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Abstract: Latin hypercube designs have been widely used in computer experiments

with quantitative factors. When there are both qualitative and quantitative factors

in computer experiments, sliced space-filling designs have been proposed. In this

article, we propose a general framework for constructing sliced space-filling designs

for more flexible parameters of designs in which the whole design and each slice

not only achieve maximum stratification in univariate margins, but also achieve

stratification in two- or more-dimensional margins. Compared with other designs,

these designs have better space-filling properties or have more columns. The con-

struction is based on a new class of sliced orthogonal arrays, called balanced sliced

orthogonal arrays, in which each slice is balanced and becomes an orthogonal array

after some level-collapsing. Several approaches to constructing such balanced sliced

orthogonal arrays under different level-collapsing projections are developed. Some

examples are given to illustrate the construction methods.
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1. Introduction

Latin hypercube designs (LHDs), proposed by McKay, Beckman, and Conover

(1979), have been widely adopted in the design of computer experiments with

quantitative factors because they spread the design points uniformly in any one-

dimensional projection (Santner, Williams, and Notz (2003); Fang, Li, and Sud-

jianto (2006)). To improve the space-filling property of LHDs in two- or more-

dimensional projections, Tang (1993) constructed LHDs, based on orthogonal

arrays (OAs), that further achieve uniformity in all t-dimensional margins if an

OA of strength t is employed.

For computer experiments with both qualitative and quantitative factors,

Qian and Wu (2009) proposed sliced space-filling designs to deal with them. The

approach starts with constructing LHDs based on sliced orthogonal arrays for

quantitative factors and then partitions the LHDs into slices corresponding to

different level combinations of the qualitative factors. For these sliced designs,
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each slice has attractive stratification in two-dimensional projections but can-

not achieve one-dimensional uniformity. Later, Xu, Haaland, and Qian (2011)

constructed such sliced space-filling designs based on doubly orthogonal Sudoku

Latin squares that the full design and each slice achieve maximum uniformity

in univariate and bivariate margins. Their constructions are restricted to the

condition that the number of slices and the run size of each slice must be the

same prime power. Qian (2012) constructed sliced LHDs with flexible runs in

which each slice is a small LHD. However, these may not have good space-filling

properties in two- or more-dimensional projections. For the details of modeling

and analysis of such computer experiments, see Qian, Wu, and Wu (2008) and

Han et al. (2009).

In this article, we propose a general framework for constructing sliced space-

filling designs in which the full design and each slice not only achieve maximum

stratification in one-dimensional margins, but also achieve stratification in two- or

more-dimensional margins. Our constructions are based on a new class of sliced

orthogonal arrays, called balanced sliced orthogonal arrays (BSOAs), which are

a special type of orthogonal arrays that can be partitioned into several slices

such that each slice is balanced and becomes an orthogonal array after some

level-collapsing. These new sliced designs have better space-filling properties

than those constructed by Qian and Wu (2009) and Qian (2012), and have more

columns than those constructed by Xu, Haaland, and Qian (2011) for the same

parameters.

The remainder of this article is as follows. In Section 2, some notation and

definitions are introduced. Section 3 develops a general framework for construct-

ing BSOAs under subfield projection. Section 4 constructs different types of

BSOAs by elaborating on the generator matrices in the previous general frame-

work for different parameters of designs. The construction of BSOAs under the

modulus projection is given in Section 5. Section 6 presents the construction

of BSOAs with a nonprime power number of levels. A general method for con-

structing new BSOAs from existing sliced orthogonal arrays is given in Section

7. The generation of sliced space-filling designs based on BSOAs is discussed in

Section 8. Section 9 concludes with some discussions.

2. Notation and Definitions

2.1. Preliminaries

An orthogonal array, denoted by OA(n, sm, t), with n runs, m factors and

strength t (m ≥ t ≥ 1) is an n × m matrix in which each column has s levels

from a set of s elements, such that all possible level combinations occur equally

often as rows in every n× t submatrix. An array is called balanced if it is an OA

of strength one.
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A Latin hypercube (LH) with n runs and m factors is typically an OA(n, nm,

1) in which each column is a permutation of n levels from a set S of n elements.

It is called an LH over S. Usually the set S is taken to be {1, . . . , n}. Based on an

LH L = (lij), following McKay, Beckman, and Conover (1979), a Latin hypercube

design (LHD) with n runs and m factors in the unit cube [0, 1)m is generated

by xij = (lij − uij)/n, where the uij ’s are independent uniforms on (0, 1], and

the n design points are given by (xi1, . . . , xim), i = 1, . . . , n. An LHD achieves

maximum stratification in any one-dimensional projection when, projected onto

each of the m factors, exactly one of the n design points falls within each of the

n small intervals defined as [0, 1/n), [1/n, 2/n), . . . , [(n− 1)/n, 1).

Let A be an OA(n, sm, t) with levels 1, . . . , s and t ≥ 2. For each column

of A, replace the k = n/s entries of level j by a permutation of {(j − 1)k +

1, . . . , (j − 1)k + k} for j = 1, . . . , s; the resulting matrix is an OA-based LH

(Tang (1993)). The associated LHD achieves the stratification on the sg grids in

any g-dimensional projection for 2 ≤ g ≤ t, in addition to achieving maximum

stratification in any one-dimensional projection.

An r × c difference matrix (DM), denoted by D(r, c, g), is an array with

entries from an abelian group A of g elements such that every element of A
appears equally often in the vector difference between any two columns of the

array.

