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Abstract: Our problem is to find a good approximation to the P-value of the max-

imum of a random field of test statistics for a cone alternative at each point in a

sample of Gaussian random fields. These test statistics have been proposed in the

neuroscience literature for the analysis of fMRI data allowing for unknown delay

in the hemodynamic response. However the null distribution of the maximum of

this 3D random field of test statistics, and hence the threshold used to detect brain

activation, was unsolved. To find a solution, we approximate the P-value by the

expected Euler characteristic (EC) of the excursion set of the test statistic ran-

dom field. Our main result is the required EC density, derived using the Gaussian

Kinematic Formula.
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1. Introduction

It seems appropriate to begin this paper with a tribute to the paper’s second

author, Keith Worsley, for whom this appears posthumously. This paper is to

appear in a volume celebrating David Siegmund’s 70th birthday. David and

Keith Worsley had worked together several times over their careers Siegmund

and Worsley (1995); Shafie et al. (2003) at the intersection of their two interests:

the distribution of the maximum of random fields. While David’s interests range

from the smooth to the non-smooth case, Keith was most interested in smooth

random fields and their application to brain imaging Worsley (1994); Friston

et al. (1995); Worsley et al. (1996). This paper is Keith Worsley’s last work.

Keith passed away prematurely from pancreatic cancer in February 2009. Keith

and the first author had discussed this paper up to a few days before he passed

away.

David has considered two main approaches to such problems: Weyl’s vol-

ume of tube formulas as in Johnstone and Siegmund (1989); Knowles and Sieg-

mund (1989) and change of measure approaches as in Nardi, Siegmund and Yakir
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(2008). On the other hand, Keith preferred using the expected Euler character-

istic (EC) approach of Adler (1981) and his generalizations in Worsley (1995b).

In this paper, we combine the EC approach with the volume of tube formula via

the Gaussian Kinematic Formula Taylor (2006). This expresses the EC densities

in terms of coefficients the Gaussian measure of a tube. It turns out that the

coefficients in the GKF are also coefficients in an expansion of their own change

of measure formula on Gaussian space Taylor and Vadlamani (2011).

This paper is concerned with the maxima of (functions of) smooth Gaussian

random fields. Let T (s), s ∈ RD be a random field, and let S ⊂ RD be a fixed

search region. Our main interest is to find good approximations to the P-value

of the maximum of T (s) in S:

P
(
max
s∈S

T (s) ≥ t

)
. (1.1)

The random field T (s) will be one of a variety of test statistics for a cone al-

ternative in a multivariate Gaussian random field. Two of these test statistics

have been proposed in the neuroscience literature Friman et al. (2003); Calhoun

et al. (2004) but without a P-value. Worsley and Taylor (2006) gives a heuristic

approximation to the P-value of the Friman et al. (2003) statistic. This has been

incorporated into the R package fMRI Polzehl and Tabelow (2006). This paper

aims to give a correct P-value approximation to both of these test statistics and

the likelihood ratio test statistic for a larger class of test statistics.

To do this, we first define the test statistic random fields in Section 2, then

evaluate their approximate P-values (1.1) in Section 3 using the EC heuristic

and the Gaussian Kinematic Formula. Section 3 concludes with a subsection

that relates our methods to those we have used for the Hotelling’s T 2 random

field Taylor and Worsley (2008). In Section 4 we apply our methods to the re-

analysis of an fMRI data set already used for the same purpose in Worsley and

Taylor (2006).

2. The Test Statistics

2.1. Definitions of the test statistics

The test statistics are defined as follows. Let Z(s) = (Z1(s), . . . , Zn(s))
′,

s ∈ S ⊂ RD, be a vector of n i.i.d. Gaussian random fields with

E(Z(s)) = µ(s), V(Z(s)) = σ(s)2In×n.

Usually σ(s) is unknown and must be estimated separately at each point. Keeping

this in mind, we set σ(s) = 1 without loss of generality. Let U ⊂ On−1, the unit



DETECTING SPARSE CONE ALTERNATIVES 1631

(n− 1)-sphere. At each s ∈ S, we are interested in testing that the mean is zero

against the cone alternative,

H0,s : µ(s) = 0 vs. H1,s : µ(s) ∈ Cone(U) = {c · u : c ≥ 0, u ∈ U}

Robertson, Wright and Dykstra (1988). The likelihood ratio test of H0 vs. H1

is equivalent to

χ̄(s) = max
u∈U

u′Z(s), (2.1)

which we call the χ̄ random field because it has a so-called χ̄marginal distribution

when Cone(U) is convex (see Section 2.3 below). As mentioned above, σ(s) is

usually unknown so the χ̄ random field must be normalized separately at every

point s. We consider two ways of doing this.

The first is the likelihood ratio cone random field, equivalent to the likelihood

ratio of the cone alternative under unknown variance:

TLR(s) =
χ̄(s)√

(||Z(s)||2 − χ̄(s)2)/n
,

or equivalently, the maximum correlation between a point in the cone and the

data. The second, proposed by Friman et al. (2003), is only defined if U is a

subset of some k-dimensional subspace of Rn, in which case there are effectively

ν = n − k residual degrees of freedom that can be used to estimate σ(s) and

normalize χ̄(s). Suppose Z⊥(s) is the projection of Z(s) onto the orthogonal

complement of the linear span of U , so that Z⊥(s) is independent of χ̄(s) and

has mean 0 under H1. Then the independently normalized cone random field is

TIN(s) =
χ̄(s)

||Z⊥(s)||/
√
ν
.

Note that if U = Ok−1 (by this we mean a (k− 1)-sphere embedded in Rn) then

the two cone random fields are both equivalent to the F-statistic random field

F (s) =
||Z⊤(s)||2/k
||Z⊥(s)||2/ν

,

where Z⊤(s) is the projection of Z(s) onto the linear subspace spanned by U .

For the same problem, Calhoun et al. (2004) proposed a one-sided F-statistic.

Suppose u ∈ U is some fixed unit vector near the “middle” of U , such as the

expected value of a random variable uniformly distributed on U . Then the one-

sided F-statistic random field is

F+(s) = 1{u′Z(s)>0}F (s).
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Figure 1. Rejection regions (the side of the boundary that excludes the
origin) of the test statistics at P = 0.05 with infinite sample size for a
2D (k = 2) right-angled cone alternative covering the first two components
Z1, Z2 of Z. The middle of the cone u is parallel to the Z1 axis. The cone
can also be expressed as a linear model with m = 2 regressors x1 and x2 with
non-negative coefficients β1 ≥ 0 and β2 ≥ 0. The χ̄ statistic is the length of
the projection of Z onto the nearest edge of the cone (including the vertex
of the cone and the interior of the cone itself). The null distribution of χ̄

is a mixture of χj random variables with weights pj = P0(#{β̂′s ≥ 0} = j)
equal to the relative size of the shaded regions: p0,1,2 = 1/4, 1/2, 1/4. The
statistic F+ is the one-sided F statistic of Calhoun et al. (2004).

Finally there is the “middle” T-statistic obtained by setting U = u so that

ν = n− 1 and, restoring the sign of the numerator,

T1(s) =
u′Z(s)

||Z⊥(s)||/
√
ν
.

The rejection regions of these test statistics are illustrated in Figure 1 for the

case of known variance, or equivalently, infinite n.

