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Abstract: The Lasso, the Forward Stagewise regression and the Lars are closely

related procedures recently proposed for linear regression problems. Each of them

can produce sparse models and can be used both for estimation and variable selec-

tion. In practical implementations these algorithms are typically tuned to achieve

optimal prediction accuracy. We show that, when the prediction accuracy is used

as the criterion to choose the tuning parameter, in general these procedures are not

consistent in terms of variable selection. That is, the sets of variables selected are

not consistently the true set of important variables. In particular, we show that

for any sample size n, when there are superfluous variables in the linear regression

model and the design matrix is orthogonal, the probability that these procedures

correctly identify the true set of important variables is less than a constant (smaller

than one) not depending on n. This result is also shown to hold for two-dimensional

problems with general correlated design matrices. The results indicate that in prob-

lems where the main goal is variable selection, prediction-accuracy-based criteria

alone are not sufficient for this purpose. Adjustments will be discussed to make the

Lasso and related procedures useful/consistent for variable selection.

Key words and phrases: Consistent model selection, Forward Stagewise regression,

Lars, Lasso, variable selection.

1. Introduction

The Least Absolute Shrinkage and Selection Operator (the Lasso) proposed

by Tibshirani (1996) is a popular technique for model selection and estimation

in linear regression models. It employs an L1-type penalty on the regression

coefficients which tends to produce sparse models, and thus is often used as a

variable selection tool as in Tibshirani (1997) and Osborne, Presnell and Turlach

(2000). Knight and Fu (2000) studied the asymptotic properties of Lasso-type

estimators. They showed that under appropriate conditions, the Lasso estimators

are consistent for estimating the regression coefficients, and the limit distribution

of the Lasso estimators can have positive probability mass at 0 when the true

value of the parameter is 0. It has been demonstrated in Tibshirani (1996) that

the Lasso is more stable and accurate than traditional variable selection methods

such as best subset selection. Efron, Hastie, Johnstone and Tibshirani (2004)
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proposed the Least Angle Regression (the Lars), and showed that there is a close

connection between the Lars, the Lasso, and another model selection procedure

called the Forward Stagewise regression. Each of these procedures involves a

tuning parameter that is chosen to minimize the prediction error. This paper

is concerned with the properties of the resulting estimators in terms of variable

selection.

Consider the common Gaussian linear regression model

y = Xβ + ε,

where y = (y1, . . . , yn)T are the responses, β = (β1, . . . , βd)
T are the regression

coefficients, X = (x1, . . . ,xd) is the covariate matrix, and ε = (ε1, . . . , εn) ∼
N(0, σ2In) are the normal noises. Without loss of generality, throughout this

paper we assume that the covariates have been standardized to have mean 0 and

unit length, and that the response has mean 0. That is, 1Ty = 0, 1Txj = 0, and

xT
j xj = 1 for j = 1, . . . , d.

In many practical situations, some covariates are superfluous. That is, con-

ditional on a subset of the covariates, the response does not depend on the other

covariates. In other words, only a proper subset of the regression coefficients

are nonzero. The problem of variable selection is to identify this set of impor-

tant covariates. A variable selection procedure is said to be consistent if the

probability that the procedure correctly identifies the set of important covari-

ates approaches one when the sample size n goes to infinity. See, for example,

Rao and Wu (1989), Shao (1997) and Broman and Speed (2002) for some studies

on the consistent variable selection problem.

It is of interest to investigate the consistency properties of the Lasso and

related methods in terms of variable selection as they are often used for this

purpose. Tibshirani (1996) noted in a simulation example, that in the majority

of runs the Lasso chose models that contain the true model, but only in a small

fraction of runs did the Lasso pick the correct model. Fan and Li (2001) studied

the penalized likelihood methods in linear regression, of which the Lasso is a

special case. They proposed a nonconcave penalized likelihood method that

enjoys the oracle property when the tuning parameter is appropriately chosen.