Let A = (aij) and B = (bij) be n×m and u× v, respectively, matrices with

entries from an abelian group A with the binary operation ‘+’. The Kronecker

sum of A and B, denoted by A⊕B, is the nu×mv matrix A⊕B = (aij +B),

where aij + B denotes the u × v matrix with entries aij + blk, 1 ≤ l ≤ u and

1 ≤ k ≤ v. Throughout, the binary operation + always denotes addition. A

lemma of Bose and Bush (1952) shows that a larger OA can be obtained by

taking the Kronecker sum of an OA and a DM.

Lemma 1. If A is an OA(n, sm, t) with m = t = 1 or t ≥ 2, and B a D(r, c, s)

with entries from the same abelian group A, then the array H = A ⊕ B is an

OA(nr, smc, 2).

2.2. Three projections

Three projections are introduced from a set F of s1 elements to another set

G of s2 elements with s2 dividing s1, denoted by s2|s1. A projection divides

the elements of F into s2 groups, each of size q = s1/s2, and projects any two

elements of F to a same element of G if and only if they belong to the same

group.

The first two projections are related to Galois fields. It is known that for any

prime p and integer u ≥ 1, there exists a Galois field GF (pu) of order pu. The
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multiplicative group GF (pu) \ {0} is cyclic. Every Galois field has at least one
primitive element. Throughout, the elements of any Galois field or any subset of
a Galois field are arranged in lexicographical order.

Let s1 = pu1 and s2 = pu2 be powers of the same prime p with integers
u1 > u2 ≥ 1. Let F = GF (s1) with a primitive polynomial p1(x). Any element
f(x) of F has the general expression f(x) = a0 + a1x+ · · ·+ au1−1x

u1−1, where
ai ∈ GF (p), 0 ≤ i ≤ u1 − 1 and GF (p) = {0, 1, . . . , p − 1} is the residue field
modulo p. Let α denote the primitive element x of F .

The first projection, denoted by ϕ, is the subfield projection proposed by
Qian and Wu (2009). It can be used for the case of u1 = λu2, where λ (> 1)
is a positive integer. Take G to be the subfield of F with s2 elements. Let
β = α(s1−1)/(s2−1) be the primitive element of G. Subfield theory shows that any
element f(x) ∈ F can be uniquely represented by

f(x) = b0 + b1α+ · · ·+ bλ−1α
λ−1, bi ∈ G, 0 ≤ i ≤ λ− 1. (2.1)

For any f(x) in (2.1), the projection ϕ(f(x)) is defined by

ϕ(f(x)) = b0 + b1β + · · ·+ bλ−1β
λ−1. (2.2)

The second projection, denoted by φ, is the modulus projection proposed by
Qian, Tang, and Wu (2009). It can be used for the case of u1 > u2 ≥ 1. Let
G be the GF (s2) with a primitive polynomial p2(x). For any element f(x) =
a0 + a1x+ · · ·+ au1−1x

u1−1 ∈ F , if u2 > 1, the projection φ(f(x)) is defined by

φ(f(x)) = f(x) (mod p2(x)). (2.3)

If u2 = 1, we take φ(f(x)) = a0.
The third projection, denoted by ρ, was proposed by Qian, Ai, and Wu

(2009). It can be used for any integers s1 > s2 > 1 with s2|s1. Here, let
F = {0, 1, . . . , s1 − 1} be the residue ring modulo s1 and G = {0, 1, . . . , s2 − 1}
be the residue ring modulo s2. For any a ∈ F , the projection ρ(a) is defined by

ρ(a) = a (mod s2). (2.4)

For a matrix A, let A′ denote the transpose of A, A(i, :), A(:, j) and A(i, j)
denote the ith row, the jth column and the (i, j)th entry, respectively, of A. For
any projection δ from F to G and an array A = (aij) with entries aij ’s from F ,
let δ(A) = (δ(aij)) be the array obtained from A after its entries are collapsed
according to δ. Suppose the s2 elements of G are ordered in lexicographical order
as b0, . . . , bs2−1 with b0 = 0. For j = 0, 1, . . . , s2 − 1, let δ−1(bj) = {a ∈ F |δ(a) =
bj}. Define Γ to be the s2× q kernel matrix of δ (Qian and Wu (2009)), given by

Γ =


δ−1(b0)

δ−1(b1)
...

δ−1(bs2−1)

 ,
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where the entries in each row are ordered in lexicographical order, and each

element of F appears precisely once in Γ. For the modulus projection φ, in

particular, Γ(:, 1) is a permutation of all elements in F0 = {a0 + a1x + · · · +
au2−1x

u2−1|aj ∈ GF (p), 0 ≤ j ≤ u2 − 1}, and

Γ(:, i) = Γ(:, 1) + ci(x) (2.5)

for i = 1, . . . , q, where c1(x) = 0, ci(x) is a multiple of the primitive polynomial

p2(x) for u2 > 1, and a polynomial in x of degree at most u1 − 1 with zero

constant coefficient for u2 = 1.

2.3. Balanced sliced orthogonal arrays

Let H be an OA(n1, s
m
1 , t1). Suppose the n1 rows can be partitioned into

v subarrays each with n2 rows, denoted by Hi, i = 1, . . . , v, and that each Hi

becomes an OA(n2, s
m
2 , t2) after the s1 levels of H are collapsed to s2 levels ac-

cording to some level-collapsing projection δ. Then H = (H ′
1, . . . ,H

′
v)

′ is called

a sliced orthogonal array (SOA) of strength (t1, t2). This definition generalizes

that in Qian and Wu (2009). An SOA H in which each slice Hi is balanced is

called a balanced SOA (BSOA).

