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Abstract: The first part of this paper gives some general consistency theorems for

the maximum product of spacings (MPS) method, an estimation method related

to maximum likelihood. The second part deals with nonparametric estimation of a

concave (convex) distribution and more generally a unimodal distribution, without

smoothness assumptions on the densities. The MPS estimator for a distribution

function with a monotone density is shown to have a simple explicit representa-

tion analogous to the Grenander estimator, and is asymptotically minimax with

respect to Kolmogorov-Smirnov type loss. A simple consistent MPS estimator for

a unimodal distribution is also discussed.
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1. Introduction

The maximum product of spacings (MPS) method for estimating parameters
in continuous univariate distributions was proposed by Cheng and Amin (1983)
and independently by Ranneby (1984). A simple description of the MPS method
goes as follows. Let X1, · · ·, Xn be i.i.d. observations from some unknown cdf
Fθ0 in a collection of continuous univariate distribution functions {Fθ : θ ∈ Θ}.
To estimate θ0, applying the probability integral transform Fθ(·) to the order
statistics X1:n ≤ · · · ≤ Xn:n yields 0 ≡ Fθ(X0:n) ≤ Fθ(X1:n) ≤ · · · ≤ Fθ(Xn:n) ≤
F (Xn+1:n) ≡ 1. The MPS estimator θ̂n of θ0 maximizes the product of spacings,
i.e.,

θ̂n = arg max
θ∈Θ

n+1∏
j=1

[Fθ(Xj:n) − Fθ(Xj−1:n)]. (1.1)

The MPS method is related to maximum likelihood (ML). When Fθ(x) has a
density fθ(x), the logarithm of

∏n+1
j=1 [Fθ(Xj:n)−Fθ(Xj−1:n)] can be approximated

by
∑

log fθ(Xj:n)[Xj:n − Xj−1:n] =
∑

log fθ(Xj:n) +
∑

log[Xj:n − Xj−1:n]. (1.2)
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Since
∑

log[Xj:n−Xj−1:n] is a constant not depending on θ, maximizing the prod-
uct of spacings in (1.1) is asymptotically equivalent to maximizing

∑
log fθ(Xj:n),

i.e., the log likelihood. Since the ML method generates asymptotically optimal es-
timates in many situations, the MPS estimator can be expected to have the same
asymptotic optimalities. However the likelihood functions can be unbounded, as
in the three parameter log-normal families or many mixture models (Le Cam
(1990)), thereby leading to inconsistent estimates. Since the product of spacings
in (1.1) is always bounded, the MPS method can generate asymptotically optimal
estimates even when ML breaks down due to unbounded likelihood functions; see
e.g., Cheng and Traylor (1995).

The consistency problem for the MPS method has been investigated previ-
ously by Cheng and Amin (1979), Ranneby (1984) and Shao and Hahn (1999).
The last reference contains consistency theorems with the weakest regularity con-
ditions among the existing results. Ekström (1997) showed that the consistency
results of Shao and Hahn (1999) hold also for higher order spacings and for
some variations of the MPS method. The regularity conditions for the previ-
ous consistency results are very general in the sense that they cover most of the
known counterexamples for the ML method. However, these conditions are not
strictly weaker than the classical regularity conditions for the consistency of the
ML method (Wald (1949)). In particular, a local dominance-type condition (see
Perlman (1972) for exact definitions) is known to be necessary for consistency of
all the approximate MLE as defined in Wald (1949). This dominance condition
is replaced by similar conditions, e.g., Condition 3.1 of Theorem 3.1 in Shao and
Hahn (1999), for the MPS method. We show in Section 2 of this paper that the
local dominance-type condition of Perlman (1972) and its replacement in Shao
and Hahn (1999) are not necessary for the new consistency theorems for the MPS
method. Of course, there are many other general consistency theorems for the
MLE, but as pointed out by Le Cam (1986, p.621), the only available general
ones are variants of Wald (1949). We point out that Wang (1985) introduced
some interesting techniques to get consistency results applicable to parametric
families as well as several nonparametric families including concave distribution
functions. Namely, for any θ ∈ Θ and any neighborhood Vr(θ0) of the true pa-
rameter θ0, Wang (1985) suggested working with the log-likelihood ratio of the
type log[fθ(x)/fθr(θ)(x)], where θr(θ) is chosen from Vr(θ0) so that for any θ∗ not
in Vr(θ0) there exists a neighborhood B(θ∗) of θ∗ on which log[fθ(x)/fθr(θ)(x)]
is dominated. For consistency of the ML method, these local dominance condi-
tions cannot be removed without compensation, as can be seen from examples in
Ferguson (1982) and Le Cam (1990). Theorem 2.2 provides consistency results
for the MPS method assuming the existence of a density, but does not require
assumptions 2 and 6 of Wald (1949).