2.2. Power and maximum likelihood

Both cone statistic random fields should be more powerful than the F-

statistic random field since the F-statistic wastes power on alternatives that are

outside the cone. The one-sided F-statistic tries to make up for this, but it is

inadmissable (for infinite ν and fixed s) because its acceptance region is concave

Birnbaum (1954) - see Figure 1 - although it is not clear how to construct a test

that dominates it. If in fact the alternative is at the middle of the cone then, T1

should be the most powerful.
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Between the two cone statistics, the advantage of TLR(s) is that it uses
all the information in the data to estimate the variance and so it should be
more powerful than TIN(s). Cohen and Sackrowitz (1993) show that TLR(s) is
admissible in specific examples, whereas TIN(s) is always inadmissable. However
if the mean is outside the cone but still inside the linear subspace spanned by U ,
then we would expect TIN(s) to be more powerful. The reason is that a mean
µ(s) outside the cone would increase the denominator of TLR(s) but not that of
TIN(s). Friman et al. (2003) chose the more conservative TIN(s). This strategy
sacrifices a few degrees of freedom and a small loss of power if µ(s) really is in the
cone, against a much larger loss of power if it is not. Worsley and Taylor (2006)
investigate power in an fMRI application that wel also use in Section 4. For a
general discussion of power and likelihood ratio tests in this setting see Perlman
and Wu (1999).

We note in passing that we have used maximum likelihood principles only
at a single point s, not over the whole space S which would require a spatial
model for the mean and covariance function of the random fields. In the case of
known σ(s), a standard reproducing kernel argument, discussed in Siegmund and
Worsley (1995), can be used to show that if each of the components of µ(s) is
proportional to the spatial correlation function centered at some unknown point
s0 (which is assumed to be the same for each component), then maxs∈S χ̄(s) is
the likelihood ratio test statistic.

Our interest is confined to s in a search region S ⊂ RD where we expect H0,s

to be true at most points, with only a sparse set of points S1 where H1,s is true.
This suggests that we should estimate S1 by thresholding the above test statistic
random fields at some suitably high threshold. Choosing the threshold which
controls the P-value of the maximum of the random field to say α = 0.05 should
be powerful at detecting S1, while controlling the false positive rate outside S1

to something slightly smaller than α. Our main problem is therefore to find the
P-value of the maximum of these random fields of test statistics (1.1).

2.3. Mixture representation of χ̄

The χ̄ random field is so-named because it has a useful representation in
terms of a mixture of χj random fields with j degrees of freedom Lin and Lindsay
(1997); Takemura and Kuriki (1997). The mixture representation works when
Cone(U) is convex and polyhedral, and asymptotically when Cone(U) is only
locally convex (see Section 3.2 below). The simplest way of seeing where the
polyhedral cone enters the picture is to write it as a linear model with non-
negative coefficients:

H1,s : µ(s) =

m∑
j=1

xjβj(s), β1(s), . . . , βm(s) ∈ R+. (2.2)
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The regressors x1, . . . , xm ∈ Rn contain the vertices of U (times arbitrary scalars),

and they may be linearly dependent (see Figure 1). The cone may even contain

linear subspaces (for instance, take x2 = −x1 above) which effectively corre-

sponds to having a certain number of unrestricted coefficients in µ(s) under

H1,s.

To actually compute the χ̄(s) random field, one must solve a convex problem

at each location s. This can be done in several ways. The most direct is to first

perform all-subsets least-squares regression, then throw out any fitted model that

has negative coefficients; amongst those that are left, the model that fits the best,

with fitted values

Ẑ(s) = µ̂(s) =

m∑
j=1

xj β̂j(s), β̂1(s), . . . , β̂m(s) ∈ R+, (2.3)

is the maximum likelihood estimator of µ(s), and χ̄(s) = ||Ẑ(s)||. Alternatively,

one may solve the problem

minimize
(β(s))s∈S

∑
s∈S

∥Z −Xβ(s)∥22 subject to βi(s) ≥ 0, 1 ≤ i ≤ m, s ∈ S. (2.4)

This is is a collection of separable convex problems, each of which can be solved

via coordinate descent Friedman et al. (2007) or first-order methods (c.f. Becker,

Bobin, and Candès (2009)). As the inputs are smooth, one would expect that

warm starts at adjacent locations would greatly speed up the convergence of

such algorithms. There is a huge literature on such non-negative least squares

(NNLS) problems with many applications in inverse problems, and many faster

algorithms than all-subsets regression, such as the classic one by Lawson and

Hanson (1995).

From a geometric perspective, estimation of µ(s) is equivalent to project-

ing Z(s) onto Cone(U). Here a face of Cone(U) could represent the vertex of

Cone(U), in which case Ẑ(s) = 0; an edge of Cone(U); or even the interior of

Cone(U), in which case Ẑ(s) = Z(s). Let A ⊂ Cone(U) represent a generic face

of Cone(U). Further, let ẐA(s) be the projection of Z(s) onto the linear subspace

spanned by A, so that {ẐA(s) ∈ Cone(U)} is the event that the non-negativity

restrictions are satisfied for face A. Then,

χ̄(s) = max
A

1{ẐA(s)∈Cone(U)} · ∥ẐA(s)∥, (2.5)

and let Â(s) be the value of A that achieves this maximum. Actually, there

are values of Z(s) for which more than one face achieves the maximum above,
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though these occur on lower dimensional subsets of Rn that correspond to lower

dimensional surfaces in the search region S. From (2.5) it is clear that

χ̄(s) =
∑
A

1{Â(s)=A} · ∥ẐA(s)∥. (2.6)

Clearly,

χ̄(s)
∣∣{Â(s) = A} ∼ χdim(A),

which only depends on the dimensionality of A, and so

χ̄(s)
∣∣{dim(Â(s)) = j} ∼ χj .

Hence its unconditional marginal distribution is a mixture of χj ’s

P0(χ̄(s) ≥ t) =

n∑
j=0

pj(U)P(χj ≥ t) (2.7)

with weights

pj(U) = P0

(
dim(Â(s)) = j

)
, 0 ≤ j ≤ n.

These weights are the probability that the face of Cone(U) that is closest to

Z has dimension j, or, in terms of the fitted linear model (2.3),

pj(U) = P
(
#{β̂′s > 0} = j

)
, 0 ≤ j ≤ n.

Above, we have used the notation P0 to indicate we are working under the

global null

H0 = ∩s∈S . (2.8)

All further probabilities aree computed under P0, though we drop the 0 subscript.

Where necessary, we have defined χ0 = 0 to be a constant random variable

which corresponds to Z(s) being closest to the vertex of Cone(U). Depending

on the structure of Cone(U), one or more of the pj(U)’s may be zero. More

specifically, let L(U) be the largest linear subspace contained in Cone(U) with

L(U) possibly equal to 0, the subspace containing only the 0 vector. It is not

hard to see that

l(U)
∆
= dim(L(U)) = min{j : pj(U) > 0}

and further,

∥ẐL(U)(s)∥ ≤ χ̄(s) ≤ ∥Z(s)∥.

Finally, we also note that, for t > 0, P(χ0 ≥ t) = 0 so effectively the sum in (2.7)

is really a sum over 1 ≤ j ≤ n and we can generally ignore p0(U) which we do in

later expressions for the EC densities of TIN(s) and TLR(s).
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Figure 2. Examples of n = 3 Gaussian random fields in D = 2 dimensions
(top row). Bottom row: the random fields TLR, TIN and F+ for the same
quarter circle cone as in Figure 1, so that k = 2 and ν = 1. In the three
patches the χ̄ random fields are χj fields with j = dimensionality of the
nearest cone face. In the gray patches, j = 0, TLR = TIN = F+ = 0; in the
medium shaded patches, j = 1, T 2

LR ∼ F1,2 and T 2
IN ∼ F1,1; in the unshaded

patches, j = 2, T 2
LR = T 2

IN = F+ ∼ F2,1 (times scalars). The boundary
between the medium shaded and unshaded patches (heavy black line) is the
edge of the cone x1 or x2. When the denominator has one degree of freedom,
the statistic takes the value ∞ on random curves; when it has two degrees
of freedom, it takes the value ∞ only at the points where these curves touch
the boundary. TIN is not defined everywhere because it takes the value 0/0
at random points (arrow).