Given a BSOA H = (H ′
1, . . . ,H

′
v)

′ of strength (t1, t2), a sliced space-filling

design D = (D′
1, . . . ,D

′
v)

′ is generated in Section 8. Here D is an LHD based

on OA(n1, s
m
1 , t1) and each slice Di is an LHD based on OA(n2, s

m
2 , t2) for i =

1, . . . , v. Such a sliced space-filling designD and each slice Di achieves maximum

stratification in any one-dimensional projection. Furthermore, D achieves better

stratification in any g1-dimensional projection for g1 ≤ t1, and each slice Di

achieves stratification in any g2-dimensional projection for g2 ≤ t2.

3. General Framework for Constructing BSOAs with Subfield Project-

ion

In this section we present a general framework for constructing BSOAs with

the subfield projection ϕ in (2.2). Take s1 = pu1 and s2 = pu2 as powers of

the same prime p, where u1 = λu2 with integer λ > 1. Let F = GF (s1) have

the primitive element α and G = GF (s2) be a subfield of F with the primitive

element β = α(s1−1)/(s2−1). Let α0, . . . , αs1−1 denote the elements of F with

α0 = 0 and αi = αi for i = 1, . . . , s1 − 1.

Let A0 be the multiplication table of F , where the rows and columns are

labeled with the s1 elements of F . It is known that A0 is a D(s1, s1, s1). Let

u = (1, α, . . . , αλ−1)′. Obtain an s1 × λ matrix A by taking the columns of A0

labeled with the elements of u. Let Q = {1, . . . , q} and Qλ be the set of all

possible λ-tuples from Q, where q = s1/s2. Write Γ as the s2 × q kernel matrix
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of ϕ. For any (l1, . . . , lλ) ∈ Qλ, let C(l1,...,lλ) = A+ 1s1v
′
(l1,...,lλ)

, where 1s1 is the

s1-vector of ones and v(l1,...,lλ) = (Γ(1, l1), . . . ,Γ(1, lλ))
′. Finally, obtain an array

C by the row juxtaposition of all C(l1,...,lλ)’s. The proof of the following result is

given in the Appendix.

Lemma 2. For u1 = λu2 with λ > 1, we have

(i) the matrix C is an OA(sλ1 , s
λ
1 , λ);

(ii) each slice C(l1,...,lλ) is a balanced D(s1, λ, s1) and ϕ(C(l1,...,lλ)) is an OA(sλ2 , s
λ
2 ,

λ) for any (l1, . . . , lλ) ∈ Qλ.

Let Z be a λ×m matrix with entries from G, such that all the columns are

distinct and each column contains at least one nonzero element. Such a matrix

Z is called a generator matrix. Two methods are proposed to construct BSOAs

based on a given generator matrix Z.

Method 1: Take a fixed λ-tuple (l1, . . . , lλ) ∈ Qλ. Let Hi = C(l1,...,lλ)Z + αi

for i = 0, 1, . . . , s1 − 1, and H = (H ′
0, . . . ,H

′
s1−1)

′, the row juxtaposition of all

Hi’s. The proof of the following is given in the Appendix.

Theorem 1. For the matrix H constructed in Method 1, we have

(i) the matrix H is an OA(s21, s
m
1 , 2);

(ii) each slice Hi is an LH over F for i = 0, 1, . . . , s1 − 1;

(iii) if any t columns of Z are linearly independent over G, then each ϕ(Hi) is

an OA(s1, s
m
2 , t) for i = 0, 1, . . . , s1 − 1.

Method 2: For any λ-tuple (l1, . . . , lλ) ∈ Qλ, let H(l1,...,lλ) = C(l1,...,lλ)Z and H

be the row juxtaposition of all H(l1,...,lλ)’s. The following result is proved in the

Appendix.

Theorem 2. For the matrix H constructed in Method 2, we have

(i) each slice H(l1,...,lλ) is an LH over F for any (l1, . . . , lλ) ∈ Qλ;

(ii) if any t columns of Z are linearly independent over G, then H is an OA(sλ1 ,

sm1 , t), and all ϕ(H(l1,...,lλ))’s are the same OA(s1, s
m
2 , t) for all (l1, . . . , lλ) ∈

Qλ.

When the generator matrix Z has full row rank over G, the matrices H’s

constructed in Methods 1 and 2 have an additional property, proved in the Ap-

pendix.

Theorem 3. If Z has full row rank over G, then neither the whole matrix H

constructed in Method 1 or 2, nor its each projected slice under the subfield level-

collapsing ϕ, has repeated rows.
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4. Construction of BSOAs with Subfield Projection

In this section we propose several generator matrices and apply the general
framework of Section 3 to construct BSOAs of different strengths with the subfield

projection ϕ. The relevant notation in Section 3 is used.

4.1. Construction of BSOAs of strength (2,2)

The Rao-Hamming method in Hedayat, Sloane, and Stufken (1999) can be
applied to construct the generator matrix as follows. Form a λ × m generator

matrix Z1 with m = (s1 − 1)/(s2 − 1) by collecting all nonzero column vectors

(z1, . . . , zλ)
′, where zj ∈ G for 1 ≤ j ≤ λ and the first nonzero element is one.

Note that any two columns of Z1 are linearly independent over G. Combined

with Theorem 1, we have the following.

Theorem 4. For the matrix H constructed in Method 1 with the generator
matrix Z1, we have

(i) the matrix H is an OA(s21, s
m
1 , 2) with m = (s1 − 1)/(s2 − 1);

(ii) each slice Hi is an LH over F and ϕ(Hi) is an OA(s1, s
m
2 , 2) for i =

0, 1, . . . , s1 − 1.

