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Abstract: This paper is dedicated to the study of an estimator of the generalized

Hoeffding decomposition. We build an estimator using an empirical Gram-Schmidt

approach and derive a consistency rate in a large dimensional setting. We then

apply a greedy algorithm with these previous estimators to a sensitivity analysis.

We also establish the consistency of this L2-boosting under sparsity assumptions of

the signal to be analyzed. The paper concludes with numerical experiments that

demonstrate the low computational cost of our method, as well as its efficiency on

the standard benchmark of sensitivity analysis.
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1. Introduction

In many scientific fields, it is desirable to extend a multivariate regression

model as a specific sum of increasing dimension functions. Functional ANOVA

decompositions and High Dimensional Representation Models (HDMR) (Hooker

(2007); Li et al. (2010)) are well known expansions that make it possible to

understand model behavior and to detect how inputs interact with each other.

When input variables are independent, Hoeffding establishes the uniqueness

of the decomposition provided the summands are mutually orthogonal (Hoeffding

(1948)). However, in practice, this assumption is sometimes difficult to justify, or

even wrong (see Li and Rabitz (2012) for an application to correlated ionosonde

data, or Jacques, Lavergne, and Devictor (2006), who studied an adjusted neu-

tron spectrum inferred from a correlated dependent nuclear dataset).

When inputs are correlated, the orthogonality properties of the classical

Sobol decomposition (Sobol (1993)) are no longer satisfied. As pointed out by

several authors (Hooker (2007); Da Veiga, Wahl, and Gamboa (2009)), a global

sensitivity analysis based on this decomposition may lead to erroneous conclu-

sions. Following the work of Stone (1994), later applied to Machine Learning

by Hooker (2007), and to sensitivity analysis by Chastaing, Gamboa, and Prieur
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(2012), we consider a hierarchically orthogonal decomposition whose uniqueness

has been proven under mild conditions on the dependence structure of the in-

puts (Chastaing, Gamboa, and Prieur (2012)). Thus, any model function can

be uniquely decomposed as a sum of hierarchically orthogonal component func-

tions. Two summands are considered to be hierarchically orthogonal whenever

all of the variables included in one of them are also involved in the other. For

a better understanding, this generalized ANOVA expansion is referred to as a

Hierarchically Orthogonal Functional Decomposition (HOFD).

It is important to develop estimation procedures since the analytical formula-

tion for HOFD is rarely available. We focus on a method proposed in Chastaing,

Gamboa, and Prieur (2013) to estimate the HOFD components. It consists of

constructing a hierarchically orthogonal basis from a suitable Hilbert orthonor-

mal basis. The procedure recursively builds a multidimensional basis for each

component that satisfies the identifiability constraints imposed on this summand.

Each component is then well approximated on a truncated basis where the un-

known coefficients are deduced by solving an ordinary least-squares regression.

While in a high-dimensional paradigm, this procedure suffers from the curse of

dimensionality, numerically, it is observed that only a few of the coefficients are

not close to zero, so a small number of predictors can restore the major part of

the information contained in the components. Thus, it is important to be able to

select the most relevant representative functions and to then identify the HOFD

with a limited computational budget.

We suggest here how to transform an ordinary least-squares regression into

a penalized regression, as has been proposed in Chastaing, Gamboa, and Prieur

(2013). In the present paper, we focus on the L2-boosting developed by Friedman

(2001) to deal with the ℓ0 penalization. L2-boosting is a greedy strategy that

performs variable selection and shrinkage, is intuitive, and easy to implement. It

is closely related to the LARS algorithm proposed by Efron et al. (2004), used

for Lasso regression (Tibshirani (1996); Bühlmann and van de Geer (2011)); L2-

boosting and LARS both select predictors using the maximal correlation with

the current residuals.

The goal of this paper is to provide an overall consistent estimation of a

signal spanned in a large-dimensional dictionary derived from a HOFD, thereby

improving the results of Chastaing, Gamboa, and Prieur (2013). We first address

the convergence rate of the empirical HOFD and then use this result to obtain a

sparse estimator of the unknown signal. We need to manage sufficient theoretical

conditions to ensure the consistency of our estimator. We discuss these conditions

and provide some numerical examples in which such conditions are fulfilled.

The article is organized as follows. Notation is set in Section 2.1, and Section

2.2 provides the HOFD representation of the model function. In Section 2.3, we
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review the procedure detailed in Chastaing, Gamboa, and Prieur (2013) that

consists of constructing well-tailored hierarchically orthogonal bases to represent

the components of the HOFD, then, highlight the curse of dimensionality that we

are exposed to, and present the L2-boosting. Section 3 gives our main results on

the proposed algorithms, and an interesting application of the general theory to

global sensitivity analysis (SA). In Section 4, we apply L2-boosting to estimate

the generalized sensitivity indices defined in Chastaing, Gamboa, and Prieur

(2012, 2013), then, numerically compare the L2-boosting performance with a

Lasso strategy and the Forward-Backward algorithm proposed by Zhang (2011).

Section 5 concludes. The proofs of the main theorems are in the Supplementary

Material.

2. Estimation of the Generalized Hoeffding Decomposition Compo-

nents

2.1. Notation

We consider a measurable function f of a random real vector X = (X1, . . .,

Xp) of Rp, p ≥ 1. The response variable Y is a real-valued random variable

defined as:

Y = f(X) + ε, (2.1)

where ε is a centered random variable independent of X that models the vari-

ability of the response around its theoretical unknown value f . We denote the

distribution law of X by PX, unknown in our setting, and we assume that PX

admits a density function pX with respect to Lebesgue measure on Rp. Here the

components of X may be correlated.

We suppose that f ∈ L2
R (Rp,B(Rp), PX), where B(Rp) denotes the Borel

set of Rp. The Hilbert space L2
R (Rp,B(Rp), PX) is denoted by L2

R, for which we

use the inner product ⟨·, ·⟩, and the norm ∥·∥. We use E(·) for expected value,

V (·) = E[(· − E(·))2] for variance, and Cov(·, ∗) = E[(· − E(·))(∗ − E(∗))] for
covariance.

