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Abstract: The voxel-wise general linear model (GLM) approach has arguably be-

come the dominant way to analyze functional magnetic resonance imaging (fMRI)

data. The approach relies on specifying predicted patterns of signal change a priori.

In this work we develop methods for detecting mis-modeling in the GLM frame-
work, and derive mathematical expressions for quantifying the effects this has on

bias and power. We show that even a relatively small amount of mis-modeling

can result in severe power loss, and can inflate the false positive rate beyond the

nominal value. Due to the massive amount of data, examining the appropriateness
of the model is challenging in fMRI. We propose a simple procedure involving the

residuals that can be used to identify possible voxels or regions of the brain where

model misfit may be present. The key idea is that if there is model misfit − such

as a misspecification of onset, duration, or response shape − residuals will be sys-
tematically larger in mis-modeled segments of the time series. By looking at the

weighted sum of consecutive residuals using a moving window, our method can pick

out regions of a residual time series in which the residuals are consistently larger

than expected by chance, while ignoring spurious large residuals that are expected
based on the noise distribution. It may also be used more generally for identify-

ing artifacts in fMRI time courses. We investigate the effectiveness of this method

using a simulation study, and by applying it to an fMRI dataset. We develop a

method and accompanying software for creating whole-brain maps showing power

loss and bias due to mis-modeling. Such maps could be a valuable tool in assessing
violations of statistical assumptions and informing about differences in the shape

and timing of the hemodynamic response function (HRF) across the brain.

Key words and phrases: fMRI, GLM, model diagnosis, model misfit, power, residual
analysis.

1. Introduction

The voxel-wise general linear model (GLM) approach (Friston, Penny, Phi-

llips, Kiebel, Hinton and Ashburner (2002) and Worsley and Friston (1995)) has

arguably become the dominant way to analyze functional magnetic resonance

imaging (fMRI) data. It is particularly well-suited for testing how much of the

variability in an fMRI time series can be explained by a set of a priori specified

regressors. While appealing because of its simplicity and its efficiency in ana-

lyzing massive data sets, the GLM approach is not without problems. Model
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misspecification can occur for a number of reasons: incorrect design of the on-

set or width of the underlying neuronal activity, or incorrect specification of the

function describing the hemodynamic response function (HRF) that gives rise to

the observed signal. Such effects can be counterintuitive and difficult to prevent.

For example, mis-modeling the response to one condition could, depending on the

specifics of the design, result in a spurious difference in activation between two

other conditions. Incorrect specification can lead to significant loss in power, and

even minor mis-modeling can have severe effects on the analysis. Figure 1 shows

an example of substantial loss in power due to seemingly minor misspecification

of the onset time and width (either neural or vascular).
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Figure 1. (A-B) Results of a simulation study. The solid and dashed lines
in (A) and (B) show the modeled and true activation respectively. The

difference between truth and model (delta) was allowed to vary from 0 to 5
seconds. The true activation paradigm was repeated 4 times and convolved
with a canonical HRF. Noise was then added corresponding to a Cohen d

of 0.5. The GLM was fit using the modeled activation pattern (solid lines)
convolved with the canonical HRF. This procedure was repeated 1,000 times

for both delayed onset (A) and prolonged width (B). Receiver operating
characteristic (ROC) curves in the bottom panels show the false positive

rate (FPR) vs. the true positive rate (TPR) across statistical significance
thresholds. The curves show a substantial decrease in power as a function

of model misspecification.
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Due to the massive amount of data involved in a standard fMRI experiment,

examining the appropriateness of the model is challenging, and standard graph-

ical approaches for assessing statistical assumptions (Neter, Kutner, Wasserman

and Nachtsheim (1996)) are not viable options. In most fMRI experiments, the

data consists of time series data sampled over M (e.g., 200−1,500) time points

at Nx ×Ny ×Nz (e.g., 64× 64× 30) locations, or voxels, in the brain. Each time

series consists of samples of blood-oxygen-level dependent (BOLD) or cerebral

perfusion responses to the sequence of stimuli presented in the experiment. In

analysis with the massively univariate voxel-wise GLM, one performs a separate

regression analysis on the time series at every voxel in the brain. Using residuals

to check model fit is common in many statistical applications. However, for ap-

plications in fMRI, examining the residuals that are the result of Nx × Ny × Nz

regressions, each with M data points, is challenging. Recently, suggestions have

been made regarding how best to perform diagnostics in the neuroimaging set-

ting (Luo and Nichols (2003)). That work used standard diagnostic tools for

linear models (e.g., Durbin-Watson, Shapiro-Wilks) to develop new methods of

performing model diagnosis in the massive univariate setting. It also provided

tools for summarizing the results using a series of dynamic graphical tools. In

this work, we focus our attention on using the residuals to detect model misspec-

ification. The methods we develop here provide spatio-temporal summaries of

model misfit and artifactual outliers, as well as tools for improving the design of

the model.

Specifically, we develop a procedure for identifying segments of time series

data that are outliers. The key idea is that artifacts lead to blocks of large

residuals. By looking at the weighted sum of consecutive residuals using a moving

window, our method can pick out regions where the residuals are consistently

larger while ignoring spurious large residuals. We also extend the method to

construct spatial maps of model misfit, bias, and loss in power across the brain.

This will be useful for identifying regions of the brain where the statistical analysis

may be inaccurate due to model misspecification.

Where model misfit is present, the distribution of large residuals over time

may be systematically related to the experimental paradigm; we develop meth-

ods for analyzing the temporal patterns of residuals in order to study whether

the misspecification is correlated to it. This tool should be useful for deter-

mining whether the model – and the hemodynamic response model in par-

ticular – results in substantial loss of power or other more pernicious prob-

lems in some brain areas. Although more sophisticated modeling approaches

are available (Ciuciu, Poline, Marrelec, Idier, Pallier and Benali (2003), Wool-

rich, Behrens and Smith (2004) and Lindquist and Wager (2007a)), the dom-

inant hemodynamic model among neuroscientists, psychologists, and medical
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researchers is a gamma or double-gamma function of fixed shape (i.e., invariant

across the brain). This approach has persisted because of its relative simplicity of

implementation and inference, and its high power in some tasks and brain regions.