When λ = 2, in particular, the BSOAs constructed in Theorem 4 have

s2 + 1 columns. For the same parameters, the new BSOAs constructed here

have one more column than those in Xu, Haaland, and Qian (2011). Actually,
from Corollary 3.21 in Hedayat, Sloane, and Stufken (1999), it is known that the

number m = (s1 − 1)/(s2 − 1) is the largest m for an OA(s1, s
m
2 , 2) to exist.

Example 1. Let p = 3, u1 = 2, and u2 = 1, giving s1 = 9, s2 = 3, and λ = 2.
Use p1(x) = x2+x+2 for F = GF (9) with α = x. Let G be the subfield {0, 1, 2}
of F with β = 2. The projection ϕ is {0, x+ 1, 2x+ 2} → 0, {1, x+ 2, 2x} → 1,

{2, x, 2x+ 1} → 2. The kernel matrix of ϕ and the generator matrix are

Γ =

 0 x+1 2x+2

1 x+2 2x

2 x 2x+1

 and Z1 =

(
1 0 1 1

0 1 1 2

)
,

respectively. Take l1 = l2 = 1 in Method 1. From Theorem 4, H is an
OA(81, 94, 2) that can be partitioned into nine slices. Each Hi is an LH over

F and ϕ(Hi) is an OA(9, 34, 2) for i = 0, . . . , 8. For example, the transpose of
H0 is 

0 1 2 x x+1 x+2 2x 2x+1 2x+2

0 x 2x 2x+1 1 x+1 x+2 2x+2 2

0 x+1 2x+2 1 x+2 2x 2 x 2x+1

0 2x+1 x+2 2x+2 x 1 x+1 2 2x

 ,
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and the transpose of ϕ(H0) is
0 1 2 2 0 1 1 2 0

0 2 1 2 1 0 1 0 2

0 0 0 1 1 1 2 2 2

0 2 1 0 2 1 0 2 1

 .

If the generator matrix Z1 is applied in Method 2, the BSOAs with more

slices can be obtained as in the following.

Theorem 5. For the matrix H constructed in Method 2 with the generator

matrix Z1, we have

(i) the matrix H is an OA(sλ1 , s
m
1 , 2) with m = (s1 − 1)/(s2 − 1);

(ii) each slice H(l1,...,lλ) is an LH over F and all ϕ(H(l1,...,lλ))’s are the same

OA(s1, s
m
2 , 2) for all (l1, . . . , lλ) ∈ Qλ.

Example 2. Let p = 2, u1 = 3, and u2 = 1, giving s1 = 8, s2 = 2, and λ = 3.

Use p1(x) = x3 + x+ 1 for F = GF (8) with α = x. Let G be the subfield {0, 1}
of F with β = 1. The kernel matrix of ϕ and the generator matrix are given by

Γ =

(
0 x+ 1 x2 + 1 x2 + x

1 x x2 x2 + x+ 1

)
and Z1 =

 0 1 0 1 1 0 1

0 0 1 1 0 1 1

1 0 0 0 1 1 1

 , (4.1)

respectively. From Theorem 5, H is known to be an OA(512, 87, 2) that can be

partitioned into 64 slices. For any (l1, l2, l3) ∈ Q3, the slice H(l1,l2,l3) is an LH

over F . All ϕ(H(l1,l2,l3))’s are the same OA(8, 27, 2) for all (l1, l2, l3) ∈ Q3.

4.2. Construction of BSOAs of strength (2, λ)

Motivated by Bush’s method in Hedayat, Sloane, and Stufken (1999), the

generator matrix is constructed as follows. For ease in presentation, let ei be the

λ-vector whose ith element is one and other elements are zero, Ik be the k × k

identity matrix, and

Wk =


1 1 · · · 1

β β2 · · · βs2−1

...
...

...

βk−2 β2(k−2) · · · β(s2−1)(k−2)

βk−1 β2(k−1) · · · β(s2−1)(k−1)

 .
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According to the values of s2 and λ, form a generator matrix as

Z2 =


(Iλ,1λ) for λ ≥ s2,

(I3,W3) for λ = 3 and s2 is even,

(W ′
3, Is2−1) for λ = s2 − 1 and s2 is even,

(e1, eλ,Wλ) otherwise.

(4.2)

Then the following lemma is obtained, with proof in the Appendix.

Lemma 3. Any λ × λ submatrix of the generator matrix Z2 in (4.2) has full

rank over G.

Combining Lemma 3 and Theorem 1, the following result is obtained.

Theorem 6. For the matrix H constructed in Method 1 with the generator

matrix Z2 in (4.2), we have

(i) the matrix H is an OA(s21, s
m
1 , 2), where m is the number of columns of Z2;

(ii) each slice Hi is an LH over F and ϕ(Hi) is an OA(s1, s
m
2 , λ) for i =

0, 1, . . . , s1 − 1.

From Corollaries 2.22 and 3.9 in Hedayat, Sloane, and Stufken (1999), it is

known that the number m = s2 +2 is the largest m for an OA(s1, s
m
2 , 3) to exist

when s2 is even, and the number m = λ+1 is the largest m for an OA(s1, s
m
2 , λ)

to exist when λ ≥ s2.

Example 3. Let p = 2, u1 = 3, and u2 = 1, giving s1 = 8, s2 = 2, and λ = 3.