By approximation, this argument extends to general convex cones, though

the pj ’s have slightly different interpretations even though they are limits of the

pj ’s of the polyhedral approximations, see Section 3.2 below Lin and Lindsay

(1997); Takemura and Kuriki (1997).

Note that while the marginal distribution of the χ̄(s) random field is a mix-

ture of χj random variables, it is not strictly a mixture as a random field. Rather,

realizations of the random field resemble a patchwork of χj random fields with

patches {s : Â(s) = A} on which we observe ∥ẐA(s)∥ ∼ χdim(A) (see Figure 2).

This representation also sheds some light on the two normalized random

fields TLR(s) and TIN(s) as patchwork mixtures of
√
F random fields of appro-
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priate degrees of freedom. In terms of the representation (2.6), it is not hard to

see that

TLR(s) =
∑
A

1{Â(s)=A} ·
∥ẐA(s)∥

∥Z(s)− ẐA(s)∥/
√
n
. (2.9)

Here some slight care must be taken at points s contained in the intersection of the

closure of two or more patches. For these points, we can arbitrarily assign Â(s)

to any appropriate face of Cone(U). The representation (2.9) shows immediately

that its marginal distribution is that of a mixture of
√

jn/(n− j) · Fj,n−j random

variables with weights pj(U). As in the χ0 case, we define F0,l = 0 to be a constant

random variable for all l. For the independently normalized cone random field,

TIN(s) =
∑
A

1{Â(s)=A} ·
∥ẐA(s)∥

∥Z⊥(s)∥/
√
ν
, (2.10)

which shows that its marginal distribution is a mixture of
√

j · Fj,ν random

variables with weights pj(U).

2.4. Dimensionality

The representation of TIN(s) and TLR(s) as patchwork mixtures of
√
F ran-

dom fields shows that we must consider constraints on D dictated by the total

degrees of freedom n and Cone(U) (see Figure 2). For the F random field, re-

calling the argument in Worsley (1994), we note that the set where ||Z(s)|| takes
the value zero is the intersection of the zero sets of each of the components of

Z(s), so its dimensionality is D − n if D ≥ n or empty if D < n. This means

that if D ≥ n then F (s) = 0/0 with positive probability somewhere inside S, in

which case F (s) is not defined. Hence we must have D < n for F (s) to be well

defined. The same argument applies to F+(s) and to T1(s) for which we must

have D < ν + 1.

By a similar argument, TLR(s) is made up of
√

Fj,n−j random fields for

l(U) ≤ j ≤ n, so we must have D < n to avoid 0/0 for such random fields. A

similar argument applies to TIN(s) though the limit on the dimension is more

restrictive and slightly more difficult to describe. In principle, we simply want

to avoid 0/0 for the random field TIN(s). However, when l(U) = 0, we can allow

some isolated 0/0 points within the interior of the patch {s : Â(s) = 0}. If we

allow more than isolated points, say curves of 0/0, these will generally intersect

the boundary of the patch {s : Â(s) = 0} causing TIN(s) to be undefined at such

points (see the white arrows in Figure 2(a,b)). In other words, we really need to

avoid 0/0 on the closure of the set {s : Â(s) ̸= 0}. When l(U) = 0, on this set

min{∥ẐA(s)∥ : dim(A) = 1} ≤ χ̄(s) ≤ ∥Z(s)∥
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therefore there are no 0/0’s if there are no 0/0’s for any of the F1,ν random fields{
∥ẐA(s)∥2

∥Z⊥(s)∥2/ν
: dim(A) = 1

}
,

that is, if D < ν+1. However, if l(U) > 0, then {s : Â(s) = 0} is of strictly lower

dimension thanD and even isolated 0/0 points within this patch will cause TIN(s)

to be undefined, hence we must again avoid 0/0’s in the closure of {s : Â(s) ̸= 0}
which is just S, the entire search region. As noted in the previous section, when

l(U) > 0,

∥ẐL(U)(s)∥ ≤ χ̄(s) ≤ ∥Z(s)∥

and there are no 0/0’s in TIN(s) if there are no 0/0’s in the Fl(U),ν random field

∥ẐL(U)(s)∥2/l(U)

∥Z⊥(s)∥2/ν
,

that is, if D < ν + l(U). In summary, considering both cases l(U) = 0 and

l(U) > 0, we must have D < ν +max(l(U), 1).

When Cone(U) is non-convex, the situation is more difficult to describe in

exact terms for both TIN(s) and TLR(s). If Cone(U) is non-convex, then the

marginal distribution of χ̄(s) is no longer exactly a mixture of χj ’s, though it is

approximately a mixture (with possibly negative weights). However, the error in

this approximation is often still exponentially small on the relative scale Taylor,

Takemura, and Adler (2005).

3. P-value of the Maximum of a Random Field

An accurate approximation to the P-value of the maximum of any smooth

isotropic random field T (s), s ∈ S ⊂ RD, at high thresholds t, is the expected

Euler characteristic (EC) φ of the excursion set:

P
(
max
s∈S

T (s) ≥ t

)
≈ E(φ{s ∈ S : T (s) ≥ t}) =

D∑
d=0

Ld(S)ρd(t), (3.1)

where Ld(S) is the d-dimensional intrinsic volume of S (defined in Appendix

), and ρd(t) is the d-dimensional EC density of the random field above t Adler

(1981); Worsley (1995a); Adler (2000); Adler and Taylor (2007). The heuristic

is that for high thresholds the EC takes the value 0 or 1 if the excursion set is

empty or not, so that the expected EC approximates the P-value of the maximum

(see Figure 3). The approximation is extraordinarily accurate, giving exponen-

tial accuracy for Gaussian random fields Taylor, Takemura, and Adler (2005).
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Figure 3. The Euler characteristic (EC) of excursion sets of the Gaussian
random field Z1 from Figure 2 plotted against threshold t, together with the
expected EC under the global null H0 = ∩s∈SH0,s from (3.1). Bottom row:
the excursion sets (light gray) for t = −2, . . . , 3; the search region S is the
whole image. At high thresholds the expected EC is a good approximation
to the P-value of the maximum (arrowed). The approximate P = 0.05
threshold is t = 3.57 (arrowed).

A different approach using volumes of tubes Knowles and Siegmund (1989); Jo-

hansen and Johnstone (1990); Sun (1993); Sun and Loader (1994); Sun, Loader
and McCormick (2000); Pilla (2006) is, in our context, essentially the same as

the methods used here, as shown by Takemura and Kuriki (2002).

For D = 3, our main interest in applications, L0,1,2,3(S) are: the EC, twice

the ‘caliper diameter’, half the surface area, and the volume of S respectively (for
a convex set, the caliper diameter is the average distance between the two parallel

tangent planes to the set). If the random field T (s) is a function of Gaussian

random fields, such as are all the test statistic random fields considered so far,

and these Gaussian random fields are non-isotropic, then it is only necessary to
replace intrinsic volume in (3.1) by Lipschitz-Killing curvature. Lipschitz-Killing

curvature depends on the local spatial correlation of the component Gaussian

random fields, as well as the search region S Adler and Taylor (2007); Taylor

and Adler (2003); Taylor and Worsley (2007).
Morse theory can be used to obtain the EC density of a smooth random field

T = T (s) as

ρd(t) = E
(
1{T≥t}det(−T̈d) | Ṫd = 0

)
P(Ṫd = 0), (3.2)

where dot notation with subscript d denotes differentiation with respect to the
first d components of s Worsley (1995a). For d = 0, ρ0(t) = P(T ≥ t). The
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Morse method of obtaining EC densities, though straightforward in principle,
usually involves an enormous amount of tedious algebra. Entire papers have
been devoted to evaluating (3.2) for an ever wider class of random fields of test
statistics such as Gaussian Adler (1981), χ2, T , F Worsley (1994), Hotelling’s
T 2 Cao and Worsley (1999b), correlation Cao and Worsley (1999a), scale space
Siegmund and Worsley (1995); Worsley (2001); Shafie et al. (2003) and Wilks’s
Λ Carbonell and Worsley (2007). A much simpler method is given in the next
section.

