” as the average

number of predictors selected by various methods that are actually relevant, and

used “False Discovery” to stand for the average number of predictors selected by

various methods that are actually irrelevant. The variable selection performance

of the competing methods is summarized in Tables 1 and 2 for sample sizes

n = 200 and n = 400, respectively, together with the performance of the

rank selection R̂1, R̂2, and R̂3 for the corresponding methods. Note that

the reported selected ranks are the average values of 50 replicates. Tables 1

and 2 show that the proposed all-mode reduction model identifies all nonzero

varying-coefficient functions with the fewest number of false discovery among

the competing methods. Though the full and linear models have high accuracy

in terms of identifying the relevant predictors, their poor performance in terms

of false discovery show that they falsely include many irrelevant predictors in

their estimators. The mode-2 and mode-3 reduction methods have similar

performance, and do not always correctly identify the true nonzero varying

coefficients, especially when the SNR is relatively small. For the rank selections,

it is shown that the third rank can be correctly selected as R̂3 = 2 by using

our proposed model. For the first and second ranks, we find that the proposed

all-mode reduction method selects more than 76% and 80% of the 50 replicates

as the true rank 2, respectively, in the setting of p = 51, n = 200, and the SNR

is 20. On average, the proposed all-mode method may tend to select R̂1 and R̂2

slightly larger than their true values.

To evaluate the estimation accuracy, we calculate the average integrated

squared error (AISE) as

AISE =
1

q

p∑
j=1

q∑
l=1

∫ 1

0

{f̂jl(t)− fjl(t)}2 dt,

where f̂jl(t) denotes a generic estimator of fjl(t) using the various methods.

The above integrals are computed using the Monte Carlo method. Table 3

reports the AISEs of the competing methods, with the corresponding standard

errors. For benchmark, we add the oracle estimator which includes only the true
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Table 1. Dimension reduction and variable selection results for group lasso penalized
estimators for n = 200. The numbers in parentheses are the standard errors based on 50
replicates.

R̂1 R̂2 R̂3 True Discovery False Discovery

p = 51

SNR=20

All-mode Reduction 2.34 2.14 2.00 11.00 (0.00) 3.26 (0.28)

Mode-3 Reduction - - 2.00 10.86 (0.55) 10.45 (0.83)

Mode-2 Reduction - 2.19 - 11.00 (0.00) 11.39 (0.70)

Full Model - - - 11.00 (0.00) 13.48 (0.93)

Linear Model - - - 11.00 (0.00) 19.07 (1.19)

SNR=2

All-mode Reduction 2.64 2.34 2.00 11.00 (0.00) 3.65 (0.34)

Mode-3 Reduction - - 2.00 10.34 (0.95) 14.43 (1.14)

Mode-2 Reduction - 2.25 - 11.00 (0.00) 18.75 (1.40)

Full Model - - - 11.00 (0.00) 21.31 (1.54)

Linear Model - - - 11.00 (0.00) 24.87 (1.60)

p = 201

SNR=20

All-mode Reduction 2.67 2.58 2.00 11.00 (0.00) 12.08 (0.59)

Mode-3 Reduction - - 2.00 10.96 (0.54) 19.40 (1.15)

Mode-2 Reduction - 2.41 - 11.00 (0.00) 25.86 (1.46)

Full Model - - - 11.00 (0.00) 28.47 (1.96)

Linear Model - - - 11.00 (0.00) 31.51 (2.57)

SNR=2

All-mode Reduction 2.57 2.60 2.00 10.44 (0.39) 15.42 (1.32)

Mode-3 Reduction - - 2.00 9.96 (1.21) 19.87 (1.47)

Mode-2 Reduction - 2.84 - 9.83 (0.81) 23.17 (1.74)

Full Model - - - 11.00 (0.00) 36.48 (2.18)

Linear Model - - - 11.00 (0.00) 44.87 (2.45)

relevant predictors in its model. In other words, the true relevant predictors

are assumed to be known in the oracle setting. Therefore, we do not include

the penalization in the objective function, enabling us to use the least squares

method to estimate S and A. We use the same framework of block updating

Algorithm 1 to compute the oracle estimator. A box plot of the AISEs for the

various methods with sample size n = 400 is depicted in Figure 4. We conclude

from Table 3 and Figure 4 that the all-mode reduction model outperforms other

non-oracle estimators, with the smallest AISE. For example, when the sample

size n = 400, the all-mode reduction method reduces the AISE by 48%–94%

compared with the mode-3 reduction, and by 78%–98% compared with the mode-

2 reduction. The performance of the all-mode reduction method improves when

the sample size increases, which is consistent with our theoretical investigation.

Among the alternative methods, the full model and the linear model show the

worst performance.

6.2. Real data

We further illustrate the proposed method on the data set from the

Framingham Heart Study (FHS; Dawber, Meadors and Moore Jr (1951)), which

aims to identify common factors that lead to cardiovascular diseases. The data



2036 ZHANG ET AL.

Table 2. Similar to Table 1, but for n = 400.