However, the evoked response has been shown to vary substantially across the

brain (Buckner (2003), Wager, Hernandez, Jonides and Lindquist (2007a) and

Christoff, Prabhakaran, Dorfman, Zhao, Kroger, Holyoak and Gabrieli (2001)),

and methods for identifying mis-modeling and quantifying loss in power might

lead to more informed model choices. Our methods for calculating power can be

used to evaluate the robustness of experimental designs and models to variations

in the HRF across the brain. Currently, there are no widely available tools for

use by brain scientists.

In Section 2, we describe the GLM approach typically used for statistical

analysis of fMRI data and derive expressions for the effects of mis-modeling on

bias and power. In Section 3, we develop the residual analysis methods for detect-

ing design misspecification. In Section 4, we present results of a simulation study

showing the effects of various types of mis-modeling on power and inferential va-

lidity, and illustrate the use of our methods to detect artifacts and mis-modeling.

In Section 5 we apply the procedure to a dataset.

2. The Effects of Mis-modeling in the GLM Approach

In this section we provide a brief overview of the GLM procedure as applied

to fMRI analysis. We also derive a theoretical framework for quantifying the

effects of mis-modeling on bias and statistical power.

2.1. The GLM approach towards analyzing fMRI data

In the General Linear Model (GLM) approach, the time series, Y, is mod-

eled as a linear combination of a number of different signal components. These

components include the blood oxygenation level-dependent (BOLD) response to

psychological events specified a priori, drift components, and other nuisance pa-

rameters, which are summarized in a design matrix X . The data can then be

written as,

Y = Xβ + ǫ where ǫ ∼ N(0,Vσ2). (2.1)

Here V is typically taken to be the covariance matrix of some autocorrelated pro-

cess, e.g., ARMA(1,1) or AR(p) (Bullmore, Brammer, Williams, Rabe-Hesketh,

Janot, David, Mellers, Howard and Sham (1996) and Purdon, Solo, Weissko and

Brown (2001)).

Typically one is interested in testing for an effect cT β, where c is a so-called

contrast vector. The contrast vector could be used to estimate signal magnitudes

in response to a single type of event (c = [1 0 · · · 0]), an average over several
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effects (c = [1 1 · · · 1]), or the difference in magnitude between two types of

events (c = [1 − 1 0 · · · ]). For example, one may be interested in identifying

reliable brain responses to brief periods of physical pain (a single, repeated type

of event) or in comparing the effects of two drugs on brain signals induced by

painful stimulation (a difference between two types of events, pain with drug A

and pain with drug B). Hypothesis testing is performed in the usual manner by

testing individual parameters using a t-test, and subsets of parameters using a

partial F -test. Since the covariance matrix has to be estimated, a Satterthwaite

approximation is used to calculate the effective degrees of freedom for the test

statistics.

2.2. Bias and power-loss due to mis-modeling

In most analyses the regressor corresponding to the BOLD signal is defined

to be the convolution of a boxcar function, corresponding to the experimental de-

sign, with an assumed hemodynamic response function (HRF). Often a standard

canonical HRF (Friston et al. (2002)), invariant across the brain, is used. How-

ever, the exact shape of the HRF is known to differ across individuals and brain

locations (Aguirre, Zarahn and D’Esposito (1998), Buckner (2003), Wager et al.

(2007a) and Christoff et al. (2001)), and thus the canonical HRF is most likely

the wrong model for many brain regions.

In addition, for certain experimental conditions the exact onset and width

of activation is not always known (Lindquist and Wager (2007b)). For example,

in task-switching experiments that compare trials in which attention is shifted

among targets with trials in which attention is maintained (Wager, Vazquez,

Hernandez and Noll (2005)), onsets for neural events related to switch trials are

typically modeled as beginning when the switch trial begins. However, electro-

physiological evidence indicates that the shift operation may not begin until 400

ms later, depending on the task; thus, onsets are typically misspecified. Without

methods for quantitative analysis, it is unclear how much power and validity

are compromised by misspecification of onsets. Similar issues arise for speci-

fication of neural activity duration and the width of the fMRI response to be

modeled. It is typical in memory literature to compare the effects of remem-

bered vs. forgotten items and assess differences in the hippocampus and medial

temporal lobe (Staresina and Davachi (2006)). The neural response for these

items is, as with many other tasks, assumed to be either a nearly instantaneous

response to the trial, with hysteresis in the observed signal due to the hemo-

dynamic lag, or a linear response over a short epoch. However, data from our

lab (Summerfield, Greene, Wager, Egner and Hirsch (2006)) suggest that medial

temporal responses peak much later than predicted responses from either of these

models, at ∼ 12 s even for a 3-s stimulus presentation. The neural activity may
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persist for an undetermined time beyond the end of the stimulus presentation,

and indeed such persistent activity may play an important role in memory for-

mation. In these examples, tools for diagnosing how poorly the canonical model

fit in these regions, and how much power could have been gained by using a more

flexible model, would be very desirable.

Here, we give theoretical results showing the impact that mis-modeling can

have on the type I and type II error of the tests performed in the GLM framework.

Let Y be the fMRI time course of length M from a single voxel. Suppose further

that E(Y ) = Xβ and Var(Y ) = Vσ2, so that (2.1) would represent the true

model for the GLM. However, suppose we erroneously use the design matrix X,

where X = X + Γ and Γ 6= 0. Here Γ represents the discrepancy between the

correct and modeled design matrix. With an incorrect model the estimates of β

may be biased and have an inflated variance. Below we work out the bias of the

estimates as well as the distribution of the residuals when we use an incorrect

model in the regression.