For any 1 ≤ i ≤ p, we denote the marginal distribution of Xi by PXi and

extend our notation to L2
R(R,B(R), PXi) := L2

R,i.

2.2. The generalized Hoeffding decomposition

Let [1 : k] := {1, 2, . . . , k}, with k ∈ N∗, and let S be the collection of all

subsets of [1 : p]. Take S∗ := S \{∅}. For u ∈ S, the subvector Xu of X is defined

as Xu := (Xi)i∈u. Conventionally, for u = ∅, Xu = 1. The marginal distribution

(resp. density) of Xu is denoted by PXu (resp. pXu).
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A functional ANOVA decomposition consists in expanding f as a sum of

increasing dimension functions:

f(X) = f∅ +

p∑
i=1

fi(Xi) +
∑

1≤i<j≤p

fij(Xi, Xj) + · · ·+ f1,...,p(X)

=
∑
u∈S

fu(Xu), (2.2)

where f∅ is a constant term, fi, i ∈ [1 : p] are the main effects, fij , fijk, · · · ,
i, j, k ∈ [1 : p] are the interaction effects, and the last component f1,...,p is the

residual. Decomposition (2.2) is generally not unique. However, under mild as-

sumptions on the joint density pX (see Assumptions (C.1) and (C.2) in Chastaing,

Gamboa, and Prieur (2012)), the decomposition is unique under some additional

orthogonality assumptions.

Let H∅ = H0
∅ be the set of constant functions and, for all u ∈ S∗, Hu :=

L2
R(Ru,B(Ru), PXu). For u ∈ S \ ∅, we take

H0
u =

{
hu ∈ Hu, ⟨hu, hv⟩ = 0, ∀ v ⊂ u,∀ hv ∈ H0

v

}
,

where ⊂ denotes the strict inclusion. Under Assumptions (C.1) and (C.2) in

Chastaing, Gamboa, and Prieur (2012), the decomposition (2.2) is unique if

fu ∈ H0
u for all u ∈ S. It is termed the Hierarchical Orthogonal Functional

Decomposition (HOFD).

Remark 1. The components of the HOFD (2.2) are assumed to be hierarchically

orthogonal, that is, ⟨fu, fv⟩ = 0 ∀v ⊂ u.

There is more information about the HOFD in Hooker (2007) and Chastaing,

Gamboa, and Prieur (2012). Here, we are interested in estimating the summands

in (2.2). As underlined in Huang (1998), estimating all components of (2.2) is

an intractable problem in practice. To bypass this, we assume (without loss of

generality) that f is centered, f∅ = 0. Most models are governed by low-order

interaction effects, as pointed out in Crestaux, Le Mäıtre, and Martinez (2009)

Blatman (2009), and Li et al. (2010), and we suppose that f is well approximated

as

f(X) ≃
∑
u∈S∗

|u|≤d

fu(Xu), d≪ p, (2.3)

meaning that interactions of order ≥ d + 1 can be neglected. The choice of d,

which is directly related to the notion of effective dimension in the superposi-

tion sense (see Definition 1 in Wang and Fang (2003)), is addressed in Zuniga,

Kucherenko, and Shah (2013), but we assume it is fixed by the user. Even by
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choosing a small d, the number of components in (2.3) can become prohibitive if

the number of inputs p is high. We are interested in estimation procedures under

sparse assumptions when the number of variables p is large.

2.3. Practical determination of the sparse HOFD

General description of the procedure

We propose a two-step estimation procedure to identify the components in

(2.3): the first one is a simplified version of the Hierarchical Orthogonal Gram-

Schmidt (HOGS) procedure developed in Chastaing, Gamboa, and Prieur (2013),

and the second consists of a sparse estimation in the dictionary learned by the

empirical HOGS.

We have chosen to use the so-called L2-boosting procedure instead of the

widely used Lasso estimator. Our motivation is as follows.

From a technical point of view, the empirical HOGS produces a noisy es-

timation of the theoretical dictionary in which the true signal f is expanded.

The arguments for Lasso estimation would have to be adjusted to this situation

with errors in the variables. Moreover, as an M-estimator, such a modification

is far from trivial (see Cavalier and Hengartner (2005) for an example of oracle

inequalities derived from M estimators with noise in the variables). In contrast,

the approximation obtained in the empirical HOGS can be easily handled with

the boosting algorithm since we just have to quantify how the empirical inner

products built with noisy variables are close to theoretical ones. Our proofs

rely precisely on this strategy: we obtain a uniform bound on our statistical

estimation of the HOGS dictionary, and then take advantage of the sequential

description of the boosting with empirical inner products.

In order to obtain consistent estimation with the boosting procedure, we do

not need to make any coherence assumption on the dictionary (such as the RIP

assumption of Candes and Tao (2007) or the weakest RE(s, c0) assumption of

Bickel, Ritov, and Tsybakov (2009)). Such assumptions are generally necessary

to assert some consistency results for the Dantzig and Lasso procedures, such as

Sparse Oracle Inequalities (SOI). Nevertheless, it would be reasonable to impose

these assumptions on the theoretical version of the HOGS although it seems

difficult to deduce coherence results on the empirical HOGS from coherence

results on the theoretical version of the HOGS. Our Theorem 2 below does not

produce a SOI in expectation, our results are expressed in probability. We discuss

the asymptotics of Theorem 2 after its statement, and underline the differences

with the state-of-the-art results on the Lasso estimator.

To carry out the two-step procedure, we assume that we observe two inde-

pendent and identically distributed samples, (yr,xr)r=1,...,n1 and (ys,xs)s=1,...,n2 ,
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from the distribution of (Y,X) (the initial sample can be split into such two
samples). The empirical inner product ⟨·, ·⟩n and the empirical norm ∥·∥n are

⟨h, g⟩n =
1

n

n∑
s=1

h(xs)g(xs), ∥h∥n = ⟨h, h⟩n.

For u = (u1, . . . , ut) ∈ S, we define the multi-index lu = (lu1 , . . . , lut) ∈ Nt, while
Span {B} is the linear span of the elements of B.

Step 1 and Step 2 of our sparse HOFD procedure will be described in detail
below.