The nonconcave penalized likelihood method is consistent in terms of variable

selection, and it estimates the nonzero regression coefficients as well as when the

correct submodel is known. They conjectured that the Lasso does not enjoy the

oracle property. In this paper we show that when the tuning parameter is chosen

to minimize the prediction error, as is commonly done in practice, in general the

Lasso and related procedures are not consistent variable selectors. In particular,

we show that when there are superfluous variables in the linear regression model

and the design matrix is orthogonal, the probability of the procedures correctly
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identifying the true set of important variables is less than a constant (smaller than

one) not depending on n. The result is also shown to hold for certain correlated

design matrices. These are actually finite sample results, since they are true for

any sample size n. These results indicate that in variable selection problems,

prediction-accuracy-based criteria are not suitable for these procedures. Simple

adjustments do exist to make the Lasso and related procedures consistent for

variable selection, and we discuss possible ways to achieve this.

The remaining part of this article is organized as follows. In Section 2, we

review the Lasso, the Lars and the Forward Stagewise regression. In Section 3,

we consider a two-dimensional problem with general correlation structure and

demonstrate that the three methods fail to find the right model with probability

one when the tuning parameters are chosen to minimize the prediction error. The

results concerning higher dimension problems are given in Section 4 for orthogo-

nal designs. We present some simulation results in Section 5 and discussions are

given in Section 6.

2. The Lasso, the Lars and the Forward Stagewise Regression

The Lasso estimate is the solution to

min
β

(y−Xβ)T (y−Xβ), s.t.
d
∑

j=1

|βj | ≤ t. (2.1)

Here t ≥ 0 is a tuning parameter. Let β̂0 be the ordinary least square (OLS)

estimate and t0 =
∑

|β̂0
j |. Values of t < t0 will shrink the solutions toward 0. As

shown in Tibshirani (1996), the Lasso gives sparse interpretable models and has

excellent prediction accuracy. An alternative formulation of the Lasso is to solve

the penalized likelihood problem

min
β

1

n
(y−Xβ)T (y−Xβ) + λ

d
∑

j=1

|βj |. (2.2)

The formulations (2.1) and (2.2) are equivalent in the sense that, for any given

λ ∈ [0,∞), there exists a t ≥ 0 such that the two problems have the same

solution, and vice versa.

The Forward Stagewise regression, called the FSW hereafter, is an iterative

procedure, where successive estimates are built via a series of small steps. Letting

η = Xβ, and beginning with η̂0 =0, if η̂ is the current estimate, the next step

is taken in the direction of the greatest correlation between covariate xj and the

current residual. That is, writing ĉ = XT (y− η̂) and ĵ = argmax|ĉj |, the update

is

η̂ ← η̂ + ε · sign(ĉĵ) · xĵ,
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where ε > 0 is some constant. Smaller ε yield less greedy algorithms for the FSW

and are recommended.

The Lars is a newly proposed model selection tool. We briefly describe

the procedure in the following, for a detailed account of the procedure, see

Efron, Hastie, Johnstone and Tibshirani (2004). The algorithm begins at η̂0 = 0.

Suppose η̂ is the current estimate and write ĉ = XT (y − η̂). Define the active

set A as the set of the indices corresponding to the covariates with the largest

absolute correlations: Ĉ = max
j
{|ĉj |} and A = {j : |ĉj | = |Ĉ|}. Define the ac-

tive matrix corresponding to A as XA = (sjxj)j∈A, where sj = sign(ĉj). Let

GA = XT
AXA and AA = (1T

AG−1
A 1A)−1/2, where 1A is a vector of ones of length

being |A|, the size of A. A unit equiangular vector with columns of the active

set matrix XA can be defined as uA = XAwA, where wA = AAG−1
A 1A, so that

XT
AuA = AA1A and ||uA||2 = 1. The next step of the Lars estimate gives the

update

η̂ ← η̂ + γ̂uA,

where γ̂ is the smallest positive number such that one and only one new index

joins the active set A. It can be shown that

γ̂ = min+
j∈AC

{ Ĉ − ĉj

AA − aj
,

Ĉ + ĉj

AA + aj

}

,

where min+ means the minimum is taken over only positive components and aj

is the jth component of the vector a = XAuA.