The estimate of β using the incorrect model X is β̂∗ = (XTV−1X)−1XT

V−1Y , with expected value

E(β̂∗) = (XT V−1X)−1XTV−1Xβ + (XTV−1X)−1XTV−1Γβ

The first term on the right hand side is β so that the bias is (XTV−1X)−1XTV−1

Γβ. Clearly, the bias in the estimate depends on the actual value of β as well

as the amount of mis-modeling. When Γ = 0, i.e. there is no mis-modeling, the

bias is equal to zero, as expected.

The observed residuals under the incorrect model, ǫ∗ = [I −X(XTV−1X)−1

XTV−1]Y ≡ RY , where R is the residual inducing matrix, are normally dis-

tributed with mean and variance

E(ǫ∗) = RΓβ, Var(ǫ∗) = RVσ2. (2.2)

The estimate of σ2 is σ̂2
∗

= ǫT
∗
ǫ∗/tr(RV). Under the correct model, Γ ≡ 0

and tr(RV)σ̂2/σ2 follows a χ2 distribution with ν degrees of freedom, with ν =

2E(ǫT
∗
ǫ∗)/Var(ǫT

∗
ǫ∗), determined using the Satterthwaite approximation. When

there is mis-modeling, ǫ∗ does not have zero mean and tr(RV)σ̂2
∗
/σ2 has a on-

central χ2 distribution. We can estimate ν and the non-centrality parameter δ

of this distribution using the moment matching approach of the Satterthwaite

approximation. In particular, we find that

δ = βTΓTRΓβ (2.3)

and, if δ is small, ν approximately equal to the Satterthwaite degrees of freedom.

Details are left to the reader.



DETECTING MIS-MODELING IN fMRI 1427

Often fMRI data is pre-whitened prior to analysis. Then the commonly used

variance estimate is

σ̂2
∗

=
1

n − p
ǫT
∗
V−1ǫ∗.

Under the correct model, and the added assumption that V is known, (n −
p)σ̂2/σ2 is χ2 with n−p degrees of freedom. However, in most practical situations

the covariance matrix is unknown, necessitating the use of the Satterthwaite

approximation as outlined above. Note that when there is mis-modeling present,

ǫ∗ has a non-zero mean and the estimator has a non-central χ2 distribution with

non-centrality parameter

δ = βT ΓTRV−1RΓβ. (2.4)

In fMRI analyses, t or F values from the regressions of all the voxels of a brain

image are computed and a map of these values, called a Statistical Parametric

Map, is constructed and used to identify regions of the brain that are activated

by the stimulus used in the experiment. If the model used in the regressions

are incorrect, the resulting Statistical Parametric Map may not be optimal in

detecting regions of activation.

In the simplest case, when testing the amplitude of a single regressor and

mis-modeling only occurs in that particular regressor, under the null hypothesis

of no activation, β = 0, the mean of ǫ∗ is zero. Thus the type I errors of the t tests

are correct even when an incorrect model is used. However, power calculations

require considering the amount of mis-modeling.

When there is mis-modeling in multiple regressors, however, false positive

rates may not be adequately controlled at the significance level α. For example,

consider a test of the amplitude of a single regressor when mis-modeling has

occurred on another component of the model. In this case Eǫ∗ 6= 0 under H0

and the mis-modeling will therefore have effects on both the type I and type

II error. The same problem occurs when testing the difference in amplitude

between two regressors if only one of them is mis-modeled. Again, the mean

of ǫ∗ will be non-zero even under the null hypothesis of cT β = 0. In either

of these situations the t values computed have a distribution that is the ratio

of a normal random variable with non-zero mean and a non-central χ2 random

variable, called the doubly non-central t-distribution (Bulgren (1971)). Similarly

the doubly non-central F distribution (Tang (1938) and Weibull (1953)) is of

interest when conducting F -tests.

2.3. The effect of mis-modeling on the power - a numerical study

Here we present, briefly, findings of a numerical study on the loss in power

when there is mis-modeling, showing the need to check for it. We fixed β to be 1
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and considered specific forms of the correct and applied design matrices, X and

X. We took V to be the identity matrix, so that we assumed white noise with

variance equal to 1. We then compared the power in the cases where X and X

were used as the fitted model. This was done by computing the parameter values

of the noncentral and doubly noncentral t distributions, given β,X and X, and

then simulating 10,000 random variates. Then, for each critical value C from 1

to 3, we computed the proportion of simulated variates that were greater than

C.

The specific models used for this study are shown in Figure 4, and are de-

scribed in Section 4. The important point in this section concerns Figure 2, which

essentially shows the amount of power loss due to model misspecification. The

actual amount of power loss depends on the type and degree of misfit, and ranged

from 20% to as much as 80%, at 0.013 significance level, with the scenarios we

considered. The resulting statistical parametric maps will thus not be optimal

in identifying regions of activation. Our results clearly show that it is important

to perform model checking and to identify if model misfit is present.
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Figure 2. This figure shows the results of a numerical study on the effect

of mis-modeling on the power of rejecting the null hypothesis of β = 0.

With assumed values of the effect β, covariance matrix V , and correct and

incorrect models X and X , the expressions in Section 2.2 were used to obtain

values of the parameters of the test distributions. The plot shows the ratio

of the power, as a function of the critical t value.
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3. Methods

It is clear from the previous section that correctly modeling the data in the

GLM framework is crucial. Even minor modeling errors can severely impact

the efficiency and validity of the ensuing statistical analysis. Here, we propose

a simple procedure to identify possible voxels, or regions of the brain, where

model misfit may be present. The key idea is that if there is model misfit −
such as misspecification of onset, duration, or response shape − residuals will be

systematically larger in mis-modeled segments of the time series. By looking at

the weighted sum of consecutive residuals using a moving window, our method

can pick out regions where the residuals are consistently larger than expected by

chance, while ignoring spurious large residuals due to the noise distribution.