Use p1(x) = x3 + x+ 1 for F = GF (8) with α = x. Let G be the subfield {0, 1}
of F with β = 1. The kernel matrix Γ is given in (4.1) and the generator matrix

is Z2 = (I3,13) = (I3,W3). Take l1 = l2 = l3 = 1 in Method 1. From Theorem

6, H is an OA(64, 84, 2) that can be partitioned into eight slices. Each slice Hi

is an LH over F and ϕ(Hi) is an OA(8, 24, 3) for i = 0, 1, . . . , 7.

4.3. Construction of BSOAs of strength (λ, λ)

This construction combines Method 2 with the generator matrix Z2 in (4.2).

From Lemma 3 and Theorem 2, we have the following.

Theorem 7. For the matrix H constructed in Method 2 with the generator

matrix Z2 in (4.2), we have

(i) the matrix H is an OA(sλ1 , s
m
1 , λ), where m is the number of columns of Z2;

(ii) each slice H(l1,...,lλ) is an LH over F and all ϕ(H(l1,...,lλ))’s are the same

OA(s1, s
m
2 , λ) for all (l1, . . . , lλ) ∈ Qλ.
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Example 4. Let p = 2, u1 = 3, and u2 = 1, giving s1 = 8, s2 = 2, and λ = 3.

Use p1(x) = x3 + x+ 1 for F = GF (8) with α = x. Let G be the subfield {0, 1}
of F with β = 1. The kernel matrix Γ of ϕ is given in (4.1) and the generator

matrix is Z2 = (I3,13) = (I3,W3). From Theorem 7, H is an OA(512, 84, 3)

that can be partitioned into 64 slices. Each slice H(l1,l2,l3) is an LH over F and

all ϕ(H(l1,l2,l3))’s are the same OA(8, 24, 3) for all (l1, l2, l3) ∈ Q3.

From Lemma 3, we know that the rows of Z2 in (4.2) are linearly independent

over G. According to Theorem 3, neither the BSOA obtained in this section nor

its each projected slice under the subfield projection ϕ has repeated rows.

5. Construction of BSOAs with Modulus Projection

In this section, we construct BSOAs of strength (2, 2) with the modulus

projection φ in (2.3). Take s1 = pu1 and s2 = pu2 as powers of the same prime p,

where u1 ≥ 2u2−1 and u1 ̸= u2. Let F = GF (s1) have the primitive polynomial

p1(x) and G = GF (s2) the primitive polynomial p2(x). Since s1 is not a power

of s2, we can construct BSOAs with different parameters from those constructed

in Section 4.

Write Γ as the s2×q kernel matrix of φ, where q = s1/s2. For i, j = 1, . . . , q,

let Bij = Γ(:, i)Γ(:, j)′. For j = 1, . . . , q, obtain an array Bj by juxtaposing all

the rows of B1j , . . . ,Bqj , Bj = (B′
1j , . . . ,B

′
qj)

′. The proof of the following is

given in Appendix.

Lemma 4. For Bij’s and Bj’s constructed above, we have

(i) each matrix Bj is a D(s1, s2, s1) for j = 1, . . . , q;

(ii) each matrix φ(Bij) is a D(s2, s2, s2) for i, j = 1, . . . , q.

Qian and Wu (2009) call the matrix Bj in Lemma 4 a sliced difference matrix

(SDM), a DM that can be partitioned into several slices and each slice becomes

a DM after some level-collapsing.

Let A be an OA(n, sm1 , t) with m = t = 1 or t ≥ 2, taking levels from F . For

a fixed 1 ≤ j ≤ q, put

Hj = A⊕Bj and Hij = A⊕Bij ,

for i = 1, . . . , q. Obviously, Hj = (H ′
1j , . . . ,H

′
qj)

′. Here φ(A) is an OA(n, sm2 , t)

with m = t = 1 or t ≥ 2. By using Lemma 1 and Lemma 4, we have the following.

Theorem 8. For the matrix Hj constructed above, we have

(i) the matrix Hj is an OA(ns1, s
ms2
1 , 2);

(ii) each slice Hij is balanced and φ(Hij) is an OA(ns2, s
ms2
2 , 2) for i = 1, . . . , q.
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Example 5. Let p = 2, u1 = 3, and u2 = 2, giving s1 = 8 and s2 = 4. Use

p1(x) = x3 + x+ 1 for F = GF (8) and p2(x) = x2 + x+ 1 for G = GF (4). The

modulus projection φ is {0, x2 + x + 1} → 0, {1, x2 + x} → 1, {x, x2 + 1} → x,

{x+ 1, x2} → x+ 1, and the kernel matrix Γ of φ in transpose is(
0 1 x x+ 1

x2 + x+ 1 x2 + x x2 + 1 x2

)
. (5.1)

From Lemma 4, the matrix B1 = (B′
11,B

′
21)

′ is a D(8, 4, 8), while φ(B11) and

φ(B21) are D(4, 4, 4). Let A be an OA(8, 81, 1). From Theorem 8, H1 is an

OA(64, 84, 2), each slice Hi1 is balanced and φ(Hi1) is an OA(32, 44, 2) for i =

1, 2.

Theorem 8 works for u1 = λu2 (λ > 1), but the BSOAs constructed by

applying Theorem 8 are much larger than those in Section 4 for the same number

of slices.

When u1 = 2u2 − 1 and u2 ̸= 1, in particular, a different construction is

provided in the following to yield new BSOAs with more slices than those in

Theorem 8. For i, j = 1, . . . , q, let Hij = Γ(:, i) ⊕ Bj2. Take H to be the

row juxtaposition of all Hij ’s. A detailed proof of the following is given in the

Appendix.