Section 2 deals with the consistency result. Section 3 deals with the problem
of nonparametric estimation of distributions with unimodal densities but without
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smoothness conditions on the densities. An early study of such problems goes
back to Grenander (1956), who obtained the nonparametric maximum likelihood
estimate for a concave cdf on [0,∞) as the least concave majorant (LCM) of the
empirical distribution function Fn(x). The Grenander estimator is a very good
spatially adaptive estimator from a nonasymptotic point of view, as discussed
by Birgé (1989, 1997). It would be desirable to have such a spatially adaptive
estimator for unimodal densities with unknown mode. The construction of the
Grenander estimator can be easily extended to unimodal densities with a known
mode (e.g., Lo (1986)). However, when the mode is unknown the likelihood
function can be unbounded. Estimating a unimodal density with unknown mode
has attracted the attention of many researchers. For example, Wegman (1969,
1970a, b) considered the constrained MLE by assuming a modal interval of length
greater than some positive ε. Other estimates have been proposed by Reiss (1973)
and Prakasa Rao (1983). More references can be found in Barlow, Bartholomew,
Brenner and Brunk (1972), Robertson, Wright and Dykstra (1988), and Birgé
(1997).

The MPS estimator for a cdf with a monotone density is shown, in Section 3
of this paper, to have a simple explicit representation analogous to the Grenan-
der estimator. A simple consistent nonparametric MPS estimator for a general
unimodal distribution with unknown mode is also discussed.

2. General Consistency Theorems for the MPS Method

If the maximum of the product of spacings supθ

∏n+1
j=1 [Fθ(Xj:n)−Fθ(Xj−1:n)]

is not attained or only numerical solutions are feasible, we call {θ̂n, n > 1} an
asymptotic MPS estimate of θ0 if

lim inf
n→∞

1
n + 1

n+1∑
j=1

log
Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)

Fθ0(Xj:n) − Fθ0(Xj−1:n)
≥ 0 a.s. (2.1)

Let dTV (P,Q) = supA |P (A)−Q(A)| be the total variation distance between two
probability measures P and Q. When densities fP and fQ exist for P and Q,
we have dTV (P,Q) = 1

2

∫ |fP (x)− fQ(x)|dx; thus dTV and L1 distances generate
equivalent topologies and give the same consistency results.

Theorem 2.1. Let X1, · · ·, Xn be an i.i.d. sample from Pθ0 with θ0 ∈ Θ, where
(Θ, d) is a compact metric space with the property that if θ′ �= θ ∈ Θ, Pθ′ �= Pθ.
Suppose limd(θ′,θ)→0 dTV (P ′

θ, Pθ) = 0 and the cdf Fθ0(x) is continuous in x. Then
almost surely limn→∞ d(θ̂n, θ0) = 0 for any asymptotic MPS estimator {θ̂n}.

Since we can identify θ with its probability measure Pθ, it suffices to prove
the following version of Theorem 2.1.
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Theorem 2.1∗. Let X1, · · ·, Xn be an i.i.d. sample from P0 ∈ P where P is a
family of probability measures on R such that (P, dTV ) is a compact metric space
for the total variation distance dTV . Suppose P0 has a continuous cdf FP0. Then
any asymptotic MPS sequence {P̂n} is consistent, i.e., limn→∞ dTV (P̂n, P0) = 0.

The proof of Theorem 2.1∗ is in the Appendix.

Remark 2.1. When densities fθ(x) exist for all θ in Θ, the conditions in Theorem
2.1 are easy to check. In particular if fθ(x) is continuous for θ, then Scheffé’s
lemma implies that limd(θ′,θ)→0 dTV (P ′

θ, Pθ) = 0.