3.1. The Gaussian kinematic formula

There is a much simpler way of getting EC densities when T is built from in-
dependent unit Gaussian random fields (UGRF). A UGRF is a Gaussian random
field with zero mean, unit variance, and identity variance of its spatial derivative.
Note that any stationary Gaussian random field can be transformed to a UGRF
by appropriate linear transformations of its domain and range. Without loss of
generality we shall that all the random fields considered so far are built from
UGRFs.

This simpler method is based on the Gaussian Kinematic Formula discov-
ered by Taylor (2006). The idea is to take the Steiner-Weyl volume of tubes
formula (A.1) and replace the search region by the rejection region, and volume
by probability. Somewhat miraculously, the coefficients of powers of the tube
radius are (to within a constant) the EC densities we seek.

The details are as follows. Suppose T (s) = f(Z(s)) is a function of UGRFs
Z(s) = (Z1(s), . . . , Zn(s))

′. Put a tube of radius r about the rejection region
Rt = {z ∈ Rn : f(z) ≥ t} ⊂ Rn, evaluate the probability content of the tube
(using the Nn(0, In×n) distribution of Z = Z(s)), and expand as a formal power
series in r. Denoting the tube by Tube(Rt, r) = {x : minz∈Rt ||z−x|| ≤ r}, then

P (Z ∈ Tube(Rt, r)) =

∞∑
d=0

rd

d!
(2π)d/2ρd(t). (3.3)

Since the spatial dependence on s is no longer needed, we omit it until further
notice.

For example, let f(z) = u′z for fixed u with ||u|| = 1 so that T is a UGRF.
Without loss of generality we can assume that n = 1 and hence f(z) = z. It is
easy to see that Rt = [t,+∞) and further

Tube(Rt, r) = [t− r,+∞) = Rt−r.

This observation leads directly to the EC density of the Gaussian random field

ρGd (t) =

(
−1√
2π

∂

∂t

)d

P(T ≥ t). (3.4)
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We exploit this observation, that the tube is another rejection region but with
a lower threshold, to derive the EC density for the χ̄ random field in the next

section.

3.2. The χ̄ random field

Let Rt ⊂ Rn be the rejection region for the χ̄ random field at level t, the
union of all half planes at distance t from the origin. It is clear that a tube of

radius r about such a rejection region is simply another union of all half planes
at distance t−r from the origin (provided r < t). We thus arrive at precisely the

same expression as for the Gaussian case: Tube(Rt, r) = Rt−r. In the same way,
this leads directly toa representation for the EC densities of a χ̄ random field:

ρχ̄d (t) =

(
−1√
2π

∂

∂t

)d

P(χ̄ ≥ t). (3.5)

We can use the mixture representation (2.7) to show that the EC density of χ̄ is

the same mixture of EC densities of the χj random field. By setting U = Oj−1

in (3.5), the EC density of χj is

ρχd (t; j) =

(
−1√
2π

∂

∂t

)d

P(χj ≥ t). (3.6)

Combining this with (3.5) and (2.7) leads to the first expression is the following.

Theorem 1. If Cone(U) is convex then the EC density of the χ̄ random field is

ρχ̄d (t) =

n∑
j=1

pj(U)ρχd (t; j) =

n−1∑
j=0

Lj(U)ρGd+j(t),

where ρχd (t; j) and ρGd (t) are the EC densities of the the χj random field (3.6)

and Gaussian random field (3.4), respectively.

The second part of the Theorem is proved as follows. Another way of eval-

uating P(χ̄ ≥ t) is to note that u′Z, as a function of u, is a UGRF and that χ̄
is its maximum over U . Hence we can use the approximation (3.1) for Gaussian

random fields, replacing S by U . This is exact for t > 0 when Cone(U) is convex.
The reason is that the excursion set {u ∈ U : u′Z ≥ t} generates a cone that is
the intersection of a convex circular cone (provided t > 0) with convex Cone(U),

which is again convex. The EC of {u ∈ U : u′Z ≥ t} is either 0 or 1 depending on
whether χ̄ is less than or greater than t. Hence the expected EC is the P-value,

so that (3.1) is exact and gives

P(χ̄ ≥ t) =

n−1∑
j=0

Lj(U)ρGj (t). (3.7)
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Combining this with (3.5) yields the second expression of Theorem 2. Note that

the weights pj(U) can be expressed in terms of intrinsic volumes by equating

(3.7) to (2.7) to give

pj(U) =
1

2jπ
j−1
2 Γ( j+1

2 )

⌊(n−j)/2⌋∑
m=0

(−1)m(d+ 2m)!

(4π)mm!
Lj+2m−1(U)

(see Chapter 15 in Adler and Taylor (2007)).

Remark 1. If Cone(U) is not convex, the above argument used to derive (3.7)

fails, though (3.5) still holds for the coefficients in the exact tube expansion, in

the sense that Tube(Rt, r) = Rt−r. However, if Cone(U) is locally convex (3.7)

is exponentially accurate Taylor, Takemura, and Adler (2005) and therefore the

right hand side of the result in Theorem 1 is the EC density up to an exponentially

small error.

Remark 2. The representation (2.6) represents χ̄(s) (reinstating dependence on

s) as a mixture of χj(s) random fields with weights pj(U). It is therefore not

surprising that the EC density of the χ̄(s) random field is a mixture of the EC

densities of χj(s) random fields with the same weights. We give a sketch of a

proof why this should be so for the simplest cone: the positive orthant in Rk

χ̄(s)2 =
k∑

j=1

1{Zj(s)>0}Zj(s)
2.

For this cone, a face is determined by a subset of {1, . . . , k} that is the set of non-

negative components of µ̂(s). It is not hard to see that Â(s) = {j : Zj(s) < 0}c
with the empty set representing the vertex of the cone. We make use of Morse

theory, which shows that the EC of a set is determined by the critical points of

a twice differentiable Morse function defined on the set Adler (1981). The Morse

theory expression for the EC density (3.2) is obtained by using the random field

itself as the Morse function Worsley (1995a). The random field χ̄(s) as a Morse

function is actually differentiable (though not twice differentiable) and it is not

hard to show that its critical points are almost surely contained in the interior

of the patches; the critical points on the boundary are points where a particular

χj(s) random field has a critical point and one or more components are 0 (see

Figure 2). For instance, critical points that appear on the segment of boundary

of the intersection of {s : Z1(s) = 0} and the patch {s : Â(s) = ∅} are points

where Z1(s) has a critical point and Z1(s) = 0. The number of such points is

almost surely 0. Because there are no critical points on the boundary of the

patches, we can redefine χ̄(s) near these boundaries to get a Morse function with
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the same critical points as χ̄(s) and the standard Morse-theoretic computation

of the expected EC shows that, for each patch J ⊂ {1, . . . , k}, we must find the

number of critical points of χJ(s)
2 =

∑
j∈J Z

2
j (s) above the level t, counting

multiplicities. The expected EC above the level t, similar to (3.2) is then∑
J⊂{1,...,N}

E
(
1{Â(s)=J}1{χJ (s)>t}det(−χ̈J,d(s)) | χ̇J,d(s) = 0

)
P(χ̇J,d(s) = 0).