Theorem 9. If u1 = 2u2 − 1 and u2 ̸= 1, for the matrix H constructed above

we have

(i) the matrix H is an OA(s21, s
s2
1 , 2);

(ii) each slice Hij is balanced and φ(Hij) is an OA(s22, s
s2
2 , 2) for i, j = 1, . . . , q.

Example 6. Let p = 2, u1 = 3, and u2 = 2, giving s1 = 8 and s2 = 4. Use

p1(x) = x3 + x+ 1 for F = GF (8) and p2(x) = x2 + x+ 1 for G = GF (4). The

kernel matrix Γ of φ is given in (5.1). From Theorem 9, H is an OA(64, 84, 2)

that can be partitioned into four slices. Each slice Hij is balanced and φ(Hij)

is an OA(16, 44, 2) for i, j = 1, 2.

6. Construction of BSOAs with a Nonprime Power Number of Levels

In this section, we construct BSOAs with a nonprime power number of levels

by using the projection ρ in (2.4). Take s1 > s2 > 1 with s2|s1 and t ≥ 2. Let

F = {0, 1, . . . , s1 − 1} be the residue ring modulo s1 and G = {0, 1, . . . , s2 − 1}
be the residue ring modulo s2.

First construct an OA of strength t with levels from F as follows. Let A be

an st1 × t array that has each of the st1 possible t-tuples from F as a row. Obtain

a new column vector b by adding the entries in each row of A. Then H = (A, b)

is an OA(st1, s
t+1
1 , t) (Hedayat, Sloane, and Stufken (1999)).
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Let Q = {1, . . . , q} with q = s1/s2 and Γ be the kernel matrix of ρ. For any
(l1, . . . , lt) ∈ Qt, take H(l1,...,lt) to be the st2×(t+1) submatrix of H consisting of
all the rows (h1, . . . , ht, ht+1)’s, where hi is an element of Γ(:, li) for i = 1, . . . , t
and ht+1 is the sum of the first t elements. Then divide all the t-tuples of Qt

into qt−1 groups, each of size q, in such a way that two t-tuples (l1, . . . , lt) and
(l′1, . . . , l

′
t) are in the same group if and only if there is a fixed a ∈ Q such that

l′i − li = a (mod q) for all 1 ≤ i ≤ t. Let ui1, . . . ,uiq be all the t-tuples in the
ith group, for i = 1, . . . , qt−1. Obtain an array Hi by juxtaposing all the rows of
Hui1 , . . . ,Huiq , Hi = (H ′

ui1
, . . . ,H ′

uiq
)′. Clearly, the Hi’s form a row partition

of H. The proof of the following is given in Appendix.

Theorem 10. For the matrix H constructed above, we have

(i) the matrix H is an OA(st1, s
t+1
1 , t);

(ii) each slice Hi is balanced and ρ(Hi) is an OA(st2q, s
t+1
2 , t) for i = 1, . . . , qt−1.

Example 7. Let s1 = 6, s2 = 3, and t = 3. Use F = {0, 1, . . . , 5} and G =
{0, 1, 2}. The projection ρ is given as {0, 3} → 0, {1, 4} → 1, {2, 5} → 2, and the
kernel matrix Γ of ρ in transpose is(

0 1 2

3 4 5

)
.

Let H be an OA(216, 64, 3), where the last column is the sum of the first three
columns over F . Then H1 = (H ′

(1,1,1),H
′
(2,2,2))

′, H2 = (H ′
(1,1,2),H

′
(2,2,1))

′, H3 =

(H ′
(1,2,1),H

′
(2,1,2))

′, and H4 = (H ′
(1,2,2),H

′
(2,1,1))

′ form a partition of H. From

Theorem 10, each Hi is balanced and ρ(Hi) is an OA(54, 34, 3) for i = 1, . . . , 4.

When st2 = τs1 with the integer τ ≥ 1, we present another construction
which yields new BSOAs with more slices than those in Theorem 10. Let A0 be
an OA(st2, s

t+1
2 , t) with entries from G. For each column of A0, replace the st−1

2

entries of level i with the elements of Γ(i+ 1, :) in such a way that each element
of Γ(i + 1, :) appears τ times, for i = 0, 1, . . . , s2 − 1. After such replacement,
denote by A the resulting matrix. For any (l1, . . . , lt) ∈ Qt, let v(l1,...,lt) be a
(t+1)-vector, where the first t elements are Γ(1, l1), . . . ,Γ(1, lt) and the last one
is the sum of the first t elements over F , and H(l1,...,lt) = A+1st2v

′
(l1,...,lt)

. Finally,
obtain an array H by the row juxtaposition of all H(l1,...,lt)’s. Then the following
result is obtained, with proof in the Appendix.

Theorem 11. If st2 = τs1 with τ ≥ 1, for the matrix H constructed above, we
have

(i) the matrix H is an OA(st1, s
t+1
1 , t);

(ii) each slice H(l1,...,lt) is balanced and ρ(H(l1,...,lt)) is an OA(st2, s
t+1
2 , t) for any

(l1, . . . , lt) ∈ Qt.
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Example 8. Let s1 = 18, s2 = 6, and t = 2. Use F = {0, 1, . . . , 17} and G =

{0, 1, . . . , 5}. From Theorem 11, H is an OA(324, 183, 2) that can be partitioned

into nine slices. Each slice H(l1,l2) is balanced and ρ(H(l1,l2)) is an OA(36, 63, 2)

for any (l1, l2) ∈ Q2.