R̂1 R̂2 R̂3 True Discovery False Discovery

p = 51

SNR=20

All-mode Reduction 2.31 2.15 2.00 11.00 (0.00) 2.42 (0.28)

Mode-3 Reduction - - 2.00 11.00 (0.00) 8.64 (0.61)

Mode-2 Reduction - 2.20 - 11.00 (0.00) 8.78 (0.66)

Full Model - - - 11.00 (0.00) 11.52 (0.84)

Linear Model - - - 11.00 (0.00) 17.87 (1.15)

SNR=2

All-mode Reduction 2.39 2.21 2.00 11.00 (0.00) 3.71 (0.34)

Mode-3 Reduction - - 2.00 10.52 (0.78) 10.72 (0.90)

Mode-2 Reduction - 2.23 - 11.00 (0.00) 12.38 (0.92)

Full Model - - - 11.00 (0.00) 16.86 (1.01)

Linear Model - - - 11.00 (0.00) 21.87 (1.45)

p = 201

SNR=20

All-mode Reduction 2.45 2.50 2.00 11.00 (0.00) 10.71 (0.58)

Mode-3 Reduction - - 2.00 11.00 (0.00) 18.85 (1.02)

Mode-2 Reduction - 2.38 - 11.00 (0.00) 20.32 (1.38)

Full Model - - - 11.00 (0.00) 23.10 (1.82)

Linear Model - - - 11.00 (0.00) 30.51 (2.47)

SNR=2

All-mode Reduction 2.45 2.70 2.00 10.50 (0.24) 11.83 (1.00)

Mode-3 Reduction - - 2.00 10.12 (1.11) 17.57 (1.16)

Mode-2 Reduction - 2.49 - 10.33 (0.93) 19.48 (1.36)

Full Model - - - 11.00 (0.00) 31.59 (2.28)

Linear Model - - - 11.00 (0.00) 43.07 (1.82)

p=51 p=201

Oracle  All-mode Mode-3  Mode-2     Full     Linear Oracle  All-mode Mode-3  Mode-2     Full     Linear 

A
IS
E

1e+00

1e-02

1e-04

Figure 4. A box plot of the AISEs for the competing methods when n = 400 and the
SNR is 20. The left and right panels represent the AISEs for p = 51 and for p = 201,
respectively. The y-axis is measured in logarithmic scale.

set collects the measurements on 15 phenotypes from 325 patients, in addition

to the single nucleotide polymorohism (SNP) information. All variables are

standardized with mean zero and variance one. After matching the SNP data

with the phenotypes and deleting observations with missing values and outliers,

we focus on a subset of 258 patients in our analysis. We preselected six phenotypes
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Table 3. The AISEs for the competing methods. The numbers in parentheses are the
standard errors based on 50 replicates.

n p SNR Oracle
All-mode Mode-3 Mode-2 Full Linear

Reduction Reduction Reduction Model Model

200

51

20
0.007 0.011 0.237 0.782 3.459 6.761

(0.002) (0.003) (0.019) (0.082) (0.339) (0.674)

2
0.031 0.085 0.314 1.484 6.348 10.197

(0.004) (0.007) (0.015) (0.104) (0.454) (0.568)

201

20
0.008 0.223 0.496 0.794 4.327 15.192

(0.004) (0.051) (0.052) (0.084) (0.453) (0.961)

2
0.042 0.293 0.615 2.940 10.361 20.387

(0.006) (0.009) (0.063) (0.281) (0.972) (1.623)

400

51

20
0.004 0.010 0.164 0.501 2.240 4.933

(0.001) (0.002) (0.011) (0.042) (0.268) (0.469)

2
0.018 0.022 0.281 0.841 4.418 8.910

(0.002) (0.002) (0.016) (0.065) (0.399) (0.457)

201

20
0.005 0.101 0.403 0.679 4.229 14.584

(0.001) (0.007) (0.042) (0.049) (0.532) (0.567)

2
0.022 0.286 0.549 1.306 9.061 17.178

(0.002) (0.009) (0.065) (0.118) (0.895) (1.340)

of interest: height, bi-deltoid girth, right arm girth-upper third, waist girth, hip

girth, and thigh girth. The exposure variable is set as weight. We follow the

screening procedure in Fan, Ma and Dai (2014) to select 200 SNPs as predictors

(the intercept is also included in the model). To fit our proposed method, all the

tuning parameters are selected as discussed in Section 4.6. Specifically, we split

the data set randomly into three subsets, namely, a training set, a validation set,

and a test set, of size 150, 50, and 58, respectively. The training and validation

sets are used to determine (R1, R2) and λ, and the test set is used to evaluate

the out-of-sample prediction performance. The recommended rule K = [2n1/5]

for the number of basis functions leads to K = 6. To evaluate the performance,

the corresponding prediction error is defined as

Prediction Error =
1

ntest

ntest∑
i=1

∥yi − ŷi∥22,

where {yi} are the observed responses in the test set, ŷi = {Ĝ ×̄2 b(t)}⊺xi

with the corresponding predictors xi, and ntest is the size of the test set. We

compare the proposed model, namely the all-mode reduction, with four non-

oracle alternatives in Section 6.1. Furthermore, we implement the elementwise-

sparsity method on the full model to fit this data set. Here, we can achieve

the full model with the elementwise-sparsity method by using the group lasso
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Table 4. Prediction error of the test data. The numbers in parentheses are the standard
errors based on 50 replicates of random splitting.