Noting that the conditional distribution of χ̈J,d(s) given (Z(s), Ż(s)) depends on

Z(s) only through ∥ZJ(s)∥ implies that χ̈J,d(s) and 1{Â(s)=J} are conditionally

independent given (Z(s), Ż(s)). In fact, this also implies that they are actually

unconditionally independent. This completes the sketch of the proof: the sum

over all subsets J of size j yields pj(U) times the EC densities of χ2
j random

fields from (3.2). To go from the χ̄(s) to the TIN(s) or TLR(s) random field is not

complicated: simply replace χJ above by the appropriate F random fields in the

decomposition (2.9) or (2.10), though the conditional independence argument

is slightly more complicated. In the following sections, we prefer to use the

Gaussian Kinematic Formula to give a more direct and complete proof that does

not refer to Morse theory and the counting of critical points.

3.3. The F- and T-statistic random fields

Our main results are based on a simple refinement of Theorem 2 in which we

incorporate a χ2 field in the denominator. To see how it works, use the Gaussian

Kinematic Formula to derive the EC density of the F-statistic field. Let Rt ⊂ Rn

be the rejection region of the F-statistic random field F with k, ν degrees of

freedom. Without loss of generality, setting z = (z1, . . . , zn), we can take

f(z) =

∑k
i=1 z

2
i /k∑n

i=k+1 z
2
i /ν

.

Then, a little elementary geometry (see Figure 4) shows that

P (Z ∈ Tube(Rt, r)) = P(χk ≥ Tr) +O(rn), (3.8)

where

Tr = χν

√
tk

ν
− r

√
1 +

tk

ν
.

The remainder here reflects the fact that the tube Tube(Rt, r) is almost equal to

the event {χk ≥ Tr}. Near the origin, this fails, but the probability content of

where this fails is of order O(rn). Further, the EC densities of F are only defined
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Figure 4. Rejection region Rt of the F statistic F = (z21 + z22)/2/z
2
3 with

k = 2 and ν = 1. The purple axes are from -1 to 1. The cone generator U
is blue, Cone(U) is transparent yellow. The rejection region for a threshold
of t = 3/2 is red; the tube about the rejection region (radius r = 0.15) is
transparent green. Both rejection region and tube are cut at z2 ≥ 0 and
|z3| ≤ 1/

√
3. We expand the probability of this tube as a power series in r;

its coefficients are the EC densities we seek.

for d ≤ D < n (as explained in Section 2.4). Continuing with the main term in

(3.8), and making use of (3.4),

P(χk ≥ Tr) = E
(
P
(
χk ≥ Tr

∣∣∣∣χν

))

= E

k−1∑
j=0

Lj(O
k−1) ρGj (Tr)


=

∞∑
d=0

(2π)d/2rd

d!

(
1 +

tk

ν

)d/2 k−1∑
j=0

Lj(O
k−1) E

(
ρGj+d

(
χν

√
tk

ν

))
.

(3.9)

Hence, the EC densities for an F-statistic random field with k, ν degrees of free-

dom are given by

ρFd (t; k, ν) =

(
1 +

tk

ν

)d/2 k−1∑
j=0

Lj(O
k−1) E

(
ρGj+d

(
χν

√
tk

ν

))
. (3.10)

For the T-statistic random field T1, a similar argument to that leading to
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(3.8) shows that we must expand the following probability in a power series:

P

(
Z1 ≥ χν

√
t2

ν
− r

√
1 +

t2

ν

)
,

where Z1 ∼ N(0, 1) is independent of χν . In the above expression, t2 appears
instead of t because T 2

1 is an F1,ν random field and Z1 appears rather than
χ1 = |Z1| on the left hand of the inequality side because T1 is one-sided. Similar
calculations to those above for the F-statistic yield an expression for the EC
densities of the T-statstic random field,

ρTd (t; ν) =

(
1 +

t2

ν

)d/2

E

(
ρGd

(
χν

√
t2

ν

))

=

⌊ d−1
2

⌋∑
l=0

(−1)l(d− 1)!Γ ((d− 1− 2l + ν)/2)

π(d+1)/222l+1(d−1−2l)!l!Γ (ν/2)

(
t2

ν

)(d−1−2l)/2(
1+

t2

ν

)−(ν−1−2l)/2

,

for d > 0 and P(T1 > t) for d = 0. This is simpler than the expression in Worsley
(1994).

A simple rearrangement of (3.10) yields an equivalent representation of the
EC densities of the F-statistic random field in terms of the EC densities of the
T-statstic random field:

ρFd (t; k, ν) =

(
1 +

tk

ν

)−d/2 k−1∑
j=0

Lj(O
k−1) ρTd+j(

√
tk; ν).

3.4. The independently normalized cone random field TIN

It is slightly easier to work with TIN since it more closely resembles F , so
we tackle this ahead of TLR. It is clear how to proceed: find the rejection region
as a function of the n UGRF’s; put a tube around with radius r; work out the
probability content; differentiate d times to get the EC density. This sounds
formidable, but it is virtually identical to the case of the F-statistic above. For
readers with good geometric intuition, Figure 5 might help: it shows the simple
case of the rejection region Rt = {Z : TIN ≥ t} where k = 2 and ν = 1, and U is
a quarter circle, as in Figure 2.

Theorem 2. If Cone(U) is convex then the EC density of the independently
normalized cone random field TIN is

ρINd (t) =

k∑
j=1

pj(U)ρFd

(
t2

j
; j, ν

)
=

k−1∑
j=0

Lj(U)ρTd+j(t; ν)

(
1 +

t2

ν

)−j/2

.

The EC densities are valid for d < ν+max(l(U), 1), where l(U) is the dimension
of the largest linear subspace in Cone(U).
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Figure 5. Rejection region Rt of the independently normalized test statistic
TIN for the same cone as in Figure 2 and the same z as in Figure 4. The cone
edges x1 and x2 are black. The threshold is t =

√
3 and both the rejection

region and tube are cut at z1 ± z2 ≥ −
√
2 and |z3| ≤ 1/

√
3.

Remark. The representation (2.10) has TIN as a patchwork mixture of
√

j · Fj,ν

random fields with weights pj(U). See Remark 2 for why Theorem 1 should not

be surprising. For the case of non-convex Cone(U), see Remark 1 after Theorem

2.

Proof. The geometric argument that led to (3.8) leads to the following approx-

imate equality

{Z ∈ Tube(Rt, r)} ≃ {χ̄ ≥ T ∗
r } ,

where

T ∗
r = χν

√
t2

ν
− r

√
1 +

t2

ν
.

Here, the event {Z ∈ Tube(Rt, r)} is contained within {χ̄ ≥ T ∗
r } with the dif-

ference coming from points where T ∗
r and χ̄ are both near 0. If l(U) > 1, the

probability of this difference, as a function of the tube radius r, is of order

O(rl(U)+ν). If l(U) = 0, then similar arguments to those in Section 2.4 show

that we need only worry about 0/0 when χ̄ > 0 but is close to 0 when its χ1

components are near 0 and χν is also near 0. The probability of this is of order

O(rν+1). Since we must have d < ν +max(l(U), 1) anyway to avoid 0/0, we can

ignore this difference in either case, thus for our purposes we need only expand

P(χ̄ ≥ T ∗
r ) as a power series in r. This computation is essentially identical to the
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case of the F-statistic where Ok−1 is replaced with a general U . Following the

calculations preceding (3.10):

P(χ̄ ≥ T ∗
r ) = E

k−1∑
j=0

Lj(U)ρGj (T
∗
r )


=

∞∑
d=0

(2π)d/2rd

d!

(
1 +

t2

ν

)d/2 k−1∑
j=0

Lj(U) E

(
ρGj+d

(
χν

√
t2

ν

))

=

∞∑
d=0

(2π)d/2rd

d!

k−1∑
j=0

Lj(U) ρTj+d(t; ν)

(
1 +

t2

ν

)−j/2

.