Suppose ri, i = 1, . . . ,M are the de-noised residuals obtained from a GLM

analysis of the time series from one voxel. Take a window with bandwidth w,

where preferably 2w << M , and let

Yw(t) =
w∑

i=−w

K(i)rt+i, (3.1)

where K is a kernel such that
∑w

j=−w K(|j|)2 = 1. This last condition ensures

that Yw(·) has the same variance as the residuals. Under the null hypothesis that

the model is correct, E(rj) = 0, so for any t we have E(Yw(t)) = 0. For any

fixed window bandwidth w and location t, Yw(t) is a statistic for testing whether

the mean of residuals in the window is 0. Thus Sw = maxt Yw(t) measures the

strongest evidence against the null hypothesis. The value of t that yields this

maximum indicates the most likely location of mis-modeling within the time

course.

If the kernel K is constant over the window, the uniform kernel, then Yw

is related to the likelihood ratio test statistic. Using this kernel may yield the

highest power in detecting model misfit. The significance of the identified mis-

modeling can be obtained via Monte Carlo simulation. Specifically, the same

statistic is computed for, say, 999 simulated sets of residuals, yielding reference

values S∗

w,j, j = 1, . . . , 999. The rank Sw relative to the reference values S∗

w,j

provides an estimate of the true p value, with small p values suggesting model

misfit. Note that, because these p values are based on the distribution of the

maximum statistic, they are intrinsically controlled for family-wise error. On a

Pentium 4 3.8 GHz computer, computing the reference values took 30 seconds.

Note that if the choice of kernel K and bandwidth w have been made prior to

the experiment, the reference values can be computed beforehand. Then, during

the actual analysis, only the comparison of Sw to the reference values needs to

be done.
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Since the Monte Carlo method for determining significance may be compu-

tationally intensive in certain situations, it could be desirable to use alternative

methods that can quickly provide an estimate of the p-value. One way to do this

is to use a Gaussian kernel in (3.1). Then the resulting Yw’s will form a Gaussian

random process and the desired p-value can be estimated using results that have

been derived for the maxima of Gaussian processes. In fMRI the expected Euler

characteristic has been employed with great success to identify threshold values

(Worsley, Marrett, Neelin and Evans (1992) and Worsley, Marrett, Neelin, Van-

dal, Friston and Evans (1996b)) in Gaussian random fields, to correct for multiple

testing across a large number of voxels. Here we focus on correction for searches

over time. Using a result in Worsley et al. (1996b), the estimated p-value is

P (Sw ≥ t) ≈ ρ0(t) + τρ1(t),

where τ = M/w and ρi(t) are Euler characteristic densities in the ith dimension

depending on the threshold t. Expressions for ρi(t) can be found in Worsley et al.

(1996b).

Various other approximations for the maxima of Gaussian processes and

Gaussian random fields are also available. These include Hotelling’s volume-of-

tube formula (Hotelling (1939)), the Poisson clumping heuristic (Aldous (1989))

and the Sidak and Slepian inequalities (Slepian (1962) and Sidak (1967, 1968)).

We mention these methods, but do not pursue them further here, as Adler (2000)

suggests that using the Euler characteristic yields as good an approximation as

any of the other methods. In summary, using the Gaussian kernel in (3.1), to-

gether with the expected Euler characteristic, to estimate significance can provide

a substantial increase in speed, at the possible expense of some power compared

with the Monte Carlo approach.

It should be noted that in the neuroimaging setting, the procedure for es-

timating the p-value of Sw will typically be repeated over a large number of

different voxels. In this situation the need to correct the p-values for searches

over space, as well as over time, arises. This can easily be done using equivalent

results regarding the expected Euler characteristic for a 4D Gaussian random

field (three spatial directions and one temporal direction). Here we assume that

M is the maximum value of Sw across all voxels in the search volume V . The

p-value that controls the family-wise error rate over all voxels is then

P (M ≥ t) ≈
3∑

d=0

Rd(V )
(
τρd+1(t) + ρd(t)

)
,

where Rd(V ) represents the resel (resolution elements) count that depends on

certain d-dimensional features of the search volume. Again, ρi(t) represent the

Euler characteristic densities described above.
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Regardless of the kernel used, clearly the power of the method for fixed w

depends on both the type and amount of misspecification. For example, if the

(incorrect) fitted model differs in signal width from the correct model, using a

value of w that matches the difference in width will yield the higher power. How-

ever, it is often not clear what the amount of misspecification is. A variation

of the kernel-weighted residual sum approach is to use a range of bandwidths

and compute the statistic S = maxw∈W Sw, where W is a set of consecutive

integer values. The p-value of this statistic can be obtained using Monte Carlo

procedures or the expected Euler characteristic if the Gaussian kernel is used.

When a uniform kernel is used, the procedure is equivalent to using a scan statis-

tic (Naus (1965) and Kulldorff (1997)). With the Gaussian kernel, the method

for estimating the p-value given above needs to account for search over different

bandwidths. Results for the Euler characteristic densities required in this case

can be found in Worsley, Marrett, Neelin and Evans (1996a). In Section 4 we

compare the varying and fixed bandwidth approaches.

Once model misspecification has been identified, there are two additional is-

sues of interest. The first is whether the mis-modeling is repeating systematically

with the experimental stimulus. This would indicate either a systematic error

in the timing of the neuronal stimulus or an error in the assumed shape of the

HRF. The other issue is determining the amount of bias and power loss caused

by the misspecification. Generating bias and power loss maps would be useful

for identifying regions of the brain where the usual GLM analysis may not be

accurate. These are described in the next two sections.