Remark 2. Our procedure can be extended to higher order approximations, but
the description of the methodology for d = 2 provides better clarity.

Step 1: Hierarchically orthogonal Gram-Schmidt procedure

For each i ∈ [1 : p], let {1 , ψi
li
, li ∈ N∗} denote an orthonormal basis of

Hi := L2(R,B(R), PXi). For L ∈ N∗, for i ̸= j ∈ [1 : p], we write

HL
∅ = Span {1} and HL

i = Span
{
1, ψi

1, . . . , ψ
i
L

}
,

HL
ij = Span

{
1, ψi

1, . . . , ψ
i
L, ψ

j
1, . . . , ψ

j
L, ψ

i
1 ⊗ ψj

1, . . . , ψ
i
L ⊗ ψj

L

}
,

where ⊗ denotes the tensor product between two elements of the basis. The
approximation of H0

u is

HL,0
u =

{
hu ∈ HL

u , ⟨hu, hv⟩ = 0, ∀ v ⊂ u,∀ hv ∈ HL,0
v

}
.

The recursive procedure aims to construct a basis for HL,0
i , and a basis for HL,0

ij

for any i ̸= j ∈ [1 : p].

Initialization

For any 1 ≤ i ≤ p, let ϕili := ψi
li
, li ∈ [1 : L]. As a result of the orthogonality

of {ψi
li
, li ∈ N}, we obtain HL,0

i := Span
{
ϕi1, · · ·ϕiL

}
. For this step, we just

need the orthogonality of the constant function with each of the ψi
li
, li ∈ N∗.

However, orthogonality is needed for the proof of the consistency of the L2-
boosting procedure.

Second order interactions

Let u = {i, j}, with i ̸= j ∈ [1 : p]. Since the dimension of HL
ij is L

2+2L+1,

and the approximation space HL,0
ij is subject to 2L+1 constraints, its dimension

is L2. We want to construct a basis for HL,0
ij that satisfies the hierarchical

orthogonal constraints and is of the form

ϕijlij (Xi, Xj) = ϕili(Xi)×ϕjlj (Xj)+

L∑
k=1

λik,lijϕ
i
k(Xi)+

L∑
k=1

λjk,lijϕ
j
k(Xj)+Clij , (2.4)
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with lij = (li, lj) ∈ [1 : L]2.

The constants (Clij , (λ
i
k,lij

)Lk=1, (λ
j
k,lij

)Lk=1) are determined by resolving the

constraints

⟨ϕijlij , ϕ
i
k⟩ = 0, ∀ k ∈ [1 : L]

⟨ϕijlij , ϕ
j
k⟩ = 0, ∀ k ∈ [1 : L] (2.5)

⟨ϕijlij , 1⟩ = 0.

We first solve the linear system

Aijλlij = Dlij , (2.6)

with λlij = t
(
λi1,lij · · · λ

i
L,lij

λj1,lij · · · λ
j
L,lij

)
, and

Dlij =−



⟨ϕili × ϕjlj , ϕ
i
1⟩

...

⟨ϕili × ϕjlj , ϕ
i
L⟩

⟨ϕili × ϕjlj , ϕ
j
1⟩

...

⟨ϕili × ϕjlj , ϕ
j
L⟩


,Aij=

(
Bii Bij

tBij Bjj

)
, withBij=

⟨ϕi1, ϕ
j
1⟩ · · · ⟨ϕi1, ϕ

j
L⟩

...
...

⟨ϕiL, ϕ
j
1⟩ · · · ⟨ϕiL, ϕ

j
L⟩

.

As shown in Chastaing, Gamboa, and Prieur (2013), Alij is a definite positive

Gramian matrix and (2.6) provides a unique solution in λlij . Then

Clij = −E
[
ϕili ⊗ ϕjlj (Xi, Xj) +

L∑
k=1

λik,lijϕ
i
k(Xi) +

L∑
k=1

λjk,lijϕ
j
k(Xj)

]
. (2.7)

Higher interactions

This construction can be extended to any |u| ≥ 3, see Chastaing, Gamboa,

and Prieur (2013). Just note that the dimension of the approximation space HL,0
u

is Lu = L|u|, where |u| denotes the cardinality of u.

Empirical procedure

Algorithm 1 proposes an empirical version of the HOGS procedure. It con-

sists in substituting the inner product ⟨·, ·⟩ with its empirical version ⟨·, ·⟩n1

obtained with the first dataset (yr,xr)r=1,...,n1 .
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Algorithm 1: Empirical HOFD (EHOFD)

Input: Orthonormal system (ψi
li
)Lli=0 of Hi, i ∈ [1 : p], i.i.d. observations

O1 := (yr,xr)r=1,...,n1 of (2.1), threshold |umax|
Initialization: for any i ∈ [1 : p] and li ∈ [1 : L], let ϕ̂ili,n1

= ψi
li
.

• For any u such that 2 ≤ |u| ≤ |umax|, write the matrix
(
Âu

n1

)
as well as(

D̂lu
n1

)
obtained using the former expressions with ⟨·, ·⟩n1 .

• Solve (2.6) with the empirical inner product ⟨·, ·⟩n1 . Compute
(
λ̂
lij
n1

)
and Ĉn1

lij
with (2.7).

• The empirical version of the basis given by (2.4) is

∀u ∈ [2 : |umax|] ĤL,0,n1
u = Span

{
ϕ̂u1,n1

, . . . , ϕ̂u
L|u|,n1

}
.

Step 2: Greedy selection of sparse HOFD

Each component fu of the HOFD is a projection onto H0
u. Since for u ∈ S∗,

the space ĤL,0,n1
u well approximates H0

u, it is natural to approximate f as

f(x) ≃ f̄(x) =
∑
u∈S∗

|u|≤d

f̄u(xu), with f̄u(xu) =
∑
lu

βulu ϕ̂
u
lu,n1

(xu),

where lu is the multi-index lu = (li)i∈u ∈ [1 : L]|u|. Since there is no ambiguity,

we omit the summation support of lu in the sequel.