Prediction error R̂1 R̂2 R̂3

All-mode Reduction 0.4542 (0.0071) 2.7 3.1 2.0

Mode-3 Reduction 0.6011 (0.0196) - - 2.0

Mode-2 Reduction 0.6385 (0.0357) - 4.3 -

Full Model (row-sparsity) 1.0181 (0.0417) - - -

Full Model (elementwise-sparsity) 1.2106 (0.0403) - - -

Linear Model 1.2578 (0.0488) - - -

penalization (Yuan and Lin (2006)) on each coefficient function in (2.2) to select

the relevant predictors for the response variables. The performance of each

method is evaluated based on 50 random splittings of training, validation, and

test sets.

Table 4 records the average prediction error of the competing methods on

the test data and the performance of the dimension reduction. We observe

in Table 4 that the full model with the row-sparsity method outperforms the

elementwise-sparsity method, implying that the FHS data set may be better

fitted using the row-sparsity methods than the elementwise-sparsity methods.

In addition, the proposed all-mode reduction model has the highest prediction

accuracy, and achieves significant dimensionality reduction on each mode. This

result is consistent with that based on the synthetic data. To investigate a

biological interpretation of the identified SNPs, we input the submitted ss♯ of

the identified SNPs to the NCBI database (Sherry et al. (2001)) to retrieve the

reference rs♯ records. The proposed all-mode reduction method identified 30

SNPs by combining the variable selection results of 50 random splits. Some of

these SNPs have been confirmed scientifically. For example, the reference SNP

rs4896044 is found to be associated with hypertension (Consortium (2007)), and

rs9321440 has links with multiple heart diseases (Gagliardi (2011)). The mode-

3 reduction method identified 51 SNPs, including all 30 SNPs selected by the

all-mode reduction method. On the other hand, the mode-2 reduction method

identified 47 SNPs, with 25 of the SNPs selected by the all-mode reduction

method, including the scientifically confirmed rs4896044 and rs9321440.

6.3. Additional numerical results

To further demonstrate the utility of the proposed all-mode reduction

method, we conduct additional numerical experiments, and present the results

in Section S.5 of the Supplementary Material. More precisely, we extend our

simulation settings to larger numbers of response variables q, and plot the trend

of the performance of the proposed method when q increases in Section S.5.1 of

the Supplementary Material. In Section S.5.2 of the Supplementary Material, we
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depict the fitted coefficient functions of the biologically confirmed SNP rs9321440

based on 50 replicates of random splitting. Our results show that rs9321440

may have different effects on the phenotypes of height, bi-deltoid girth, right arm

girth-upper third, hip girth, and thigh girth, given distinct body weights. For the

phenotype of waist girth, the effect of this SNP may not vary significantly with

body weight. We refer readers to Section S.5 of the Supplementary Material for

details.

7. Discussion

We have proposed a dimension-reduction method based on the Tucker

decomposition of a third-order tensor to estimate the varying coefficients of

an MVCM under a high-dimensional setting. The proposed model unifies

dimensionality reductions in three aspects: relevant predictors, coefficient

functions, and responses. To take sparsity into account, we integrate a sparsity-

inducing penalization into the estimation. The oracle inequality for the prediction

risk of the proposed estimator is derived under fixed and random designs. We

have used both simulated and real data sets to evaluate and compare the empirical

performance of the proposed model with that of other methods, and the results

illustrate the superior performance of our method.

One difficulty of applying the proposed method is the need to tune the

ranks of the Tucker decomposition, which may become computationally expensive

when the dimension is extremely high. Developing an efficient way to tune

the ranks requires further investigation. Furthermore, in some applications, the

relationships between responses can be determined using external covariates, such

as spatial locations, providing extra information for measuring the similarity

between responses, thus inducing a (weighted) graphical structure among the

tasks. Therefore, future research should extend the proposed model to the

problem of graph regularized multi-task learning. Finally, incorporating the

elementwise-sparsity method with the all-mode reduction model may be useful

in other real applications. This, too, is left as a future research topic.

Supplementary Material

The online Supplementary Material contains: (i) the details of updating S,

A, and B; (ii) the technical proofs of Theorem 1 and Corollaries 1–2; (iii) the

theoretical results for the random-design settings and the corresponding proofs;

and (iv) additional numerical results for the simulation study and the analysis of

real data set.
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