To derive the EC densities in terms of F EC densities, simply use (2.7), (3.9),

and (3.10):

P(χ̄ ≥ T ∗
r ) =

k∑
j=max(l(U),1)

pj(U) P (χj ≥ T ∗
r )

=
∞∑
d=0

(2π)d/2rd

d!

k∑
j=max(l(U),1)

pj(U) ρFd

(
t2

j
; j, ν

)
.

3.5. The likelihood ratio cone random field TLR

Figure 6 illustrates the rejection region Rt of TLR.

Theorem 3. If Cone(U) is convex then the EC density of the likelihood ratio

cone random field TLR is

ρLRd (t) =

n∑
j=1

pj(U)ρFd

(
t2

j

n− j

n
; j, n− j

)
.

The EC densities are valid for d < n.

Remark. As for TIN, the representation (2.9) has TLR as a patchwork mixture

of
√

jn/(n− j) · Fj,n−j random fields with weights pj(U). See Remark 2 after

Theorem 2 for why Theorem 3 should not be surprising. For the case of non-

convex Cone(U), see Remark 1 after Theorem 2.

Proof. It is easier to transform to the equivalent correlation coefficient

C =
TLR√
n+ T 2

LR

=
χ̄

||Z||
= max

u∈U

u′Z

||Z||
.
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Figure 6. As for Figure 5, but for the likelihood ratio test statistic TLR at a
threshold t = 3, cut at ||z|| ≤ 1; ϕ = arccos(t/

√
n+ t2) = π/6.

Then the rejection region C ≥ c is simply a cone centered at the origin that inter-

sects the unit sphere in a tube of geodesic radius ϕ = arccos c = arccos(t/
√
n+ t2)

about U :

Rt =

{
z : arccos

(
max
u∈U

u′z

||z||

)
≤ ϕ

}
.

When Cone(U) is convex, there is an exact expression for the probability content

of a tube about a subset of the sphere, similar to (2.7) Lin and Lindsay (1997);

Takemura and Kuriki (1997):

P
(

χ̄

||Z||
≥ c

)
= P(Z ∈ Rt) =

n∑
j=1

pj(U)P
(
arccos(

√
Bj) ≤ ϕ

)
,

where Bj is a Beta random variable with parameters j/2, (n− j)/2 (with Bn = 1

with probability one). The restriction of Cone(U) to a convex set is not neces-

sary as it was for χ̄ - the only requirement is that t must be sufficiently large

(i.e. ϕ must be sufficiently small) so that the tube does not self-intersect. This

phenomenon is similar to what occurs when establishing the accuracy of (3.1)

for non-convex regions Cone(U). If Cone(U) is convex then t ≥ 0 suffices.

The next step is to put a tube about the rejection region Rt. Provided r is

sufficiently small, a (Euclidean) tube of radius r about Rt intersects the sphere

of radius ||z|| in a spherical tube of geodesic radius θ = arcsin(r/||z||) about Rt.

For fixed ||z|| sufficiently large, Rt is already a spherical tube about ||z||U , so

the (Euclidean) tube about Rt is a spherical tube about ||z||U of geodesic radius
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ϕ+ θ:

Tube(Rt, r) =

{
z : arccos

(
max
u∈U

u′z

||z||

)
≤ ϕ+ θ

}
.

The part of the tube near the origin with small ||z|| may contain a “wedge” of

the ball of radius r (see Figure 5 (a)) that is the only part of the whole tube

that contributes to the coefficient of rn. As pointed out in Section 2.4, TLR is

only defined for d ≤ D < n so we can ignore this. It therefore follows that it is

sufficient for us to work with

P (Z ∈ Tube(Rt, r)) =

n∑
j=1

pj(U)P
(
arccos(

√
Bj) ≤ ϕ+Θ

)
+O(rn), (3.11)

where Θ = arcsin(r/||Z||) is independent of Bj . The inequality in (3.11) is

arccos(
√

Bj)− ϕ ≤ Θ ⇐⇒
√

1−Bjc−
√

Bj

√
1− c2 ≤ r

||Z||
,

so that

P
(
arccos(

√
Bj) ≤ ϕ+Θ

)
= P

(
χj ≥ χn−j

√
t2

n
− r

√
1 +

t2

n

)
,

where χj and χn−j are the square roots of independent χ
2 random variables with

degrees of freedom indicated by their subscripts. Putting everything together,

the EC density that we seek is the coefficient of rd(2π)d/2/d! in

P (Z ∈ Tube(Rt, r)) =

n∑
j=1

pj(U)P

(
χj ≥ χn−j

√
t2

n
− r

√
1 +

t2

n

)
+O(rn).

Since this expression is linear in the tube probabilities, we can differentiate to

arrive at the result we are looking for.

4. Application

Friman et al. (2003) and Calhoun et al. (2004) proposed the cone and one-

sided F-statistics for the detection of functional magnetic resonance (fMRI) ac-

tivation in the presence of unknown delay in the hemodynamic response. We

illustrate our methods with a re-analysis of the fMRI data from a study on pain

perception that was used by Worsley and Taylor (2006). The data, fully described

in Worsley et al. (2002), consists of a time series of 3D fMRI images Z(s, τ) at

point s ∈ R3 in the brain at time τ . The subject received an alternating 9 second

painful then neutral heat stimulus to the right calf, interspersed with 9 seconds of

rest, repeated 10 times. The mean of the fMRI data is modeled as the indicator
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Figure 7. The hemodynamic response function h0 (left, dashed line) and the
two extremes h0 ± 2ḣ0 (left, solid lines) convolved with the on-off painful
heat stimulus g (right, dotted line) to give the “middle” of the cone u (right,
dashed line) and the two cone edges, the regressors x1,2 = (h0 ± 2ḣ0) ⋆ g
(right, solid lines). The on-off stimulus is repeated ten times, from 0 to 360
seconds.

for each stimulus (g(τ) = 1 if on, 0 if not) convolved with a known hemodynamic

response function (hrf) h0(τ) that delays and disperses the stimulus by about

5.5 seconds (see Figure 7). Taking g(τ) as just the painful heat stimulus, we add

this to a linear model for the fMRI data:

Z(s, τ) = (h0 ⋆ g)(τ)β(s) + σ(s)ϵ(s, τ),

where ϵ(s, τ) ∼ N(0, 1). Our main interest is to detect regions of the brain that

are ‘activated’ by the hot stimulus, that is, points s where β(s) > 0.

There is often some doubt about the 5.5 second delay of the hrf, so to allow

for unknown delay, we shift h0(τ) by an amount δ(s) and add δ(s) as a parameter

to the hrf. To keep the linear model, we then approximate the shifted hrf by a

Taylor series expansion in δ(s) Friston et al. (1998):

h(τ ; δ(s)) = h0(τ − δ(s)) ≈ h0(τ)− δ(s)ḣ0(τ).

The convolution of h(τ ; δ(s)) with the stimulus g(τ) is then roughly equivalent to

adding the convolution of −ḣ0(τ) with the stimulus as an extra regressor yielding

the linear model

Z(s, τ) = (h0 ⋆ g)(τ)β(s)− (ḣ0 ⋆ g)(τ)β(s)δ(s) + σ(s)ϵ(s, τ).