With the second sample (ys,xs)s=1,...,n2 , we attempt to recover the unknown

coefficients
(
βulu

)
lu,|u|≤d

in the regression ys = f̄(xs) + εs, s = 1, . . . , n2. How-

ever, the number of such coefficients is
∑d

k=1

(
p
k

)
Lk and, when p is large, the usual

least-squares estimator is not adapted to estimate the coefficients (βulu)lu,u. We

then use the penalized regression

(β̂ulu) ∈ Argmin
βu
lu

∈R

1

n2

n2∑
s=1

[
ys−

∑
u∈S∗

|u|≤d

∑
lu

βulu ϕ̂
u
lu,n1

(xs
u)

]2
+λJ(β11 , . . . , β

u
lu , . . .), (2.8)

where J(·) is the ℓ0-penalty

J(β11 , . . . , β
u
lu , . . .) =

∑
u∈S∗

|u|≤d

∑
lu

1(βulu ̸= 0).

Such an optimization procedure is not tractable and, instead, we consider

relaxed L2-boosting (Friedman (2001)) to solve the penalized problem. Mim-
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icking the notation of Temlyakov (2000) and Champion et al. (2014), take the

dictionary D of functions as

D = {ϕ̂11,n1
, · · · ϕ̂1L,n1

, . . . , ϕ̂u1,n1
, . . . , ϕ̂uLu,n1

, . . .}.

The quantity Gk(f̄) denotes the approximation of f̄ at step k as a linear com-

bination of elements of D. The L2-boosting is described in Algorithm 2, with

resulting estimate of f̄ denoted by f̂ .

Algorithm 2: The L2-boosting

Input: Observations O2 := (ys,xs)s=1,...,n2 , shrinkage parameter

γ ∈]0, 1], number of iterations kup ∈ N∗.

Initialization : G0(f̄) = 0.

for k = 1 to kup do

1. Select ϕ̂uk
luk

,n1
∈ D such that:∣∣∣⟨Y −Gk−1(f̄), ϕ̂

uk
luk

,n1
⟩n2

∣∣∣= max
ϕ̂u
lu,n1

∈D

∣∣∣⟨Y −Gk−1(f̄), ϕ̂
u
lu,n1

⟩n2

∣∣∣ . (2.9)

2. Compute the new approximation of f̄ as:

Gk(f̄) = Gk−1(f̄) + γ⟨Y −Gk−1(f̄), ϕ̂
uk
luk

,n1
⟩n2 · ϕ̂

uk
luk

,n1
. (2.10)

end

Output: f̂ = Gkup(f̄).

For any step k, Algorithm 2 selects a function from D that provides sufficient

information about the residual Y − Gk−1(f̄). The shrinkage parameter γ is the

standard step-length parameter of the boosting algorithm. It smoothly inserts

the next predictor into the model, making a refinement of the greedy algorithm

possible and statistically guaranteeing its convergence rate.

Remark 3. In a deterministic setting, the shrinkage parameter is not really

useful and may be set to 1 (see Temlyakov (2000) for further details). It is par-

ticularly useful from a practical point of view to smooth the boosting iterations.

An algorithm for our new sparse HOFD procedure

Algorithm 3 provides a simplified description of our sparse HOFD procedure.
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Algorithm 3: Greedy Hierarchically Orthogonal Functional Decomposition

Input: Orthonormal system (ψi
li
)Lli=0 of L2(R,B(R), PXi), i ∈ [1 : p],

i.i.d. observations O := (yj ,xj)j=1...n of (2.1)

Initialization: Split O in a partition O1 ∪ O2 of size (n1, n2).

• For any u ∈ S, use Step 1 with observations O1 to construct the

approximation ĤL,0,n1
u := Span

{
ϕ̂u1,n1

, . . . , ϕ̂uLu,n1

}
of HL,0

u (see

Algorithm 1).

• Use an L2-boosting algorithm on O2 with the random dictionary

D = {ϕ̂11,n1
, · · · ϕ̂1L,n1

, . . . , ϕ̂u1,n1
, . . . , ϕ̂uLu,n1

, . . .} to obtain the Sparse

Hierarchically Orthogonal Decomposition (see Algorithm 2).

We turn to the asymptotic properties of the estimators.

3. Consistency of the Estimator

We restrict our study to the case of d = 2 and assume that f is well approx-

imated by first and second order interaction components, see Remark 4. The

observed signal Y can be represented as

Y =
∑
u∈S∗

|u|≤2

∑
lu

βu,0lu
ϕulu(Xu) + ε, E(ε) = 0, E(ε2) = σ2,

where β0 =
(
βu,0lu

)
lu,u

is the true parameter, and the functions
(
ϕulu

)
lu
, |u| ≤ 2

are constructed according to the HOFD described in Section 2.3. We assume that

we have an n-sample of observations divided equally into samples, O1 and O2,

used for the construction of
(
ϕ̂ulu,n1

)
lu,u

as in Algorithm 1, and for the estimate(
βulu

)
lu,u

as in Algorithm 2.

The goal of this section is to study the consistency of f̂ = Gkn(f̄) when the

sample size n tends to infinity, and to determine an optimal number of steps kn
necessary to obtain a consistent estimator from Algorithm 2.

Remark 4. We take d = 2 to simplify the presentation, but it can be extended to

arbitrary larger thresholds independent of the sample size n. This choice is legit-

imate if f is well approximated by low interaction components; this assumption

is well suited for many practical situations (Rabitz et al. (1999); Sobol (2001)).

3.1. Assumptions

For all sequences (an)n≥0, (bn)n≥0, we write an = O
n→+∞

(bn) when an/bn

is a bounded sequence for large enough n. For any random sequence (Xn)n≥0,

Xn = OP (an) means that |Xn/an| is bounded in probability.
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Bounded Assumptions (Hb)

These assumptions concern bounded support for the random variable X.

They are collectively referred to as (Hb) and correspond to

(H1
b) M := sup i∈[1:p]

li∈[1:L]

∥∥ϕili(Xi)
∥∥
∞ < +∞;

(H2
b) The number of variables pn satisfies

pn = O
n→+∞

(exp(Cn1−ξ)), where 0 < ξ ≤ 1 and C > 0;

(H3,ϑ
b ) The Gram matrices Aij introduced in (2.6) satisfy

∃C > 0 ∀(i, j) ∈ [1 : pn]
2 det(Aij) ≥ Cn−ϑ,

where det denotes determinant.