7. Obtain new BSOAs from Existing SOAs

Now we discuss a procedure for constructing new BSOAs from existing SOAs

by taking the Kronecker sum of an SOA and a DM. Suppose A = (A′
1, . . . ,A

′
v)

′

is an OA(n1, s
m
1 , t) with m = t = 1 or t = 2, taking levels from an abelian group

F , and that there is a level-collapsing projection δ such that each δ(Ai) is an

OA(n2, s
m
2 , t) with entries from an abelian group G, for i = 1, . . . , v. Let B

be a D(r, c, s1) with entries from F . Put H = A ⊕ B and Hi = Ai ⊕ B, for

i = 1, . . . , v. Obviously, H = (H ′
1, . . . ,H

′
v)

′.

Theorem 12. If each Ai is balanced or B is balanced, for the matrix H con-

structed above, we have

(i) the matrix H is an OA(n1r, s
mc
1 , 2);

(ii) each slice Hi is balanced and δ(Hi) is an OA(n2r, s
mc
2 , 2) for i = 1, . . . , v.

This theorem can be readily proved by following Lemma 1 and the definition

of δ. If B is a balanced D(r, c, s1), all the SOAs constructed by Qian and Wu

(2009) can be used as the matrix A in Theorem 12. Otherwise, by subtracting

the first column from all the columns of B and deleting the first column, the

remaining matrix is a balanced D(r, c− 1, s1).

Here we give one detailed construction with the modulus projection φ by

using Theorem 12. Take s1 = pu1 and s2 = pu2 , where u1 > u2 ≥ 1. Let

F = GF (s1) have a primitive polynomial p1(x) and G = GF (s2) a primitive

polynomial p2(x). Let Γ be the s2 × q kernel matrix of φ, where q = s1/s2. For

i = 1, . . . , q, let Ai = Γ(:, i). Obtain an SOA A with only one column by the

row juxtaposition of all Ai’s, A = (A′
1, . . . ,A

′
q)

′. Take B to be the columns of

the multiplication table of F labeled with all the nonzero elements of F , which is

a balanced D(s1, s1 − 1, s1). Put H = A⊕B and Hi = Ai ⊕B for i = 1, . . . , q.

From Theorem 12, H is an OA(s21, s
s1−1
1 , 2), each Hi is balanced, and φ(Hi) is

an OA(s1s2, s
s1−1
2 , 2) for i = 1, . . . , q.

8. Generation of Sliced Space-Filling Designs Based on BSOAs

In this section, we use the BSOAs constructed in the previous sections to

generate sliced space-filling designs. The randomization approach is different

from those of Tang (1993), Qian and Wu (2009), and Qian and Ai (2010).

Suppose H = (H ′
1, . . . ,H

′
v)

′ is a BSOA, where H is an OA(n1, s
m
1 , t1),

each Hi is balanced and becomes an OA(n2, s
m
2 , t2) after the s1 levels of H
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are collapsed to s2 levels according to some level-collapsing projection δ. This

randomization approach proceeds as follows.

Step 1. The projection δ divides the s1 levels of H into s2 groups, each of size

q = s1/s2, and two levels are in the same group if and only if they

are projected to the same one. Arbitrarily label the s2 groups as groups

1, 2, . . . , s2, and then relabel the q levels within the lth group as a random

permutation of {(l− 1)q + 1, . . . , (l− 1)q + q} for l = 1, . . . , s2. Now the

levels of H are 1, . . . , s1.

Step 2. Let w = n1/s1 and e = n2/s1. For l = 1, . . . , s1, let Ml be the e × v

matrix given by
(l − 1)w + 1 (l − 1)w + 2 · · · (l − 1)w + v

(l − 1)w + v + 1 (l − 1)w + v + 2 · · · (l − 1)w + 2v
...

...
...

...

(l − 1)w + (e− 1)v + 1 (l − 1)w + (e− 1)v + 2 · · · (l − 1)w + w

.

For k = 1, . . . ,m, by randomly shuffling the entries in each row ofMl and

then randomly shuffling the entries in each column, obtain a new matrix

Mlk. Replace the e entries of level l in the kth column of Hi with the

e elements of Mlk(:, i) for i = 1, . . . , v. After such replacement is done

for all the columns of H, let L = (L′
1, . . . ,L

′
v)

′ be the resulting matrix,

where Li is the submatrix of L corresponding to Hi for i = 1, . . . , v.

Step 3. Generate an n1×mmatrixD = (dij) by letting dij = (lij−uij)/n1, where

lij is the (i, j)th entry of L and uij ’s are independent random variables

with uniform distributions on (0, 1]. Denote by Di the submatrix of D

corresponding to Li for i = 1, . . . , v.

From Step 2, it can be seen that L is the matrix obtained by replacing the

w entries of level l in each column of H with a permutation of {(l − 1)w +

1, . . . , (l− 1)w+w} for l = 1, . . . , s1. Thus, L is an LH based on OA(n1, s
m
1 , t1).

Similarly, it can be shown that for i = 1, . . . , v, each Li becomes an LH based

on OA(n2, s
m
2 , t2) after the level z of L is collapsed to ⌈z/v⌉ for z = 1, . . . , n1,

where ⌈a⌉ is the smallest integer not less than a.

Theorem 13. For the design D = (D′
1, . . . ,D

′
v)

′ obtained above, we have

(i) the design D and each slice Di achieve maximum stratification in any one-

dimensional projection;

(ii) when projected onto any g (≤ t1) dimensions, the design D achieves the

stratification on the sg1 grids;
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Table 1. The matrix H in Example 9.