Remark 2.2. Ferguson (1982) gave parametric examples in which the MLE
exists but is not consistent. However, it is easy to check that the conditions
of Theorem 2.1 hold and thus all the asymptotic MPS estimates are consistent
for Ferguson’s examples. Theorem 2.1 works also for nonparametric families.
For example, consider the problem of estimating some unimodal density on [0, 1]
with unknown mode. It is obvious that the likelihood function can be unbounded;
thus the likelihood method cannot be directly applied. Note that the unimodal
densities on [0, 1] is a compact set equipped with the L1 distance (Reiss (1973))
so Theorem 2.1 implies that the approximate MPS estimates are consistent.

Remark 2.3. Theorem 2.1 assumes that convergence of parameters implies
the convergence of the corresponding probability measures in total variation dis-
tance. This condition is implied by the general assumptions for the consistency
of the approximate MLE as in Wald (1949) and Le Cam (1953), according to
the result of Landers and Rogge (1972). Moreover, when the parameter space
is homeomorphic to a closed subset of the cube [0, 1]N0 for some integer N0 and
when densities exist, Corollary 1 in Le Cam and Schwartz (1960), together with
its accompanying remarks, imply that the sufficient condition in Theorem 2.1 is
also necessary for the existence of consistent estimates.

Next we present consistency theorem without the compactness assumption.

Theorem 2.2. Let {X1, · · · ,Xn} be an i.i.d. sample from a density fθ0 with
θ0 ∈ Θ, where Θ is a closed set of Rd. Assume that θ �= θ′ implies that {x :
f ′

θ(x) �= fθ(x)} has positive measure. Suppose limθ′→θ

∫ |fθ′(x) − fθ(x)|dx = 0
and lim|θ|→∞ fθ(x) = 0 for almost all x. Then limn→∞ θ̂n = θ0 a.s. for any
asymptotic MPS estimator {θ̂n}.

The proof of Theorem 2.2 is in the Appendix.

3. Nonparametric MPS Estimates for a cdf with a Unimodal Density

Consider the problem of estimating a cdf F0 knowing only that it is con-
tinuous. Since the empirical cdf Fn is not continuous, it may not be proper
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as an estimator of F0. Pyke’s modified empirical πn is a continuous cdf which
puts equal mass 1

n+1 on every spacing and is uniformly distributed on each finite
spacing. It is easy to see that πn is a MPS estimator of F0 and

sup
−∞<x<+∞

|πn(x) − Fn(x)| =
1

n + 1
. (3.0)

Both πn and Fn are asymptotically minimax with respect to the Kolmogorov-
Smirnov type risk as defined in (3.1) (Dvorectzky, Kiefer and Wolfowitz (1956)).

Suppose it is also known that the underlying cdf F0 has a non-increasing
density on [0, 1], Grenander (1956) applied the ML method very elegantly and
obtained the nonparametric MLE of F0: the least concave majorant (LCM) of
Fn. This estimator is also asymptotically optimal in the minimax sense. More
specifically, Kiefer and Wolfowitz (1976) proved that the empirical distribution
Fn is asymptotically minimax for estimating a concave (or convex) cdf for the
following Kolmogorov-Smirnov type risk function

r(F0, F
∗
n) = EF W (

√
n sup

t
|F (t) − F ∗

n(t)|), (3.1)

where W (·) is any nonnegative nondecreasing function on [0,∞) and
∫ ∞
0 W (r)

re−2r2
dr < ∞, W (r) �≡ 0. Moreover, Lemma B in Marshall (1970) implies that

the Grenander estimator is also asymptotically minimax for estimating a concave
cdf with respect to any risk function in (3.1).

A monotone density is a special case of a unimodal density. The likelihood
approach is not directly applicable to the estimation of a unimodal density with
unknown mode since the likelihood functions are unbounded. We derive the MPS
estimates for unimodal distributions and show that they are spatially adaptive
and asymptotically optimal in some minimax sense.

3.1. The MPS estimate for a concave distribution function

Let X1:n ≤ · · · ≤ Xn:n be the order statistics of an i.i.d. sample of a concave
distribution function F . Define σ0(F ) = sup{x : F (x) = 0} and σ1(F ) = inf{x :
F (x) = 1}, with the convention that σ1(F ) = ∞ if no x satisfies F (x) = 1.