However the key ingredient in the model is that there is some structure to the

coefficients dictated by the physical nature of the regressors. It is strongly sus-

pected that β(s) > 0 and the shift is restricted to a range of known plausible

values δ(s) ∈ [∆1,∆2]. In our example, we take [∆1,∆2] = [−2, 2] seconds. It
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is easy to see that the restrictions specify a non-negative-coefficient regression

model

Z(s, τ) = x1(τ)β1(s) + x2(τ)β2(s) + σ(s)ϵi(s, τ), β1(s) ≥ 0, β2(s) ≥ 0,

with regressors xj = (h −∆j ḣ) ⋆ g, j = 1, 2, illustrated in Figure 7. The model

is sampled at n equal intervals over time and suppose for simplicity that the

resulting observations are independent. Replacing dependence on τ by vectors

in Rn, the linear model is the same as (2.2) with m = 2:

Z(s) = x1β1(s) + x2β2(s) + σ(s)ϵ(s), β1(s) ≥ 0, β2(s) ≥ 0, (4.1)

where ϵ(s) is a vector of n iid stationary Gaussian random fields. This model

(4.1) is a 2D (k = 2) cone alternative with cone angle

α = arccos

(
x′1x2

||x1|| · ||x2||

)
. (4.2)

The cone intrinsic volumes are L0,1(U) = 1, α, and the χ̄ weights are p1,2(U) =

1/2, α/(2π). The “middle” of the cone is u = (x1+x2)/2, appropriately normal-

ized, which corresponds to the unshifted model with δ = 0.

Our observations were temporally correlated and we added regressors to

allow for the neutral heat stimulus and a cubic polynomial in the scan time

to allow for drift, leaving n = 112 effectively independent observations sampled

every 3 seconds. The resulting α, found by whitening the regressors and removing

the effect of the added nuisance regressors before calculating (4.2), now depends

on s since the temporal correlation depends on s. However α was remarkably

constant across the brain, averaging at α = 1.06± 0.03 radians or 60.9± 1.7◦, so

we take it as fixed at its mean value.

The search region S is the entire brain. The error random fields ϵi(s) are not

isotropic, so we must use Lipschitz-Killing curvatures of S instead of intrinsic

volumes. The highest order term with d = D makes the largest contribution to

the P-value approximation (3.1), and fortunately there is a very simple unbiased

estimator for LD(S) Worsley et al. (1999); Taylor and Worsley (2007). At a

particular voxel, let E be the n × 1 vector of least-squares residuals from (4.1),

and let N = E/||E||. Let Q be the n×D matrix of their spatial nearest neighbor

differences: column d of Q is N(s2)−N(s1), where s1, s2 are neighbors on lattice

axis d. Then the estimator of LD(S) is

L̂D(S) =
∑

det(Q′Q)1/2,

where summation is taken over all voxels inside S Worsley et al. (1999); Taylor

and Worsley (2007). The result is L̂3(S) = 8086, which is unitless. The lower
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Table 1. Test statistics, P = 0.05 thresholds, and volumes of detected acti-
vation for the application in Figure 8, in order of increasing threshold. The
cone statistic detects the most activation.

Test statistic P = 0.05 threshold Detected volume (cc)
(a) T-statistic, T1 5.15 4.0
(b) Cone statistic, TLR ≈ TIN 5.44 4.3

(c) One-sided F-statistic,
√
2F+ 5.63 3.8

(d) F-statistic,
√
2F 5.80 2.9

order Lipschitz-Killing curvatures are much more difficult to estimate, but they

can be very accurately approximated by those of a ball with the same volume,

that is with radius r = 12.5, to give L̂0,1,2(S) = 1, 4πr, 2πr2.

We are ready to use (3.1) to get approximate P-values for the maximum

of our test statistic random fields. Since the degrees of freedom ν = 110 is

so large, the two cone statistics were almost identical, so we only show results

for the independently normalized cone statistic. The P = 0.05 thresholds are

shown in Table 1. Note that the values of the statistics are increasing since

the cone is getting larger, but the P = 0.05 thresholds are increasing as well to

compensate for this. The net result is that the volume of detected activation

due to the painful heat stimulus remains roughly the same. Interestingly, it is

the cone statistic with delays in the range [−2, 2] seconds that detects the most

activation. This activation is shown in Figure 8 (left primary somatosensory area

and left and right thalamus).

4.1. Software implementation

While this paper has focused on deriving EC densities using the GKF, readers

who wish to use the methodology may find that the formulae are rather tedious.

Fortunately, most of the EC densities described in this work have been imple-

mented in python, specifically the NIPY project Brett et al. (2008). The EC

densities can be found in the module nipy.algorithms.statistics.rft while

code to estimate the Lipschitz-Killing curvatures can be found in the module

nipy.algorithms.statistics.intvol.

4.2. Power

As to which test is the most powerful. Worsley and Taylor (2006) give a

power comparison of the four tests that shows that if the true delay is in the

range [−1, 1] seconds, then the usual T-statistic T1 is the most powerful, but

outside this range the cone statistic is the most powerful.
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(a) (b)

(c) (d)

Figure 8. Detecting activation in fMRI data. Each image shows the search
region (the brain, left front facing viewer) and a slice of the test statistic
(color coded) thresholded at P = 0.05 (red-pink blobs - see Table 1). The
test statistics, in order of increasing threshold, are (a) the T-statistic T1;
(b) the cone statistic TIN (indistinguishable from TLR in this case); (c) the
square root of twice the one-sided F-statistic

√
2F+; (d) the square root of

twice the F-statistic
√
2F .

Appendix. Intrinsic volume

The d-dimensional intrinsic volume of a set S is a generalization of its volume
to lower dimensional measures. The D-dimensional intrinsic volume of S ⊂
RD is its usual volume or Lebesgue measure, the (D − 1)-dimensional intrinsic
volume of S is half its surface area, and the 0-dimensional intrinsic volume is
the Euler characteristic of S. The simplest definition is implicit, identifying the
intrinsic volumes as coefficients in a certain polynomial. This definition comes
from the Steiner-Weyl volume of tubes formula that states that if S has no
concave ‘corners’, then for r small enough

|Tube(S, r)| =
D∑

d=0

ωD−dr
D−dLd(S), (A.1)
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where | · | denotes Lebesgue measure and ωd = πd/2/Γ(d/2 + 1) is the Lebesgue

measure of the unit ball in Rd.

If S is bounded by a smooth hypersurface, so that there is a unique normal

vector at each point on the boundary, then a more direct definition is as follows.

Let C(s) be the (D − 1) × (D − 1) inside curvature matrix at s ∈ ∂S, the

boundary of S. To compute the intrinsic volumes, we need the det-traces of a

square matrix: for a d × d symmetric matrix A, let detrj(A) denote the sum of

the determinants of all j × j principal minors of A, so that detrd(A) = det(A),

detr1(A) = tr(A), and we define detr0(A) = 1. Let ad = 2πd/2/Γ(d/2) be the

(d− 1)-dimensional Hausdorff (surface) measure of the unit (d− 1)-sphere in Rd.

For d = 0, . . . , D − 1, the d-dimensional intrinsic volume of S is

Ld(S) =
1

aD−d

∫
∂S

detrD−1−d{C(s)}ds,

and LD(S) = |S|, the Lebesgue measure of S. Note that L0(S) = φ(S) by the

Gauss-Bonnet Theorem, and LD−1(S) is half the surface area of S.

For the unit (k−1)-sphere, C = ±I(k−1)×(k−1) on the outside/inside of Ok−1,

so that

Ld(O
k−1) = 2

(
k − 1

d

)
ak

ak−d
=

2d+1πd/2Γ ((k + 1)/2)

d!Γ ((k + 1− d)/2)
(A.2)

if k − 1− d is even, and zero otherwise, d = 0, . . . , k − 1.
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Becker, S., Bobin, J. and Candès, E. J. (2009). NESTA: a fast and accurate first-order method

for sparse recovery. SIAM J. on Imaging Sciences 4, 1-39.

Birnbaum, A. (1954). Combining independent tests of significance. J. Amer. Statist. Assoc. 49,

559-574.

Brett, M., Taylor, J., Burns, C., Millman, J., Perez, F., Roche, A., Thirion, B. and D’Esposito,

M. (2008). NIPY: an open library and development framework for FMRI data analysis.

http://nipy.sourceforge.net/nipy/stable/index.html.

Calhoun, V., Stevens, M., Pearlson, G. and Kiehl, K. (2004). fMRI analysis with the general

linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic

derivative terms. NeuroImage 22, 252-257.