The Lasso, the FSW and the Lars all build a sequence of candidate models,

from which the final model is chosen. In the Lasso, the sequence is controlled

by t and in the FSW, it is controlled by the number of steps (the step size in

the procedure is taken to be a small constant arbitrarily close to zero). The

Lars builds (d + 1) models with the number of variables ranging from 0 to d.

Efron, Hastie, Johnstone and Tibshirani (2004) showed that there is a close re-

lationship among these procedures in that they give almost identical solution

paths. That is, if the candidate models are connected in each of these proce-

dures, the resulting graphs are very similar. The solution path of the Lars is

formed by connecting the (d + 1) models with linear segments. They noted that

in the special case of orthogonal design matrix, the solution paths of the proce-

dures are identical. In this case, Tibshirani (1996) showed that the Lasso solution

has the form

β̂j = sign(β̂0
j )(|β̂0

j | − γ)+, j = 1, . . . , d, (2.3)

where γ = λ/2 for the λ in (2.2), (π)+ = π for π > 0 and is 0 otherwise. This

coincides with the soft thresholding solution of Donoho and Johnstone (1994),

where it is applied to wavelet coefficients.
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In the implementation of the Lars, it is often the case that only the (d + 1)

models at the end of the steps are considered as candidate models. The final

model is chosen among the (d + 1) models, not the whole solution path. In

this case the Lars is slightly different from the Lasso or the FSW, even in the

orthogonal design matrix case. We will treat this case separately in this article.

Typical implementations of the Lasso, the Lars and the FSW attempt to

find a model with the smallest prediction error among the sequence of candidate

models built by these procedures. The prediction error is in terms of the squared

loss (SL). For an estimate η̂ = Xβ̂, the squared loss is

SL(η̂) = (η̂ − η)T (η̂ − η) = (β̂ − β)T XT X(β̂ − β).

In practice, since β is unknown, several methods, such as generalized cross val-

idation (Craven and Wahba (1979)), k-fold cross validation, or Stein’s unbiased

estimate of risk (Stein (1981)), can be used for the purpose of minimizing the

squared error.

3. A Simple Example

In this section we give a simple example to demonstrate that the Lasso, the

FSW and the Lars when tuned to minimize the squared error (as people usually

attempt to do), miss the right model with a certain probability.

Consider a linear regression model with two predictors. Suppose that the

true coefficient vector is β0 = (β0
1 , 0)T with β0

1 > 0, and the standardized design

matrix X is

XT X = Σ =

(

1 ρ

ρ 1

)

,

where |ρ| < 1. Therefore the model has one true component x1 and one noisy

component x2, and the two covariates may be correlated. Denote the ordinary

least squares solution by β̂0. The solution to the Lasso problem (2.2) when d = 2

can be easily seen as

β̂j = sign(β̂0
j )(|β̂0

j | − γ)+, j = 1, 2. (3.1)

This formula holds even if the predictors are correlated, see Tibshirani (1996).

Let δ̂ = (δ̂1, δ̂2)
T = β̂0 − β0. Since ε ∼ N(0, σ2In) and XT X = Σ, we have

δ̂ ∼ N(0, σ2Σ−1). (3.2)

Define R = {(δ1, δ2)
T : δ1 ≥ |δ2|}. We will show that the Lasso tuned with

prediction accuracy selects the right model only for δ̂ ∈ R and the probability of

this event is 1/4.
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It is clear that when |β̂0
1 | ≤ |β̂0

2 |, the Lasso cannot select the correct variables.

When β̂0
1 < −|β̂0

2 |, from (3.1) it is clear that the null model (the model with no

predictor) is the best in terms of the squared loss, and therefore the Lasso tuned

with prediction accuracy does not select the correct model. Now we only need

to consider the case of β̂0
1 − |β̂0

2 | > 0.

When the Lasso solution is tuned to correspond to the γ that minimizes the

squared loss

SL(γ) = (β̂ − β0)′Σ(β̂ − β0) = (β̂1 − β0
1 , β̂2)

(

1 ρ

ρ 1

)

(

β̂1 − β0
1

β̂2

)

, (3.3)

it chooses the correct model if and only if the minimizer of (3.3) lies in [|β̂0
2 |, β̂0

1).