H11 H12 H21 H22

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4

1 1 1 1 7 8 4 3 2 2 2 2 8 7 3 4
2 4 6 8 8 5 7 6 1 3 5 7 7 6 8 5
6 2 3 7 4 7 2 5 5 1 4 8 3 8 1 6
5 3 8 2 3 6 5 4 6 4 7 1 4 5 6 3
3 3 3 3 5 6 2 1 4 4 4 4 6 5 1 2
4 2 8 6 6 7 5 8 3 1 7 5 5 8 6 7
8 4 1 5 2 5 4 7 7 3 2 6 1 6 3 8
7 1 6 4 1 8 7 2 8 2 5 3 2 7 8 1
5 5 5 5 3 4 8 7 6 6 6 6 4 3 7 8
6 8 2 4 4 1 3 2 5 7 1 3 3 2 4 1
2 6 7 3 8 3 6 1 1 5 8 4 7 4 5 2
1 7 4 6 7 2 1 8 2 8 3 5 8 1 2 7
7 7 7 7 1 2 6 5 8 8 8 8 2 1 5 6
8 6 4 2 2 3 1 4 7 5 3 1 1 4 2 3
4 8 5 1 6 1 8 3 3 7 6 2 5 2 7 4
3 5 2 8 5 4 3 6 4 6 1 7 6 3 4 5

(iii)when projected onto any g (≤ t2) dimensions, each slice Di achieves the

stratification on the sg2 grids, for i = 1, . . . , v.

Example 9. Consider the BSOA H = (H ′
11,H

′
12,H

′
21,H

′
22)

′ constructed in

Example 6, where H is an OA(64, 84, 2), each slice Hij is balanced and φ(Hij)

is an OA(16, 44, 2) for i, j = 1, 2. According to Step 1 of the randomization

approach, we first relabel the levels 0 and x2 + x+1 as 1 and 2, the levels 1 and

x2+x as 3 and 4, the levels x and x2+1 as 5 and 6, and the levels x+1 and x2 as

7 and 8, respectively. Table 1 presents the array H and the four slices after such

relabeling is carried out. Next, we use this H to generate an LHD, denoted by

Dnew, according to Steps 2 and 3. The four columns of Dnew are represented by

the factors x1, x2, x3, and x4, respectively. Theorem 13 shows that for the design

Dnew, each of the 64 intervals of the form [(i−1)/64, i/64) (i = 1, . . . , 64) contains

exactly one point when projected onto any univariate margin, and each of the 64

grids of the form [(i−1)/8, i/8)× [(j−1)/8, j/8) (i, j = 1, . . . , 8) contains exactly

one point when projected onto any bivariate margin. Furthermore, for any slice

of Dnew, each of the 16 intervals of the form [(i − 1)/16, i/16) (i = 1, . . . , 16)

contains exactly one point when projected onto any univariate margin, and each

of the 16 grids of the form [(i−1)/4, i/4)×[(j−1)/4, j/4) (i, j = 1, . . . , 4) contains

exactly one point when projected onto any bivariate margin.

Now consider the other two sliced space-filling designs with the same param-

eters. The first one is given by Qian and Wu (2009), constructed by randomizing
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Figure 1. Bivariate projections of Dnew
1 , DQW

1 and DQ
1 corresponding to

the symbols •, + and △, respectively, in Example 9.

an SOA(64, 85, 2) with four slices. For comparison, we denote by DQW the sub-

design consisting of the first four columns of the design. The second design is a

sliced LHD, denoted by DQ, constructed by using the method in Qian (2012).

Figure 1 depicts the bivariate projections of the first slices of Dnew,DQW , and

DQ. The three slices are denoted by Dnew
1 ,DQW

1 , and DQ
1 , respectively. It

is shown that Dnew
1 and DQ

1 achieve maximum stratification in any univariate

margin, and Dnew
1 and DQW

1 achieve maximum stratification in any bivariate

margin. Similar results can be obtained for any other slice. Thus, Dnew
1 and also

Dnew are preferred.

9. Discussions

This article proposes different methods for constructing sliced space-filling

designs for more flexible numbers of runs and slices in which the whole design

and each slice not only achieve maximum stratification in univariate margins, but

also achieve stratification in two- or more-dimensional margins. The construction
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of these new designs is based on balanced sliced orthogonal arrays (BSOAs).

BSOAs are different from the SOAs of Qian and Wu (2009) in that each slice is

balanced. These designs are intended for designing computer experiments with

both qualitative and quantitative factors or with multiple models. They are also

suitable for designing computer experiments with two codes of different levels

of accuracy, as the whole design and any slice constitute a nested space-filling

design (Qian, Tang, and Wu (2009), and Qian, Ai, and Wu (2009)).

The naive method to construct a BSOA is as follows. One can begin with

an OA(n, sm, t) and obtain some isomorphic OAs by permuting its levels. Then

a BSOA can be constructed by simply juxtaposing these isomorphic OAs. Note

that no level projection is needed in such a BSOA. The sliced space-filling design

based on this BSOA can also be generated by following the three steps in Section

8. It is known that the whole design and each slice can achieve stratification on

the sg grids in all g-dimensional projections for all g ≤ t. Recall that for the sliced

designs constructed in this paper, the whole design can achieve stratification on

smaller grids than each slice does. That is to say, the whole design can spread the

design points more uniformly on the design space. So for the same parameters,

the newly constructed designs are superior to those generated through this naive

method.

Since it is possible to generate a great many of sliced space-filling designs

based on a given BSOA, we can further use the distance, correlation, or other

optimal criteria to find optimal designs. Moreover, some methods of Qian, Ai,

and Wu (2009) can be adapted to construct BSOAs with mixed levels, which

allow the factors to have different levels of uniformity.
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