Regardless of the joint law of the random variables (X1, . . . , Xp), it is always

possible to build an orthonormal basis (ϕili)1≤li≤L from a bounded (frequency

truncated) Fourier basis and, therefore, (H1
b) is not restrictive in practice.

Assumption (H2
b) deals with the high-dimensional situation, in which, in our

study, the number of variables pn can grow exponentially fast with the number

of observations n. The collection of subsets u, designated as S∗
n, also increases

rapidly.

It is shown in Chastaing, Gamboa, and Prieur (2013) that each of Aij is

invertible, but, if ϑ = 0, (H3,ϑ
b ) has this invertibility uniform over all choices of

(i, j). This hypothesis may be too strong for a large number of variables pn →
+∞ when ϑ = 0. When ϑ > 0, verification of (H3,ϑ

b ) requires the computation

of an order of p2n determinants of size L2×L2. We have checked this assumption

in our experiments, but, for very large values of n, this becomes impossible from

a numerical point of view.

Noise Assumption (Hε,q):

E(|ε|q) <∞, for one q ∈ R+.

Sparsity Assumption (Hs,α):

There exists α > 0 such that the parameter β0 satisfies

∥β0∥ℓ1 :=
∑
u∈S∗

n
|u|≤d

∑
lu

∣∣∣βu,0lu

∣∣∣ = O
n→+∞

(nα).
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3.2. Main results

Theorem 1. Assume (Hb) holds with ξ (resp. ϑ) given by (H2
b) (resp. (H3,ϑ

b )),

and that a constant Λ exists such that
∥∥λlij

∥∥
2
≤ Λ for any couple (i, j). Then,

if ϑ < ξ/2, the sequence of estimators
(
ϕ̂ulu,n1

)
u
satisfies

sup
u∈S∗

n,|u|≤d
lu

∥∥∥ϕ̂ulu,n1
− ϕulu

∥∥∥ = ζn,0 = OP (n
ϑ−ξ/2).

The proof of this theorem can be found in the Supplementary Material.

Proposition 5.1 of Chastaing, Gamboa, and Prieur (2013) finds almost sure

convergence of their estimator without any quantitative rate when the number

of functions in the HOFD is held fixed as the number of observations goes to

infinity n. In our high-dimensional paradigm, we allow S∗
n to grow with n and

obtain an almost sure result associated with a convergence rate.

A second result concerns the L2-boosting that recovers the unknown f̃ up

to a preprocessing estimation of (ϕ̂ulu,n1
)lu,u on a first sample O1. Such a result

is satisfied provided the sparsity assumption (Hs,α) holds. We take

Y = f̃(X) + ε, f̃(X) =
∑
u∈S∗

n
|u|≤d

∑
lu

βu,0lu
ϕulu(Xu) ∈ HL

u ,

where β0 = (βu,0lu
)lu,u is the true parameter that expands f̃ . Such a high-

dimensional inference with noise in the variables appears to be novel.

Theorem 2 (Consistency of the L2-boosting). Consider an estimation f̂ of

f̃ from an i.i.d. n-sample broken down into O1 ∪ O2. Assume that functions(
ϕ̂ulu,n1

)
lu,u

are estimated from the first sample O1 under (Hb) with ϑ < ξ/2,

and that a constant Λ exists such that
∥∥λlij

∥∥
2
≤ Λ for any couple (i, j).

If f̂ is defined by (2.10) of Algorithm 2 on O2 as

f̂(X) = Gkn(f̄), with f̄ =
∑
u∈S∗

n
|u|≤d

∑
lu

βu,0lu
ϕ̂ulu,n1

(Xu),

and if (Hs,α) and (Hε,q) are satisfied with q > 4/ξ and α < ξ/4 − ϑ/2, then a

sequence kn := C log n exists, where C < (ξ/2− ϑ− 2α)/2 · log 3, such that∥∥∥f̂ − f̃
∥∥∥ P−→ 0,when n→ +∞.
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In particular, for Gaussian noise, the constraint on q disappears and Theorem

2 can be applied as soon as ξ < 1.

Our result is a result in probability rather than in expectation. It is a

frequently encountered fact that SOI in expectation is derived with additional

assumptions on the coherence of the dictionary. With some coherence and bound-

edness assumptions, Bickel, Ritov, and Tsybakov (2009) deduced convergence

rates of the Lasso estimator, in expectation, as soon as

∥β0∥ℓ0
log(p)

n
−→ 0. (3.1)

Rigollet and Tsybakov (2011) extended the study of the Lasso behavior with

a result on the Lasso estimator on bounded variables without any coherence

assumption, and showed consistency in probability when

∥β0∥ℓ1

√
log(p)

n
−→ 0. (3.2)

Champion et al. (2014) also obtained consistency results in probability under the

asymptotic setting given for (3.2) without a coherence assumption. Our results

with a noisy dictionary require that(
inf
i,j

det(Aij)

)−1

∥β0∥2ℓ1

√
log p

n
−→ 0 asn −→ +∞, (3.3)

which is stronger than (3.2).

When all linear systems defined through the Gram matrices Aij are well

conditioned, ϑ = 0 and the condition becomes ∥β0∥2ℓ1
√

log p/n −→ 0; there is

still a price to pay for the preliminary estimation of the elements of the HOGS.

Theorem 2 can be applied only for sequences of coefficients such that ∥βu,0lu
∥L1 .

n1/4. Note also that the degeneracy of the Gram determinants must be strictly

larger than n−1/2. For example, when ϑ = 1/4, the norm ∥βu,0lu
∥L1 cannot be

larger than n1/8.