Denote a = β̂0
1 − |β̂0

2 | − β0
1 . We consider two cases of β̂0

1 − |β̂0
2 | > 0 separately.

(i) β̂0
1 − |β̂0

2 | > 0, but a < 0. Write s = sign(β̂0
2). By (3.1) and (3.3) we get

SL(γ) =

(

a + |β̂0
2 | − γ, s(|β̂0

2 | − γ)

)T (
1 ρ

ρ 1

)(

a + |β̂0
2 | − γ, s(|β̂0

2 | − γ)

)

= a2 + 2(1 + sρ)[a(|β̂0
2 | − γ) + (|β̂0

2 | − γ)2].

Since 1 + sρ > 0 and a < 0, we have that the minimum of the second term

above over γ ∈ [0, |β̂0
2 |) is negative. Therefore the minimum of SL(γ) is smaller

than a2. On the other hand, for any γ ∈ [|β̂0
2 |, β̂0

1 ), from (3.1), we get SL(γ) =

(β̂0
1 − γ − β0

1)2 ≥ a2. Hence the minimizer of SL(γ) is not in [|β̂0
2 |, β̂0

1 ), and the

Lasso tuned with prediction accuracy does not select the correct model.

(ii) a ≥ 0. In this case it is easy to see that γ = |δ̂1| gives the minimum of

SL(γ), and the Lasso selects the right model.

The above arguments show that the Lasso tuned with prediction accuracy

selects the right model if and only if δ̂ ∈ R. By (3.2), the probability associated

with region R is 1/4.

Intuitively, the existence of the correlation makes model selection more dif-

ficult. However, the result states that the probability of the Lasso selecting the

correct model is independent of correlation in this particular two-dimensional

example.

The argument above is valid for any finite sample size, and can also be

applied when the design matrix is orthonormal.

Lemma 3.1. When β0 = (β0
1 , 0, · · · , 0)T with (d − 1) > 0 zero components and

XT X = Id, the Lasso tuned with prediction accuracy selects the right model only

when δ̂ = β̂0 − β0 ∈ R, where R =
{

δ : δ1β
0
1 > 0, |δ1| ≥ max{|δ2|, · · · , |δd|}

}

,

that is, the probability of the right model being selected is 1/(2d).
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Proof. The Lasso solution has the form (2.3) when XT X = I. Without loss

of generality, assume β0
1 > 0 and |β̂0

2 | > |β̂0
3 | > · · · > |β̂0

d |. We show for δ̂ not

in R, the Lasso tuned with prediction accuracy does not select the right model.

Again, we only need consider the situation where β̂0
1 > |β̂0

2 | in the following. The

Lasso tuned with prediction accuracy selects the right model if and only if the

minimizer of SL(γ) is in [|β̂0
2 |, β̂0

1 ).

1. When δ̂1 ≤ 0, for any γ ∈ [|β̂0
2 |, β̂0

1) we have

SL(γ) = (δ̂1 − γ)2

≥ (δ̂1 − |δ̂2|)2 = (δ̂1 − |δ̂3|+ |δ̂3| − |δ̂2|)2

= (δ̂1 − |δ̂3|)2 + (|δ̂2| − |δ̂3|)2 + 2(δ̂1 − |δ̂3|)(|δ̂3| − |δ̂2|)
> (δ̂1 − |δ̂3|)2 + (|δ̂2| − |δ̂3|)2 = SL(|δ̂3|).

Since |δ̂3| 6∈ [|β̂0
2 |, β̂0

1), the minimizer of SL(γ) is not in [|β̂0
2 |, β̂0

1), and the right

model is not selected.

2. For 0 < δ̂1 < |δ̂2|, the minimum of SL(γ) on the interval [|β̂0
2 |, β̂0

1) is obtained

at γ1 = |δ̂2| and SL(γ1) = (δ̂1 − |δ̂2|)2. However, when |δ̂3| < (δ̂1 + |δ̂2|)/2, if

we let γ2 = (δ̂1 + |δ̂2|)/2, we have SL(γ2) = (δ̂1 − |δ̂2|)2/2 < SL(γ1). When

|δ̂3| ≥ (δ̂1+|δ̂2|)/2, if we let γ3 = |δ̂3|, we have SL(γ3) < SL(γ1). Therefore the

minimizer of SL(γ) is outside [|β̂0
2 |, β̂0

1 ), and the right model is not selected.