3.1. Detecting systematic mis-modeling

When evidence of significant mis-modeling is detected in a certain voxel,

the next step is to determine if the mis-modeling repeats systematically for each

repetition of the experimental stimulus. If this is the case we expect clusters of

residuals to be unusually large in a way that correlates with the experimental

paradigm.

A simple approach toward detecting the systematic reoccurrence of clusters

of large residuals is to fit a linear model using residual analysis results and a

finite impulse response (FIR) basis set. This model contains one free parameter

for every time-point following stimulation in every cognitive event type modeled

(Glover (1999), Goutte, Nielsen and Hansen (2000) and Ollinger, Shulman and

Corbetta (2001)). This allows us to estimate the shape of the stimulus dependent

mis-modeling. As the FIR basis set makes minimal assumptions about the shape

of the mis-modeling, this provides a computationally simple, but effective, indi-

cation of how the model error correlates with the experimental paradigm. The
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Figure 3. Plots of coefficients obtained from regressing the averaged residuals

from a fitted model on the FIR basis set. The dashed and solid curves are,

respectively, the true hemodynamic response function (HRF) and the HRF

used in the model. The significant coefficients identify the locations where

the two HRFs differ. The dotted lines indicate critical values for the 0.05
significance level, accounting for multiple comparisons with the Bonferonni

method.

model can then be modified by changing the shape of the HRF or, alternatively,

by changing the estimates of the onset or the neuronal activity duration.

Here, we use a numerical study to illustrate the effectiveness of using a FIR

basis set to identify locations of systematic mis-modeling. We considered the

fixed experimental paradigm x of four identical stimuli of width 45, separated by

intervals of 100. With a particular HRF (SPMs double gamma function) taken

to be the truth, we simulated a dataset by convolving this HRF with x, adding

a constant and normally distributed white noise. This data was then regressed

on a model based on x but convolved with a different HRF. We considered two

cases. In the first case, the true HRF had a lag relative to the modeled HRF,

while in the second case, the true HRF was wider than the modeled HRF. The

true and modeled HRFs are shown in Figure 3. We also considered two values

for the variance of the noise, 0.01 and 0.6.

The residuals from the regression were averaged over a window of bandwidth
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2 at each time point, ignoring the time points at the ends. The averaged resid-

uals were then regressed against the FIR basis set. Our results are shown in

Figure 3. The figure shows plots of the coefficients, indicated by points on the

plots. The true and modeled HRFs are represented by the dashed and solid lines,

respectively. The critical values for the coefficients are indicated by the dotted

lines. These critical values are for the 0.05 significance level, after accounting for

multiple comparisons using the Bonferonni correction method.

The top two plots, for the cases when the noise variance is low, clearly show

that this method of using the FIR basis set can identify the locations where the

modeled and true HRFs differ. The bottom two plots show the effects of increased

noise variance. Although the coefficients are now more scattered, especially at

the end, the trough and peak showing the locations of the error of the modeled

HRF are still evident.

We note that there are methods that are robust against errors in onset or

width of the assumed HRF. For example, first and second time derivatives of the

assumed HRF can be included as regressors (Liao, Worsley, Poline, Duncan and

Evans (2002), Friman, Borga, Lundberg and Knutsson (2003), Calhoun, Stevens,

Pearlson and Kiehl (2004) and Worsley and Taylor (2006)). These methods are

useful tools for statistical analysis. The procedure described here deal with the

issues from a different angle and thus are complementary to these other methods.

Specifically, instead of accommodating possible errors in the HRFs, our method

is useful for identifying the kind of error that is present. Our hope is that this

will allow scientists to improve on the HRF that is used and provide guidance in

determining whether a more flexible model is appropriate.

3.2. Bias and Power-loss maps

Once significant mis-modeling is detected in a particular voxel, it is of interest

to determine the amount of bias and power loss that can be directly attributed

to this misspecification. In this section we discuss methods for detecting regions

of the brain where there is an enhanced risk of bias and power loss. These

results will help us evaluate the validity and accuracy of the statistical maps that

we obtain through the GLM analysis. To obtain these results, we tie together

the theoretical results derived in Section 2 with the empirical results obtained

through application of the residual analysis method described in Section 3.

In Section 2 we found that the bias due to mis-modeling is (XTV−1X)−1

XTV−1Γβ. Hence, to estimate the bias we first need estimates of Γ and β.

Rather than estimate these parameters individually, a joint estimate of Γβ is

given by (2.2) and assuming that the mean of the residuals is well estimated by

the observed smoothed residuals, E(ǫw) = Yw, where Yw = (Yw(1), . . . Yw(N)).
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Putting these results together we obtain Γ̂β = R−1Yw. Using the plug-in-

principle we can obtain an estimate of the bias. Furthermore we can use this

estimate to calculate the power loss in the voxel due to misspecification. This

is done by calculating the power to detect significant activation both in the

situation that mis-modeling is present, and when it is absent, i.e. when Γ = 0.

The difference in these measures indicates the loss in power that is attributable to

mis-modeling. Here the non-centrality parameter shown in (2.3) can be written

as δ̂ = YT
wR−1Yw.

Once the bias and power loss have been calculated for each voxel, they can

be summarized in a map and presented together with the traditional statisti-

cal parametric maps included in the output of an experiment. If one is solely

interested in determining which regions are affected by power loss rather than

obtaining exact measures of the power loss, one can construct an image of the

non-centrality parameter derived in (2.3). If this parameter is 0 then there is

no power loss due to mis-modeling. However, if this parameter is significantly

greater than zero the difference in power can potentially be significant. As the

loss in power is proportional to the size of the parameter, one can simply create a

map of the non-centrality parameter across the brain in order to provide a way to

identify hot spots where there appears to be a loss in power due to mis-modeling.