Sketch of Proof of Theorem 2. Mimicking the scheme of Bühlmann (2006)

and Champion et al. (2014), the proof consists in defining the theoretical residual

of Algorithm 2 at step k as

Rk(f̄) = f̄ −Gk(f̄)

= f̄ −Gk−1(f̄)− γ⟨Y −Gk−1(f̄), ϕ̂
uk
luk

,n1
⟩n2 · ϕ̂

uk
luk

,n1
. (3.4)

Following the work of Champion et al. (2014), we introduce a phantom resid-

ual in order to reproduce the behavior of a deterministic boosting as in Temlyakov
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(2000). This phantom algorithm is the theoretical L2-boosting, performed using

randomly chosen elements of the dictionary by (2.9) and (2.10), but updated

using the deterministic inner product. The phantom residuals R̃k(f̄), k ≥ 0, are R̃0(f̄) = f̄ ,

R̃k(f̄) = R̃k−1(f̄)− γ⟨R̃k−1(f̄), ϕ̂
uk
luk

,n1
⟩ϕ̂uk

luk
,n1
,

(3.5)

where ϕ̂uk
luk

,n1
has been selected with (2.9). The aim is to decompose the quantity∥∥∥f̂ − f̃

∥∥∥ to introduce the theoretical residuals and the phantom ones:∥∥∥f̂ − f̃
∥∥∥ =

∥∥∥Gkn(f̄)− f̃
∥∥∥ ≤

∥∥∥f̄ − f̃
∥∥∥+

∥∥∥Rkn(f̄)− R̃kn(f̄)
∥∥∥+

∥∥∥R̃kn(f̄)
∥∥∥ . (3.6)

We then have to show that each term on the right-hand side of (3.6) converges

to zero in probability. For further details, see the Supplementary Material.

4. Numerical Applications

This section is devoted to the numerical efficiency of the two-step procedure

of Section 2, and primarily focuses on the practical use of the HOFD through

sensitivity analysis (SA). SA aims to identify the most contributive variables to

the variability of a regression model (Saltelli, Chan, and Scott (2000); Cacuci,

Ionescu-Bujor, and Navon (2005)). The most common quantification of this is

the variance-based Sobol index (Sobol (1993)). This measure relies on the Ho-

effding decomposition that provides an elegant and meaningful framework when

inputs are known to be independent. However, it may be irrelevant when strong

dependencies arise. The HOFD provides a general and rigorous multivariate re-

gression extension that can be used to define sensitivity indices well-tailored to

dependent inputs. As detailed in Chastaing, Gamboa, and Prieur (2013), the

model variance can be expanded as

V (Y ) =
∑
u∈S∗

n

V (fu(Xu)) +
∑

u∩v ̸=u,v

Cov(fu(Xu), fv(Xv))

 .
To measure the contribution of Xu, for |u| ≥ 1, in terms of model variability, it

is then natural to define a sensitivity index Su as

Su =
V (fu(Xu)) +

∑
u∩v ̸=u,v Cov(fu(Xu), fv(Xv))

V (Y )
. (4.1)

We deduce the empirical estimation of (4.1) once we have applied the pro-

cedure described in Algorithm 3 to obtain (f̂u, f̂v, u ∩ v ̸= u, v).
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4.1. Description

We have done a short simulation study focused primarily on the perfor-

mance of the greedy selection algorithm for the prediction of generalized sensi-

tivity indices. Since the estimation of these indices consists in estimating the

summands of the HOFD, we begin by constructing a hierarchically orthogonal

system of functions to approximate the components. The invertibility of each

linear system plays an important role in our theoretical study. For each situ-

ation, we therefore measured the degeneracy of the matrices involved through

d(A) = infi,j∈[1:p] det(A
ij).

We used a variable selection method to select a sparse number of predictors.

The goal was to numerically compare L2-boosting, the Forward-Backward greedy

algorithm (referred to as FoBa below), and the Lasso estimator. We considered

n-samples of i.i.d. observations (ys,xs)s=1,...,n broken down into two samples of

size n1 = n2 = n/2, first used to construct the system of functions according to

Algorithm 1, second sample used to solve

(β̂ulu)lu,u ∈ Argmin
βu
lu

∈R

1

n2

n2∑
s=1

[
ys −

∑
u∈S
|u|≤d

∑
lu

βulu ϕ̂
u
lu,n1

(xs
u)

]2
+ λJ(β11 , . . . , β

u
lu , . . .).

We briefly describe how we used the Lasso, the FoBa and the Boosting.

4.2. Feature selection algorithms

FoBa procedure

The FoBa algorithm, as well as the L2-boosting, uses a greedy exploration

to minimize the previous criterion when J(·) is a ℓ0 penalty,

J(β11 , . . . , β
u
lu , . . .) =

∑
u∈S∗

n
|u|≤d

∑
lu

1(βulu ̸= 0).

This algorithm is an iterative scheme that sequentially selects or deletes an el-

ement of D that has the least impact on the model residual. It is described in

Zhang (2011), and used for HOFD in Chastaing, Gamboa, and Prieur (2013).

The procedure depends on the shrinkage parameters, ϵ and δ: ϵ is the stopping

criterion that predetermines if a large number of predictors is going to be intro-

duced into the model; δ ∈]0, 1] offers a flexibility in the backward step since it

allows the algorithm to smoothly eliminate a predictor at each step.

In our numerical experiments, we found a well-suited behavior of the FoBa

procedure with ϵ = 10−2 and δ = 1/2.
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Calibration of the boosting

We fixed the shrinkage parameter to γ = 0.7 since it provides a suitable value

for high dimensional regression, though we did not find any extreme differences

when γ varies in [0.5; 1[. Since the optimal value for kup is unknown in practice,

we used a Cp Mallows-type criterion to fix the optimal number of iterations.

This stopping criterion is much more important than the choice of the shrinkage

parameter. It is induced by γ since it depends on the sequence of the boosting

iterations.

As with the LARS algorithm, we followed the recommendations of Efron et

al. (2004) to select the best solution. First, we took a large number of iterations,

say K. For each step k ∈ {1, . . . ,K}, the boosting algorithm computes an

estimation of the solution β̂(k). On the basis of this, we computed

EBoost
k =

1

n

n2∑
s=1

[
ys −

∑
ϕ̂u
lu,n1

∈D

β̂ulu(k)ϕ̂
u
lu,n1

(xs
u)

]2
− n2 + 2k,

where the implied set of functions ϕ̂ulu,n1
has been selected through the first k

steps of the algorithm. We then chose the optimal number of selected functions

k̂up = Argmin
k=1,...,K

EBoost
k .