Theorem 3.1. The nonparametric MPS estimator for a concave cdf is asymp-
totically minimax with respect to any risk function in (3.1) and has the following
simple form:

(1) The MPS estimator for a concave cdf with known finite support [σ0(F ), σ1(F )]
is the least concave majorant (LCM) of Pyke’s modified empirical distribution
πn.
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(2) An MPS estimator of a concave cdf F (x) with known support [σ0(F ),∞) is
any concave distribution function which is n/(n + 1) times the least concave
majorant (LCM) of Fn for x in [σ0(F ),Xn:n] and which puts mass 1/(n + 1)
on [Xn:n,∞).

(3) An MPS estimator of any concave cdf with unknown support is a concave
distribution function which is n/n + 1 times the least concave majorant of the
empirical distribution Fn(x) for x in [X1:n,Xn:n] and which puts mass 1/n+1
on each of the intervals (−∞,X1:n] and [Xn:n,∞).

The proof of Theorem 3.1 is contained in the Appendix.

Remark 3.1. Note that the MPS estimator in cases (2) and (3) is not unique,
since there are different ways to put the mass 1/(n + 1) on [Xn:n,∞) to ensure
concavity. For example, one can put mass 1/(n + 1) uniformly on [Xn:n, B] for
some large B, or mass 1/(n+1) on [Xn:n,∞) using any density tail of the gamma
type.

We give a numerical example to illustrate the nonparametric MPS estimate
of a concave cdf. Nonparametric MPS estimates can be plotted easily. In the
following, based on 20 uniform random points from [0, 1], we first plot Pyke’s
modified empirical distribution and its LCM (i.e., the MPS estimator) in Figure
2.1, then for comparison we plot the empirical cdf and its LCM (i.e., Greander’s
estimator) in Figure 2.2.
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3.2. The nonparametric MPS estimate for a cdf with a unimodal
density

If the mode of the underlying density is known, it is clear that the MPS
method yields asymptotically minimax estimators. When the mode is unknown,
the likelihood function can be unbounded and many difficulties arise for efficient
estimation of the cdf. In fact, finding an asymptotically minimax estimator of a
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cdf having a unimodal density with unknown mode has been an open problem
since it was proposed by Kiefer and Wolfowitz (1976). Choosing a consistent
estimator which is asymptotically efficient (or at least promising) is quite chal-
lenging. Of course, the empirical cdf Fn(x) (or πn(x)) is consistent, in fact
asymptotically minimax (Lo (1986)) for the risk in (3.1), but it is not unimodal
so it may not be suitable as an estimator.

In general, one can construct a consistent unimodal MPS estimator of a
unimodal distribution with unknown mode. It is also asymptotically minimax in
all special cases studied. A sketch of the derivation of a unimodal MPS estimator
goes as follows. Let E ≡ {F (x) : F (x) is a cdf with a unimodal density f(x)}.
The MPS estimator of a unimodal cdf maximizes

sup
F∈E

n+1∏
i=1

[F (Xi:n) − F (Xi−1:n)] = max
1≤j≤n+1

sup
{F∈Fj}

n+1∏
i=1

[F (Xi:n) − F (Xi−1:n)],

where Fj denotes the family of unimodal distributions with modes on the jth
spacing. Without loss of generality, we may assume that the MPS estimator
is in Fj0. For any F ∈ Fj0 , F is convex on (−∞,Xj0−1:n] and is concave on
[Xj0:n,+∞). Let αF = F (Xj0−1:n) and βF = 1 − F (Xj0:n). Then F (Xj0:n) −
F (Xj0−1:n) = 1 − αF − βF and

n+1∏
i=1

[F (Xi:n) − F (Xi−1:n)] = (1 − αF − βF )
∏
i�=j0

[F (Xi:n) − F (Xi−1:n)]