We construct bias and power loss maps in our data example in Section 5.

4. Simulation Study of the Residual Analysis Procedure

We performed an extensive simulation study to explore the performance of

the residual analysis method described in Section 3. We considered five cases

of model misspecification. For Cases 1 to 4, the correct model was based on a

time series x0 of length M = 225 with two signals to represent the true response.

The incorrect model for Case 1 (x1) contained a missing signal. In Case 2, the

incorrect model had signals of incorrect width, specifically, 5, 10, 15 and 20 units

narrower, while for Case 3 the signals had time lags of 5, 10, 15 and 20 (x2a to

x2d, and x3a to x3d, respectively). In Case 4, the time lags were different for

the two signals (models x4a, x4b and x4c with lags 10 and 5, 20 and 5, and 20

and 10, respectively). Lastly, in case 5, the correct model had one signal with

greater height (x5) while the incorrect model was x0, with two signals of the

same (smaller) height. This is an example of unmodeled parameter modulation.

These models are shown in Figure 4. We also ran an additional simulation with

the true and fitted models both equal to x0.

Each experiment was run 1,000 times. For each run, the simulated data,

y, was obtained by first convolving the correct model with an HRF, and then

adding a constant and normally distributed noise of variance σ2 to the con-

volved function. Here y was regressed against the chosen model, giving residuals
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Figure 4. These models, convolved with the HRF function, are used in

the simulation study of the performance of the residual analysis method

of identifying model misfit. They are also used in the numerical study of

Section 2.3, examining the effect on power of model misspecification.

r1, . . . , r225. The residuals were then standardized to have the same variance

by dividing residual ri by (1 − hii)σ̂ where hii was the i-th diagonal element of

the hat matrix of the regression. The statistic Sw was then computed and the

significance of the statistic estimated. We considered two kernels, uniform and

Gaussian, with bandwidths w = 2 and 7. For the Gaussian kernel, we took the

bandwidth to be three times the standard deviation. We used two versions of the

Gaussian kernel: one (Gauss 1) with variance equal to that of the uniform kernel,

so that the bandwidth is
√

3w, and the other with standard deviation equal to

w/3 (Gauss 2). To study the effect of signal to noise ratio, we also considered a

range of values of σ2, specifically, σ2 = 0.3, 0.6, 1, 2 and 4.

For each simulated run, we estimated the p-value using Monte Carlo sim-

ulation and, with the Gaussian kernels, using the expected Euler characteristic

as well. Thus for each chosen model we had 1,000 p-values corresponding to the

1,000 runs; we examined the average of these p values, as well as the proportion
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of these p values that were 0.05 or less.

4.1. Simulation results

The results are summarized in Table 1 that shows, for each fitted (incorrect)

model and value of σ2, the median p-value (over 1,000 runs) of the test. The

columns labeled “MC” and “Euler” correspond to p-values found using Monte

Carlo and the expected Euler characteristic, respectively.

We find that, if the correct model is used, the median p-value (not shown) is

close to 0.5. With an incorrect model, we find that the p-value is very small when

σ2 is small, showing that model misfit is detected with strong significance. As

expected, the median p-values generally increase as σ2 is increased. The strength

of the detection varies with the kind and amount of model misfit. When the

model misfit is due to lags or differences in signal width, the greater the lag or

width difference, the greater the significance of the misfit detection. We also

performed a set of simulations without convolving x0 with the HRF. We do

not present these results, but note that in this case the median p-values are

consistently smaller than the values in Table 1 when there is model misfit. The

Table 1. Table showing the median p-value over 1,000 independent runs

of the model misfit test, for Cases 1 to 5 of model misfit (see Figure 4),

and for σ2 = 0.6 and 2. The p-values are obtained with an approximation

using the expected Euler characteristic (Euler) and with Monte Carlo (MC)
simulation. The p-values obtained when an incorrect model is used should

be low, indicating detection of mis-modeling.

w = 2 Uniform Gauss 1 Gauss 2 w = 7 Uniform Gauss 1 Gauss 2

Case σ
2 MC MC Euler MC Euler Case σ

2 MC MC Euler MC Euler

1 0.6 0.06 0.13 0.14 0.26 0.46 1 0.6 0.004 0.004 0.004 0.02 0.02

2 0.31 0.34 0.47 0.43 0.78 2 0.16 0.17 0.17 0.22 0.25

2a 0.6 0.39 0.40 0.58 0.49 0.91 2a 0.6 0.38 0.38 0.42 0.33 0.40

2 0.50 0.49 0.76 0.53 1.03 2 0.58 0.53 0.71 0.53 0.73

2d 0.6 0.10 0.16 0.18 0.28 0.50 2d 0.6 0.01 0.01 0.01 0.04 0.04

2 0.33 0.36 0.50 0.44 0.80 2 0.17 0.20 0.20 0.26 0.30

3a 0.6 0.29 0.33 0.46 0.44 0.80 3a 0.6 0.41 0.23 0.23 0.24 0.27

2 0.46 0.46 0.68 0.52 0.97 2 0.51 0.49 0.61 0.47 0.60

3d 0.6 0.11 0.18 0.20 0.32 0.57 3d 0.6 0.08 0.01 0.02 0.05 0.06

2 0.28 0.32 0.42 0.44 0.79 2 0.15 0.15 0.15 0.21 0.23

4a 0.6 0.16 0.24 0.28 0.35 0.62 4a 0.6 0.07 0.06 0.06 0.09 0.09

2 0.39 0.41 0.60 0.47 0.87 2 0.34 0.37 0.40 0.37 0.45

4c 0.6 0.12 0.18 0.20 0.32 0.57 4c 0.6 0.02 0.02 0.02 0.05 0.06

2 0.31 0.34 0.47 0.44 0.79 2 0.18 0.20 0.19 0.24 0.28

5 0.6 0.42 0.43 0.63 0.49 0.92 5 0.6 0.38 0.40 0.45 0.39 0.49

2 0.48 0.49 0.76 0.53 1.00 2 0.57 0.54 0.73 0.53 0.72
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Table 2. Table showing the median p-value over 1,000 independent runs
of the model misfit test, for Cases 1 to 5 of model misfit (see Figure 4),

and for σ2 = 0.6 and 2, where the residual analysis procedure with vary-

ing bandwidths is used. The p-values are obtained by Monte Carlo (MC)

simulation.