Lasso algorithm

The ℓ0 penalty is often replaced by the λ× ℓ1 strategy that yields the Lasso

estimator for a given penalization parameter λ > 0

J(β11 , . . . , β
u
lu , . . .) =

∑
u∈S∗

n
|u|≤d

∑
lu

∣∣βulu ̸= 0
∣∣ .

Several algorithms have been proposed to solve the Lasso regression. One of

the most popular is the LARS method, but it is very expensive in large Lasso

problems. To make a good numerical comparison with the greedy algorithms,

we chose to perform a coordinate descent algorithm proposed by Fu (1998) and

Friedman et al. (2007) because of its low computational cost compared to the

LARS implementation. The tuning parameter λ was first selected by general-

ized cross-validation, and the Lasso Coordinate Descent (LCD) algorithm was

performed with the R lassoshooting package.

4.3. Datasets

Each experiment was randomly reproduced 50 times to compute Monte-

Carlo errors. Since each dataset has very few instances, the size L of the initial
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orthonormal systems is limited. Here we arbitrarily chose 5 ≤ L ≤ 8; the ap-

proximation performance did not suffer from sensitivity to L in these models.

First dataset: the Ishigami function

Well known in sensitivity analysis, the Ishigami model is

Y = sin(X1) + a sin2(X2) + bX4
3 sin(X1),

where we set a = 7 and b = 0.1, and where it is assumed that the inputs are

independent. We considered the following cases. First, for all i = 1, 2, 3, inputs

were uniformly distributed on [−π, π], and we chose n = 300 observations, with

the first eight Legendre basis functions (L = 8). For the second case, for all

i = 1, 2, 3, inputs were uniformly distributed on [−π, π], and we chose n = 300

observations, with the first eight Fourier basis functions. In each instance, the

number of predictors was mn = pL+
(
p
2

)
L2 = 408 ≥ n.

Second Dataset: the g-Sobol function

Referred to in Saltelli, Chan, and Scott (2000), the function is

Y =

p∏
i=1

|4Xi − 2|+ ai
1 + ai

, ai ≥ 0,

where the inputs Xi are independent and uniformly distributed over [0, 1]. The

analytical Sobol indices are given by:

Su =
1

D

∏
i∈u

Di, Di =
1

3(1 + ai)2
, D =

p∏
i=1

(Di + 1)− 1, ∀ u ⊆ [1 : p].

Here, we took p = 25 and a = (0, 0, 0, 1, 1, 2, 3, 4.5, 4.5, 4.5, 9, 9, 9, 9, 9, 99, . . . , 99).

For the construction of the hierarchical basis functions, we chose the first five

Legendre polynomials (L = 5). We used n =2,000 evaluations of the model and

the number of predictors mn = pL+
(
p
2

)
L2 = 7625, exceeding the sample size n.

Third dataset: dependent inputs

As proposed by Mara and Tarantola (2012), we generated a sample set with

X1 and X2 uniformly sampled in the set

S :=
{
(x1, x2) ∈ [−1, 1]2 | 2x21 − 1 ≤ x2 ≤ 2x21

}
.

X3 was sampled uniformly in [−1; 1]; Y was taken as Y = X1 + X2 + X3. The

inputs X1 and X2 are not independent and we do not know the analytical Sobol

indices. We chose n = 100 observations, with the first six Legendre basis func-

tions (L = 6).
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Figure 1. Tank distortion at point y.

4.4. The tank pressure model

This study concerns a shell closed by a cap and subject to internal pressure.

Figure 1 illustrates a tank distortion. We are interested in the von Mises stress

(von Mises (1913)) on the point y. The von Mises stress makes it possible to pre-

dict material yielding that occurs when the material yield strength is reached.

The selected point y corresponds to the point for which the von Mises stress is

maximal in the tank. One wants to prevent the tank from material damage in-

duced by plastic deformations. To provide a large panel of tanks able to resist the

internal pressure, a manufacturer wants to know the parameters that contribute

the most to the von Mises criterion variability. In our model, the von Mises

criterion depends on the shell internal radius (Rint), the shell thickness (Tshell),

and the cap thickness (Tcap). It also depends on physical parameters concerning

Young’s modulus (Eshell and Ecap) and the yield strength (σy,shell and σy,cap) of

the shell and the cap. A last parameter is the internal pressure (Pint) applied

to the shell. Some strong correlations exist between some of the inputs in the

system as a result of the constraints of manufacturing processes, for example,

between the shell radius and its thickness. The system is modeled by a 2D finite

element ASTER code. Input distributions are provided in Table 1.

The geometrical parameters were taken as uniformly distributed because of

the large choice left for tank construction. The correlation γ between them is in-

duced by the constraints linked to manufacturing processes. The physical inputs

were taken as normally distributed, the uncertainty due to the manufacturing

process and the properties of the elementary constituent variabilities. The large

variability of Pint in the model corresponds to the different internal pressure

values that could be applied to the shell by the user.
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Table 1. Inputs of the shell model.

Inputs Distribution
Rint U([1800; 2200]), γ(Rint, Tshell) = 0.85
Tshell U([360; 440]), γ(Tshell, Tcap) = 0.3
Tcap U([180; 220]), γ(Tcap, Rint) = 0.3
Ecap αN(µ,Σ) + (1− α)N(µ,Ω)

σy,cap α = 0.02, µ =

(
210
500

)
, Σ =

(
350 0
0 29

)
, Ω =

(
175 81
81 417

)
Eshell αN(µ,Σ) + (1− α)N(µ,Ω)

σy,shell α = 0.02, µ =

(
70
300

)
, Σ =

(
117 0
0 500

)
, Ω =

(
58 37
37 250

)
Pint N(80, 10)

To measure the contribution of the correlated inputs to the output variability,

we estimated the generalized sensitivity indices. We did n =1,000 simulations,

using the first Hermite basis functions, whose maximum degree is 5 for every

parameter.