Therefore, when δ̂ ∈ RC , the Lasso tuned with prediction accuracy does not select

the right model. For δ̂ ∈ R, the Lasso solution γ̂ = δ̂1 yields the correct model

η(γ̂) = β0
1x1 with SL(γ̂) = 0. Since δ̂ ∼ N(0, σ2Id), we have Pr(δ̂ ∈ R) = 1/(2d).

This completes the proof.

Now we return to our two-dimensional example considered at the beginning

of this section. The solution path of the Lars and that of the Lasso are identical

in this problem. Therefore our results about the Lasso apply directly to the Lars

if the final Lars estimate is chosen from the whole solution path of the Lars. In

practical implementations of the Lars, however, the final solution is often chosen

only among the models after each complete step. We consider this situation

in the following. It is clear from the Lars algorithm that the Lars tuned with

prediction accuracy does not yield the correct model when β̂0
1 ≤ 0 or |β̂0

1 | ≤ |β̂0
2 |.

In the situation where β̂0
1 > |β̂0

2 |, the three-step Lars estimates can be written as

η̂0 = 0, η̂1 = (β̂0
1 − |β̂0

2 |)x1, η̂2 = β̂0
1x1 + β̂0

2x2. The corresponding square losses

are

SL(η̂0) = (β0
1)2, SL(η̂1) = (δ̂1 − |δ̂2|)2, and SL(η̂2) = δ̂2

1 + δ̂2
2 .

We immediately see SL(η̂1) > SL(η̂2) when δ̂1 < 0. Putting these together, we

get that the Lars tuned with prediction accuracy does not select the right model

when the OLS estimate satisfies β̂0
1 < β0

1 , which happens with probability 1/2,
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by (3.2). The overall probability that the Lars tuned with prediction accuracy

selects the right model is no larger than 1/2.

4. Higher Dimensional Problems with Orthogonal Designs

Theorem 4.1. When the true coefficient vector is β0 = (α1, . . . , αd1
, 0, . . . , 0)T

with d2 = (d − d1) > 0 zero coefficients and XT X = Id, if the Lasso is tuned

according to prediction accuracy, then it selects the right model with a probability

less than a constant C < 1, where C depends only on σ2 and d1, and not on the

sample size n.

Proof. Let the OLS estimate be β̂0 and denote β̂0 − β0 = (δ̂1, . . . , δ̂d)
T . With-

out loss of generality we assume |δ̂d1+1| > |δ̂d1+2| > · · · > |δ̂d| and αi >

0, i = 1, . . . , d1. We show for the region R = {(δ1, . . . , δd)
T : δj > −αj, j =

1, . . . , d1 and
∑d1

i=1 δi < 0}, the Lasso tuned with prediction accuracy does not

select the right model.

If β̂0 does not satisfy

{

|β̂0
j | > |β̂0

k |, for j ∈ {1, . . . , d1} and k ∈ {d1 + 1, .., d}
}

, (4.1)

obviously the Lasso does not select the right model. So we can concentrate on the

situation where (4.1) is satisfied. For the Lasso tuned with prediction accuracy

to select the right model, the solution must satisfy

min{|β̂0
1 |, . . . , |β̂0

d1
|} > γ ≥ |β̂0

d1+1|. (4.2)

Since δ̂ ∈ R, we have β̂0
j > 0, j = 1, . . . , d1. The estimate corresponding to

any γ satisfying (4.2) is η(γ) = (β̂0
1−γ)x1 + · · ·+(β̂0

d1
−γ)xd1

= (α1 + δ̂1−γ)x1 +

· · · + (αd1
+ δ̂d1

− γ)xd1
. On the other hand, the estimate with γ1 = |β̂0

d1+2| has

the form

η(γ1) = (β̂0
1 − |β̂0

d1+2|)x1 + · · ·+ (β̂0
d1
− |β̂0

d1+2|)xd1

+sign(β̂0
d1+1)(|β̂0

d1+1| − |β̂0
d1+2|)xd1+1

= (α1 + δ̂1 − |δ̂d1+2|)x1 + · · ·+ (αd1
+ δ̂d1

− |δ̂d1+2|)xd1

+sign(δ̂d1+1)(|δ̂d1+1| − |δ̂d1+2|)xd1+1.