Cao, J. and Worsley, K. (1999a). The geometry of correlation fields with an application to

functional connectivity of the brain. Ann. Appl. Probab. 9, 1021-1057.

Cao, J. and Worsley, K. J. (1999b). The detection of local shape changes via the geometry of

Hotelling’s T 2 fields. Ann. Statist. 27, 925-942.

http://nipy.sourceforge.net/nipy/stable/index.html


DETECTING SPARSE CONE ALTERNATIVES 1655

Carbonell, F. and Worsley, K. (2007). The geometry of the Wilks’s λ random field. Ann. Inst.

Statist. Math.. Submitted.

Cohen, A. and Sackrowitz, H. B. (1993). Inadmissibility of studentized tests for normal order

restricted models. Ann. Statist. 21, 746-752.

Friedman, J. H., Hastie, T., Hofling, H. and Tibshirani, R. (2007). Pathwise coordinate opti-

mization. Ann. Appl. Statist. 1, 302-332.

Friman, O., Borga, M., Lundberg, P. and Knutsson, H. (2003). Adaptive analysis of fMRI data.

NeuroImage 19, 837-845.

Friston, K., Fletcher, P., Josephs, O., Holmes, A., Rugg, M. and Turner, R. (1998). Event-

related fMRI: Characterising differential responses. NeuroImage 7, 30-40.

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Fritn, C. D. and Frackowiak, R. S.

(1995). Statistical parametric maps in functional imaging a general linear approach. Human

Brain Mapping 2, 189-210.

Johansen, S. and Johnstone, I. (1990). Hotelling’s theorem on the volume of tubes: some illus-

trations in simultaneous inference and data analysis. Ann. Statist. 18, 652-684.

Johnstone, I. and Siegmund, D. (1989). On hotelling’s formula for the volume of tubes and

naiman’s inequality. Ann. Statist. 17, 184-194.

Knowles, M. and Siegmund, D. (1989). On Hotelling’s approach to testing for a nonlinear

parameter in a regression. Internat. Statist. Rev. 57, 205-220.

Lawson, C. L. and Hanson, R. J. (1995). Solving Least Squares Problems. Society for Industrial

and Applied Mathematics, Philadelphia.

Lin, Y. and Lindsay, B. G. (1997). Projections on cones, chi-bar squared distributions, and

Weyl’s formula. Statist. Probab. Lett. 32, 367-376.

Nardi, Y., Siegmund, D. O. and Yakir, B. (2008). The distribution of maxima of approximately

Gaussian random fields. Ann. Statist. 36, 1375-1403.

Perlman, M. D. and Wu, L. (1999). The Emperor’s new tests. Statist. Sci. 14, 355-381.

Pilla, R. S. (2006). Inference under convex cone alternatives for correlated data. E-print.

ArXiv:math/0506522v3.

Polzehl, J. and Tabelow, K. (2006). Analysing fMRI experiments with the fmri package in R.

Version 1.0 - A users guide. Weierstrass Institute for Applied Analysis and Stochastics

Technical Report, 10.

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference.

Wiley, New York.

Shafie, K., Sigal, B., Siegmund, D. O. and Worsley, K. J. (2003). Rotation space random fields

with an application to fMRI data. Ann. Statist. 31, 1732-1771.

Siegmund, D. O. and Worsley, K. J. (1995). Testing for a signal with unknown location and

scale in a stationary Gaussian random field. Ann. Statist. 23, 608-639.

Sun, J. (1993). Tail probabilities of the maxima of Gaussian random fields. Ann. Probab. 21,

34-71.

Sun, J. and Loader, C. R. (1994). Simultaneous confidence bands for linear regression and

smoothing. Ann. Statist. 22, 1328-1345.

Sun, J., Loader, C. R. and McCormick, W. P. (2000). Confidence bands in generalized linear

models. Ann. Statist. 28, 429-460.

Takemura, A. and Kuriki, S. (1997). Weights of χ2 distribution for smooth or piecewise smooth

cone alternatives. Ann. Statist. 25, 2368-2387.



1656 JONATHAN E. TAYLOR AND KEITH J. WORSLEY

Takemura, A. and Kuriki, S. (2002). On the equivalence of the tube and Euler characteristic

methods for the distribution of the maximum of Gaussian fields over piecewise smooth

domains. Ann. Appl. Probab. 12, 768-796.

Taylor, J. E. (2006). A Gaussian kinematic formula. Ann. Probab. 34, 122-158.

Taylor, J. E. and Adler, R. J. (2003). Euler characteristics for Gaussian fields on manifolds.

Ann. Probab. 31, 533-563.

Taylor, J. E., Takemura, A. and Adler, R. J. (2005). Validity of the expected Euler characteristic

heuristic. Ann. Probab. 33, 1362-1396.

Taylor, J. E. and Vadlamani, S. (2011). Random fields and the geometry of Wiener space. Ann.

Probab.. To appear., http://arxiv.org/abs/1105.3839.

Taylor, J. E. and Worsley, K. J. (2007). Detecting sparse signals in random fields, with an

application to brain mapping. J. Amer. Statist. Assoc. 102, 913-928.

Taylor, J. E. and Worsley, K. J. (2008). Random fields of multivariate test statistics, with

applications to shape analysis. Ann. Statist. 36, 1-27.

Worsley, K. J. (1994). Local maxima and the expected Euler characteristic of excursion sets of

χ2, F and t fields. Adv. Appl. Probab. 26, 13-42.

Worsley, K. J. (1995a). Boundary corrections for the expected Euler characteristic of excursion

sets of random fields, with an application to astrophysics. Adv. Appl. Probab. 27, 943-959.

Worsley, K. J. (1995b). Estimating the number of peaks in a random field using the hadwiger

characteristic of excursion sets, with applications to medical images. Ann. Statist. 23,

640-669.

Worsley, K. J. (2001). Testing for signals with unknown location and scale in a χ2 random field,

with an application to fMRI. Adv. Appl. Probab. 33, 773-793.

Worsley, K., Andermann, M., Koulis, T., MacDonald, D. and Evans, A. (1999). Detecting

changes in nonisotropic images. Human Brain Mapping 8, 98-101.

Worsley, K., Liao, C., Aston, J., Petre, V., Duncan, G., Morales, F. and Evans, A. (2002). A

general statistical analysis for fMRI data. NeuroImage 15, 1-15.

Worsley, K. and Taylor, J. (2006). Detecting fMRI activation allowing for unknown latency of

the hemodynamic response. NeuroImage 29, 649-654.

Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J. and Evans, A. C. (1996).

A unified statistical approach for determining significant signals in images of cerebral

activation. Human Brain Mapping 4, 58-73.

Department of Statistics, Sequoia Hall, 390 Serra Mall, Stanford University, Stanford, CA

94305-4065, USA.

E-mail: jonathan.taylor@stanford.edu

Department of Mathematics and Statistics, McGill University, 805 ouest, rue Sherbrooke, Mon-

treal, Quebec, Canada H3A 2K6.

E-mail: keith.worsley@mcgill.ca

(Received July 2012; accepted March 2013)

http://arxiv.org/abs/1105.3839
jonathan.taylor@stanford.edu
keith.worsley@mcgill.ca

	1. Introduction
	2. The Test Statistics
	2.1. Definitions of the test statistics
	2.2. Power and maximum likelihood
	2.3. Mixture representation
	2.4. Dimensionality

	3. P-value of the Maximum of a Random Field
	3.1. The Gaussian kinematic formula
	3.2. The barchi random field
	3.3. The F- and T-statistic random fields
	3.4. The independently normalized cone random field
	3.5. The likelihood ratio cone random field

	4. Application
	4.1. Software implementation
	4.2. Power

	Appendix. Intrinsic volume