4.5. Results

We considered the estimation of the sensitivity indices, the ability to select

the good representation of the different signals, and the computation time needed

to obtain the sparse representation. “Greedy” refers to the Foba procedure and

“LCD” refers to the Lasso coordinate descent method. Our method is referred

to as “Boosting”.

Sensitivity estimation

Figures 2 and 3 provide the dispersion of the sensitivity indices estimated

by our three methods on the Ishigami function. We can see that the three

methods behave well with the two basis functions. Handling the Fourier basis

is, as expected, more suitable for the Ishigami function than the Legendre basis

(see the sensitivity index S3 in Figures 2 and 3). For the sake of clarity, Figure

4 only represents the first ten sensitivity indices. We can also draw similar

conclusions with Figure 4, where the three methods lead to the same conclusion.

The standard deviations of each method seem to be relatively equivalent. Figure

5 represents the estimated sensitivity indices when the inputs are correlated. The

analytical results are obviously unknown, but we obtain similar results for the

three methods.

As illustrated in Figure 6, the most contributive parameter to the von Mises

criterion variability is the internal pressure Pint, which is not surprising. Con-

cerning the geometric characteristics, the main parameters of the three methods

are cap thickness, Tcap and shell thickness, Tshell, using their expensive code,

although the shell internal radius does not seem to be that important.
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Figure 2. Representation of the first-order components on the first dataset
(Ishigami function) described through the Legendre basis.

Figure 3. Representation of the first-order components on the first dataset
(Ishigami function) described through the Fourier basis.
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Figure 4. Representation of the first-order components on the second dataset
(g-Sobol function).

Figure 5. Representation of the first-order components on the third dataset
(dependent inputs).
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(a) Greedy (b) Boosting

(c) LCD
Figure 6. Dispersion of the first order sensitivity indices of the tank model
parameters for the three methods.

Computation time and accuracy

The performances of the three methods are illustrated in Table 2 on the basis

of their computational cost and the accuracy of the feature selection.

Regarding statistical accuracy, each estimator of high-dimensional regression

possesses a comparable dispersion on all the datasets, and performs quite simi-

larly on the first dataset. The Lasso estimator seems a little bit imprecise in the

third dataset in comparison with the FoBa and Boosting methods. The LCD

method is also outperformed on the third dataset (with dependent inputs): it

selects a significantly larger number of sensitivity indices in comparison with the

Boosting and FoBa methods (for example, the indices S13 and S23 are certainly

equal to 0 as a result of the definition of Y ). This may be due to the influence
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Table 2. Features of the three algorithms.

Dataset Procedure
∥∥∥β̂∥∥∥

0
Elapsed Time (in sec.)

Ishigami
function
Case 1

L2-boosting 19 0.0941
FoBa 21 2.2917
LCD 20 2.25

Ishigami
function
Case 2

L2-boosting 15 0.0884
FoBa 12 1.0752
LCD 13.9 0.41

g-Sobol
function

L2-boosting 99 49.8
FoBa 22.4 827.9
LCD 91.8 5047.4

Dependent
inputs

L2-boosting 4.14 0.028
FoBa 4.76 0.1056
LCD 24.1 0.061

Tank
pressure
model

L2-boosting 10 0.0266
FoBa 22 0.3741
LCD 23 0.15

of the dependence, among the inputs X1 and X2 in this dataset, on the Lasso

estimator.

In Table 2, our proposed L2-boosting is the fastest method. This is particu-

larly true on the 25-dimension g-Sobol function, where the fraction of additional

time required by the LCD algorithm in comparison to the L2-boosting is about

100. Although we do not have access to the theoretical support recovery ∥β∥0,
we can observe that the results of the L2-boosting are equivalent to those of other

algorithms in terms of its feature selection ability. Hence, for the same degree of

accuracy, our method seems to be much faster.

We have computed the maximal ”degeneracy” involved in the resolution of

the linear systems, and quantified by Assumption (H3,ϑ
b ), in column 2 of Table 3.

In many cases, we obtain a significantly larger value than 0. The third column

of Table 3 shows the admissible size of the parameter ϑ, and we can check that

the number of variables pn allowed by (H2
b) and the balance between ξ and ϑ (ξ

should be greater than 2ϑ in our theoretical results) is not restrictive since n1−2ϑ

is always significantly greater than log(mn) in Table 3.

5. Conclusions and Perspectives

This paper provides a rigorous framework for the hierarchically orthogonal

Gram-Schmidt procedure in a high-dimensional paradigm, with the use of the

greedy L2-boosting. Overall, the procedure falls into the category of sparse esti-

mation with a noisy dictionary, and we demonstrate its consistency up to some
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Table 3. Degeneracy of the linear systems and admissible size of mn (n1−2ϑ

should be greater than log(mn).

Dataset Degeneracy d(A) ϑ ≥ log(1/d(A))
log(n) n1−2ϑ log(mn)

Ishigami function Case 1 0.6388 [0.0786,+∞[ 122.3821 6.0113
Ishigami function Case 2 0.76 [0.0481,+∞[ 173.3094 6.0113

g-Sobol function 0.9745 [0.0034,+∞[ 1899 8.9392
Dependent inputs 0.628 [0.101,+∞[ 39.4457 4.8363

mild assumptions about the structure of the underlying basis. From a mathe-

matical point of view, assumption (H1
b) presents a restrictive condition, and to

relax it would open a wider class of basis functions for applications. We leave

this development open for a future study, which could be based either on the

development of a concentration inequality for unbounded random matrices or

on a truncating argument. It also appears that our algorithm produces very

satisfactory numerical results through our three datasets as a result of its very

low computational cost. It can also be extended with some further numerical

work to a larger truncation order of d ≥ 3. Such an improvement may also be

of interest from a theoretical point of view when dealing with a function that

smoothly depends on the interaction order. In particular, a data-driven adaptive

choice of d may be of practical interest in the future.
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31062 Toulouse Cedex 9, France.

E-mail: magali.champion@math.univ-toulouse.fr

EDF R&D, Batiment S, 6 quai Watier, 78400 Chatou, France.

E-mail: gal.chastaing@gmail.com

GREMAQ, Toulouse School of Economics, Université Toulouse I Capitole, 21 allées de Brienne,
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