It is easy to see the squared losses for the two estimates are SL(γ) =
∑d1

i=1(δ̂i − γ)2 and SL(γ1) =
∑d1

i=1(δ̂i − |δ̂d1+2|)2 + (|δ̂d1+1| − |δ̂d1+2|)2. We show
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for any γ satisfying (4.2), SL(γ) > SL(γ1). Simple algebra yields

SL(γ) =

d1
∑

i=1

(δ̂i − γ)2 =

d1
∑

i=1

(δ̂i − |δ̂d1+2|+ |δ̂d1+2| − γ)2

=

d1
∑

i=1

(δ̂i − |δ̂d1+2|)2 + d1(γ − |δ̂d1+2|)2 + 2(γ − |δ̂d1+2|)
d1
∑

i=1

(|δ̂d1+2| − δ̂i)

= SL(γ1)− (|δ̂d1+1| − |δ̂d1+2|)2

+d1(γ − |δ̂d1+2|)2 + 2(γ − |δ̂d1+2|)
d1
∑

i=1

(|δ̂d1+2| − δ̂i).

Since γ ≥ |δ̂d1+1|, we have

d1(γ − |δ̂d1+2|)2 − (|δ̂d1+1| − |δ̂d1+2|)2 ≥ (d1 − 1)(γ − |δ̂d1+2|)2.
It follows SL(γ) ≥ SL(γ1)+(d1−1)(γ−|δ̂d1+2|)2+2(γ−|δ̂d1+2|)

∑d1

i=1(|δ̂d1+2|−δ̂i).
It is easy to see, when

∑d1

i=1 δ̂i < 0,

(d1 − 1)(γ − |δ̂d1+2|) + 2

d1
∑

i=1

(|δ̂d1+2| − δ̂i)

= (d1 + 1)|δ̂d1+2|+ (d1 − 1)γ − 2

d1
∑

i=1

δ̂i > 0.

Therefore, we have SL(γ) > SL(γ1) when δ̂ ∈ R. The optimal γ that minimizes
SL(γ) does not satisfy (4.2), that is, the optimal γ does not yield the correct
model. Since (δ̂1, · · · , δ̂d)

T follows a multivariate normal distribution N(0, Id), it
is readily seen that Pr(δ̂ ∈ R) > Pr(δ̂ ∈ {(δ : 0 > δj > −αj , j = 1, . . . , d1}) = C,
where C is a constant strictly less than 1 depending on σ2 and d1 but not on n.
We have proved that with a positive probability not depending on n, the Lasso
tuned with prediction accuracy does not select the right model.

The conclusion holds for the Lars and the FSW due to the equivalence of the
three procedures, if the whole solution path of the Lars is considered. When only
(d + 1) candidate models in the Lars are considered, the conclusion follows by
replacing γ by |δ̂d1+1| in the preceding proof. When the design matrix satisfies
XT X = nId, following the argument in Theorem 4.1, we can prove that when
the Lasso is tuned according to prediction accuracy, the probability of the Lasso
selecting the wrong model is larger than a strictly positive constant not depending
on n.

Although the conclusion of the theorem is proved with the design matrix
being orthonormal, it is expected to hold for general design matrix cases, as is
the case for d = 2. We demonstrate this point via simulations in the next section.
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5. Simulation

We conduct some simple simulations in general design matrix cases to demon-

strate our results. All simulations were conducted using MATLAB code. We used

the algorithm as suggested in Tibshirani (1996). Each βj is rewritten as β+
j −β−

j ,

where β+
j and β−

j are nonnegative. We then used the quadratic programming

module quadprog in MATLAB to find the Lasso solution.