= (1 − αF − βF )αj0−1
F βn−j0+1

F Aj0Bj0,

where Aj0 ≡ α−1
F

∏j0−1
i=1 [F (Xi:n) − F (Xi−1:n)], Bj0 ≡ β−1

F

∏n+1
i=j0+1[F (Xi:n) −

F (Xi−1:n)]. Notice that Bj0 achieves its maximum value at the ‘least con-
cave majorant’ of the function (n − j0 + 1)−1 ∑n+1

i=j0+1 I(−∞,x](Xj:n). Conse-
quently, supF∈Fj0

Bj0 is a constant that does not depend on αF and βF (it
only depends on the observations). A similar assertion can be made about Aj0.
Simple maximization of the right-hand side yields αF = (j0 − 1)/(n + 1) and
βF = (n−j0+1)/(n+1), and a unimodal MPS estimate can thus be constructed.
The consistency of such estimators in total variation distance is implied by The-
orem 4.1 of Shao and Hahn (1999), however the justification of the asymptotic
minimaxity of the MPS estimator with unknown mode is an interesting open
problem.
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Appendix A. Proofs of Theorems 2.1∗, 2.2 and 3.1

Proof of Theorem 2.1∗. For ease of exposition first assume that, for each
P ∈ P, FP (x) has a density fP (x). If P �= P0, by Theorem 4.1 in Shao and Hahn
(1995),

lim sup
n→∞

1
n + 1

n+1∑
j=1

log
FP (Xj:n) − FP (Xj−1:n)
FP0(Xj:n) − FP0(Xj−1:n)

≤
∫
R

log
fP (x)
fP0(x)

dFP0(x) < 0.

Moreover, for some small positive number c,
∫
R

log
fP (x) + cfP0(x)

fP0(x)
dFP0(x) ≤ 1

2

∫
R

log
fP (x)
fP0(x)

dFP0(x) < 0.

Thus without loss of generality, we assume that fP (x) ≥ cfP0(x) for some c > 0.
Next we show that for some small rP and when n is large enough, we have

sup
Q∈b(P,rp)

1
n + 1

n+1∑
j=1

log
FQ(Xj:n) − FQ(Xj−1:n)
FP0(Xj:n) − FP0(Xj−1:n)

≤ 1
4

∫
R

log
fP (x)
fP0(x)

dFP0(x) < 0,

(A.1)
where b(P, rP ) ≡ {Q ∈ P : dTV (Q,P ) < rP }. For Q ∈ b(P, rP ),

∫ |fQ(x) −
fP (x)|dx < 2rP . Denote Y P

j,n := FP (Xj+1:n)−FP (Xj:n) for 1 ≤ j ≤ n + 1. Then
for Q ∈ b(P, rP ),

1
n + 1

n+1∑
j=1

log
FQ(Xj:n) − FQ(Xj−1:n)
FP (Xj:n) − FP (Xj−1:n)

≤ 1
n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|
FP (Xj:n) − FP (Xj−1:n)

)

≤ 1
n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|
c(FP0(Xj:n) − FP0(Xj−1:n)

)
. (A.2)

Let ξ1, . . . , ξn+1 be i.i.d. standard exponential random variables. Using the ex-
ponential representation of uniform spacings (see Shorack and Wellner (1986,
p.335)) and the fact that for a > 0, log(1 + ab) ≤ log(1 + a) + |b − 1|, we have

1
n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|
c(FP0(Xj:n) − FP0(Xj−1:n)

)
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dist=
1

n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cξj

· ξ1 + ξ2 + · · · + ξn+1

n + 1

)

≤ 1
n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cξj

)
+

∣∣∣ξ1 + ξ2 + · · · + ξn+1

n + 1
− 1

∣∣∣.

For a small positive α < 1 (its value will be selected later),

1
n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cξj

)

=
1

n + 1

[ ∑
ξj≤α

+
∑
ξj>α

]
log

(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cξj

)
. (A.3)

Note that

n+1∑
j=1

|Y Q
j,n − Y P

j,n| ≤
n+1∑
j=1

∫ Xj:n

Xj−1:n

|fQ(x) − fP (x)|dx = 2dTV (FQ, FP ).

Thus

1
n + 1

∑
ξj>α

log
(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cξj

)

≤ 1
n + 1

∑
ξj>α

log
(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cα

)

≤ 1
n + 1

∑
ξj>α

|Y Q
j,n − Y P

j,n|(n + 1)
cα

≤ 2dTV (FQ, FP )
cα

. (A.4)

Also notice that

1
n + 1

∑
ξj>α

log
(
1 +

|Y Q
j,n − Y P

j,n|(n + 1)
cξj

)

=
1

n + 1

∑
ξj≤α

[
log

(
ξj +

|Y Q
j,n − Y P

j,n|(n + 1)
c

)
− log ξj

]
.