w = 2 to 7 Uniform Gauss 1 Gauss 2
Case σ2 MC MC MC

1 0.6 0.01 0.01 0.07
2 0.22 0.25 0.36

2a 0.6 0.35 0.35 0.42
2 0.52 0.50 0.52

2d 0.6 0.01 0.03 0.11
2 0.24 0.29 0.37

3a 0.6 0.26 0.29 0.35
2 0.46 0.46 0.50

3d 0.6 0.03 0.05 0.14
2 0.21 0.26 0.34

4a 0.6 0.07 0.13 0.21
2 0.36 0.39 0.45

4c 0.6 0.04 0.06 0.15
2 0.24 0.29 0.35

5 0.6 0.39 0.41 0.46
2 0.51 0.49 0.52

differences from the values in Table 1 depend on the amount of misfit, with

greater differences when the misspecification is small. This is expected, since

the HRF smears out the signals, so the misspecification becomes less detectable

when the difference between the true and incorrect fitted model is small. We also

applied the procedure using varying bandwidths. The median p-values obtained

by Monte Carlo simulation are shown in Table 2.

Figures 5 and 6 show, for a representative sample of the simulation experi-

ments, plots of the proportion of Monte Carlo p-values that are 0.05 or less when

an incorrect model is used, as a function of σ2. This is essentially the power of

the test under various alternatives. The figures correspond to the uniform and

Gaussian kernels with the same variance, respectively.

The clearest feature in each of the plots is the drop in power as σ2 is increased.

This is, of course, expected. The power of the test depends on the type and

amount of mis-modeling. In cases where the model misspecification is small

(such as x2a and x3a, a misspecification in width by 5 and a lag difference of 5,

respectively - the middle two plots on the left column of Figure 5), the power

is low. This is not surprising, since if the difference between the correct and

incorrect model is small, this difference is easily masked by the HRF and the
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Figure 5. Plots showing the power of the residual analysis procedure with

uniform kernel to detect model misfit for various incorrect fitted models (see

Figure 4). The power is found from the proportion of p-values, numerically
obtained by Monte Carlo (MC) simulation, that are 0.05 or less. For varying

bandwidths, we used w = 2 to 7.
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Figure 6. Plots showing the power of the residual analysis procedure with the

Gaussian kernel, of the same variance as the corresponding uniform kernel of

bandwidth w, to detect model misfit for various incorrect fitted models (see

Figure 4). The power is found from the proportion of p-values, numerically
obtained by Monte Carlo (MC) simulation, that are 0.05 or less. For varying

bandwidths, we used Gaussian kernels with variances equal to that of the

uniform kernel with bandwidths w = 2 to 7.
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errors. For example, for model x3a, the power for the scan statistic method is

about 0.4 when σ2 = 0.3, and decreases quickly as the error variance is increased.

When the width misspecification or lag is larger, the power of the test is much

larger and the drop in power, as the error variance is increased, is more gradual.

This is also the case with x1, the model misspecification of a missing signal.

The effect of window bandwidth on power depends on the particular mis-

specification. For x1, the missing signal is of width 25. Thus the power is much

greater for w = 7 than for w = 2 (top left plot of Figures 5 and 6). This is

also the case with signal width or lag mispecification of 20 (middle plots on the

right column of Figures 5 and 6). When, for example, the lag misspecification is

5, the difference between using w = 2 and w = 7 is smaller. The power of the

varying bandwidth procedure is, in most cases, between the power achieved by

the fixed windows. By searching for model misfit (via consecutive large residuals)

over a range of bandwidths , power is retained over varied forms of model misfit.

On the other hand, by doing so, it results in less power than when the optimal

bandwidth is used.

We also examined the proportion of p-values that are 0.05 or less when the

correct model is used (not shown), i.e., the type I error of the tests. We find in

all cases that this proportion is close to 0.05.

Although curves generally have the same shape, regardless of whether the

uniform or Gaussian kernel is used, it appears that there is slightly less power with

the Gaussian kernel. This was true for both the Gaussian kernels we considered.

This is not conclusive, however, as there are many more bandwidths for the

Gaussian kernel that we did not consider in our simulations.

4.2. Power of the test

We studied the power of our residual analysis procedure to detect model

misfit. Specifically, for the model misspecifications considered, we constructed

ROC curves showing the power of the test as a function of type I error. Figures

7 and 8 show our results with the uniform and Gaussian kernel respectively,

for models x2a, . . . , x2d and x3a, . . . , x3d, and suggest the main features that are

present in the other models. We applied the procedure using varying bandwidths

and windows with fixed bandwidth w = 2 and 7.

We find that the ROC curves for the procedure using a bandwidth of 2 were

the lowest in all cases. At the smallest misspecifications, the ROC curves are

roughly equal. However, as the amount of the misspecification is increased, the

procedure with w = 7 yielded increasingly higher ROC curves. In general, the

ROC curves for the varying bandwidths procedure lie between those for w = 2

and w = 7.
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Figure 7. ROC plots showing the power of the residual analysis procedure

with uniform kernel to detect model misfit as a function of the type I error
for misspecification of signal width (left column) and lag (right column).