We generate data from y = Xβ + ε, where under Model 1, β = (1, 0)T , and

under Model 2, β = (3, 1.5, 0, 0)T . Here ε follows a standard normal distribution

and xj has marginal distribution N(0, 1). The pairwise correlation between xi

and xj, i 6= j, is ρ|i−j| with ρ = 0, 0.5, 0.9. We simulated data with sample

size n = 40, 400, 4, 000. For each ρ and each sample size, we simulated 100

data sets and applied the Lasso method. The tuning parameter was chosen to

minimize the prediction accuracy. We summarize the result for various sample

sizes and correlations in Table 5.1. The percentage of correctly selected models

is summarized in the PCM column. We divide the SL of the Lasso by the SL of

corresponding OLS estimate and report the mean of these relative squared losses

in the MRSL column. When it is tuned according to prediction accuracy, the

Lasso can achieve much improved accuracy, but misses the right model a large

fraction of the time. This seems to be true independent of the sample size and the

correlation among the covariates. The results of the experiment are consistent

with our analytical results above.

Table 5.1. Simulation results for the Lasso.

n ρ Model 1 PCM (%) MRSL Model 2 PCM (%) MRSL

0 26 0.464 15 0.632

40 0.5 16 0.573 20 0.573

0.9 22 0.487 16 0.569

0 27 0.482 9 0.655

400 0.5 23 0.513 15 0.594

0.9 25 0.546 13 0.583

0 22 0.492 15 0.667
4,000 0.5 21 0.500 18 0.597

0.9 24 0.523 20 0.539

6. Discussions

We wish to make it clear that the results in this paper should not be inter-

preted as a criticism of the Lasso and related methods, or taken to imply that

the Lasso and related methods cannot be used as variable selection tools. In

most practical applications, prediction accuracy is the gold standard. As shown
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by many authors and also in our simulations, the Lasso can greatly improve

the ordinary least squares estimate in terms of accuracy. In problems where

the primary goal is selecting the set of true variables, our results simply imply

that prediction-based methods for tuning are not sufficient for the Lasso and

related methods. It is possible that some other criteria of choosing the tun-

ing parameter can yield consistent variable selection for the Lasso and related

methods, and there are also simple adjustments to the solution of the Lasso and

related methods that make the estimators consistent for variable selection. For

example, Meinshausen and Bühlmann (2004) proposed doing neighborhood se-

lection with the Lasso in a multivariate Gaussian graphical model. They allow

the number of variables to grow (even rapidly) with the number of observations.

They noted that the optimal tuning parameter for prediction accuracy does not

lead to a consistent neighborhood estimate by giving an example in which the

number of variables grows to infinity, and in which the tuning parameter cho-

sen according to prediction accuracy leads to the wrong model with probability

tending to one. They proposed to choose the tuning parameter by controlling

the probability of falsely joining some distinct connectivity components of the

graph instead of minimizing prediction accuracy, and showed that their approach

delivers consistent model selection. In fact, they showed that if the tuning pa-

rameter λ has a rate n−1/2+ε with some ε > 0, then the Lasso can achieve

consistent model selection. Another possibility in our setup is to use a λ that

achieves
√

n consistency in terms of estimating the coefficients (Knight and Fu

(2000)), and then threshold the Lasso solution by a quantity of the order nα

with −1/2 < α < 0. Since the coefficient estimates are
√

n consistent, it is

easy to see that, with probability tending to one, the estimates of coefficients

of important variables will not be thresholded to zero, whereas the estimates of

the coefficients of redundant variables will be. Thus consistent variable selec-

tion can be achieved. A third possibility arises upon considering the intuitively

clear argument that tuning for prediction rather than variable selection tends to

create non-zero coefficients when the true coefficient is zero, but not the other

way around. Simulation results (not shown) support this argument, and this is

also noted in Meinshausen and Bühlmann (2004). Thus, this possibility entails

tuning for prediction and then creating a test for deciding when a non-zero co-

efficient is “small enough” to be set to 0 that is compatible with this tuning. A

similar approach was taken in a somewhat different context in Zhang, Wahba,

Lin, Voelker, Ferris, Klein and Klein (2004).
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