The amount of misspecification is respectively 5, 10, 15 and 20 units going

from the top plot to the bottom plot. The different line types correspond

to the procedure applied with varying bandwidths (solid line), and fixed

bandwidths with w = 2 (dashed line) and w = 7 (dotted line).
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Figure 8. ROC plots showing the power of the residual analysis procedure

with Gaussian kernel to detect model misfit as a function of the type I error

for misspecification of signal width (left column) and lag (right column). The
Gaussian kernel used has the same variance as that of the uniform kernel

with bandwidth w. The amount of misspecification is respectively 5, 10, 15

and 20 units going from the top plot to the bottom plot. The different line

types correspond to the procedure applied with varying bandwidths (solid

line), and fixed bandwidths with w = 2 (dashed line) and w = 7 (dotted
line).
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Thus we find that, if the degree or extent of misspecification is not known,
the varying bandwidth procedure serves as a reasonably robust way to identify
a wide variety of misspecifications. However, if there is additional information
about the type of misspecification, additional power (and speed) may be achieved
by using the procedure with the appropriate fixed bandwidth.

5. Experimental Design

The experimental data collected at the University of Michigan consisted of a
visual paradigm conducted on a single subject, in accordance with Institutional
Review Board guidelines. It consisted of a blocked alternation of 11 s of full-field
contrast-reversing checkerboards (16 Hz) with 30 s of open-eye fixation baseline.
Blocks of stimulation were presented on an in-scanner LCD screen (IFIS, Psy-
chology Software Tools). Spiral-out gradient echo images (Noll, Cohen, Meyer
and Schneider (1995)) were collected on a GE 3T fMRI scanner. Seven oblique
slices were collected through visual and motor cortex, 3.12 x 3.12 x 5 mm voxels,
TR = 0.5 s, TE = 25 ms, flip angle = 90, FOV = 20 cm, 410 images. Data
from all images were corrected for slice-acquisition timing differences using 4-
point sinc interpolation (Oppenheim, Schafer and Buck (1999)) and corrected for
head movement using 6-parameter affine registration (Woods, Grafton, Holmes,
Cherry and Mazziotta (1998)) prior to analysis.

The data was analyzed using a standard GLM procedure, where the de-
sign matrix consisted of three regressors associated with a quadratic drift term,
and one regressor corresponding to the expected BOLD response - this regressor
was obtained by convolving a boxcar function corresponding to the experimental
design with SPMs canonical HRF. We performed this analysis five times, pur-
posefully mis-modeling the activation onset of the boxcar design so the difference
in modeled and true onset time took the values −2, −1, 0, 1 and 2 seconds. (Fig-
ure 9 top). For each case, our residual analysis approach using the uniform kernel
with bandwidth of 5 was applied to the residuals to detect evidence of significant
mis-modeling. Maps of the estimated bias and power-loss due to mis-modeling
were computed for each case.

5.1. Results

The location in time of the statistic S is shown for voxels with significant
mis-modeling in Figures 9 A−E (first row). Blue (red) indicates voxels that show
a cluster of mis-modeled points toward the beginning (end) of the visual stimuli.
The results are consistent with the erroneous model in each case. Clearly, the
greater the amount of mis-modeling, the more voxels show significant deviations
from iid Normal residuals, demonstrating that the residual analysis approach can
detect model misspecification. In addition, when the correct model is used, there
is a minimal amount of significant deviations.
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Figure 9. (Top) Experimental data analyzed using a standard GLM where

the activation onset is purposefully mis-modeled so the difference in modeled

and true onset time took values −2, −1, 0, 1 and 2 seconds. (First row

of images A-E) The location in time of the statistic S for voxels where

significant mis-modeling is detected. Blue (red) indicates voxels that show

a cluster of mis-modeled points toward the beginning (end) of the visual

stimuli. Results are consistent with the erroneous model formulation. Bias

(second row) and power-loss (third row) maps show an increase in bias and

decrease in power as the amount of mis-modeling increases.

In addition, in each case we include maps of the bias and power-loss due

to mis-modeling (Figures 9 A−E, bottom two rows). The maps tell a similar

story and indicate the regions of the brain where mis-modeling has the greatest

impact. They allow us to judge the validity of the statistical parametric maps

that are typically used to summarize the results of a GLM analysis, identifying

regions that should be further studied.

6. Discussion and Conclusion

A key idea we explicate in our theory and simulations is that mis-modeling



DETECTING MIS-MODELING IN fMRI 1445

(design misspecification) can result in bias in addition to loss in power. Pos-

itive bias inflates the Type I error rate beyond the nominal α level, so that

p-values for the test are inaccurate. For example, a statistical parametric map

thresholded at p < .001 may actually only control the false positive rate at, say,

p < .004. In recent work (Wager, Lindquist and Kaplan (2007b)), we estimate

that roughly 10-20% of reported activations in neuroimaging literature are false-

positives, posing a serious problem for the accumulation of knowledge in the field.

The procedures for generating bias maps over the brain developed here can be

used to detect regions of the brain in which inflation of the false positive rate is

likely.

Lack of sensitivity is also an important issue, since lack of activation across

studies in a particular task is generally taken to imply that the region is not

important for the task (though this inference is not strictly valid). For example,

inconsistent activation detection across studies have spurred debates about the

effects of mental imagery in V1 (Kosslyn and Thompson (2003)) and the role of

the amygdala in anxiety disorders (Etkin and Wager (2007)). We find that even

relatively minor model misspecification can result in substantial power loss. In

light of our results, it seems important for studies that use a single canonical

HRF or a highly constrained basis set to construct maps of bias and power loss,

so that regions with low sensitivity or increased false positive rates might be

identified.

The methods developed here are useful in other ways as well. fMRI data

may contain artifacts from many sources, such as head movement, physiological

noise and intermittent gradient failures. Our approach can identify deviations

in the residuals due to these and other sources. As regression is extremely sen-

sitive to outliers, appropriate identification and removal of outliers may help to

substantially increase power.
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