By the SLLN
1

n + 1

∑
ξj≤α

log ξj →
∫ α

0
e−x log xdx. (A.5)
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Moreover,

1
n + 1

∑
ξj≤α

log
(
ξj+

|Y Q
j,n−Y P

j,n|(n+1)
c

)
≤ 1

n + 1

∑
ξj≤α

log
(
1+

|Y Q
j,n−Y P

j,n|(n+1)
c

)

≤ 1
n + 1

∑
ξj≤α

|Y Q
j,n − Y P

j,n|(n + 1)
c

≤ 2dTV (FQ, FP )
c

. (A.6)

Thus

1
n + 1

n+1∑
j=1

log
(
1 +

|Y Q
j,n − Y P

j,n|
FP (Xj:n) − FP (Xj−1:n)

)

≤ 2dTV (FQ, FP )
c

+
2dTV (FQ, FP )

cα
−

∫ α

0
e−x log xdx.

Take c, α and dTV (FQ, FP ) ≤ rP := cα2 very small such that the right-hand side
of the above is less than −(1/4)

∫
log[fP (x)/fP0(x)]dFP0(x), then (A.1) holds.

Consequently, for any P �= P0 there exists a small rP > 0 and NP ∈ N such that
whenever n ≥ NP ,

sup
Q∈b(P,rP )

1
n + 1

n+1∑
j=1

log
FQ(Xj:n) − FQ(Xj−1:n)
FP0(Xj:n) − FP0(Xj−1:n)

<
1
4

∫
R

log
gc
P (x)

fP0(x)
dFP0(x) < 0.

For each δ > 0, the neighborhoods {b(P, rP ) :P ∈P\b(P0, δ)} covers P\b(P0, δ).
Since P \ b(P0, δ) is compact, there exist finitely many neighborhoods, say
{b(P1, rP1), · · · , b(Pk, rPk

)} which cover P\b(P0, δ). Let Nδ = max(NP1 , · · · , NPk
).

Then whenever n ≥ Nδ,

sup
Q∈P\b(P0,δ)

1
n + 1

n+1∑
j=1

log
FQ(Xj:n)−FQ(Xj−1:n)
FP0(Xj:n)−FP0(Xj−1:n)

<
1
4

max
1≤i≤k

∫
R

log
fPi(x)
fP0(x)

dFP0(x) < 0.

Hence, maximizing the product of spacings over Q ∈ P yields an element of
b(P0, δ) for each δ > 0. Note that by applying the probability integral transform,
it is not essential to assume the existence of densities in order for the above proof
to be valid. Thus, consistency of the asymptotic MPS estimate is substantiated.

Proof of Theorem 2.2. By Theorem 2.1, it suffices to prove that the probabil-
ity of having a sequence of unbounded MPS estimates θ̂n is zero. Suppose that,
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with positive probability, we have a sequence of MPS estimates θ̂n → ∞. Then
fθ̂n

(x) → 0 for almost all x. Egoroff’s Theorem implies that there is a closed set
K such that Pθ0(K) can be arbitrarily close to 1, and limn→∞ supx∈K fθ̂n

(x) = 0.
In particular, Pθ̂n

(K) → 0 and Pθ̂n
(Kc) → 1. The mapping arctan (x) :

[−∞,+∞] → [−π/2, π/2] induces a topology on [−∞,+∞] and makes it a
compact metric space. On a compact space, {Pθ̂n

} is tight and thus has a subse-
quence, say itself, which converges weakly to a probability measure P∞. Note that
Kc is an open set; thus it is the union of at most countably many disjoint open in-
tervals, say Kc = ∪(aj, bj). So 1 = limn→∞ Pθ̂n

(Kc) = limn→∞
∑

Pθ̂n
{(aj , bj)}.

For δ > 0, choose a large J such that
∑J

j=1 Pθ̂n
(aj , bj) = Pθ̂n

(∪J
j=1(aj , bj)) > 1−δ

for all large enough n. Note that Pθ0{∪J
j=1(aj , bj)} can be arbitrarily small.

Since Pθ̂n
→ P∞, we have P∞(∪J

j=1[aj , bj ]) ≥ lim supn→∞ Pθ̂n
(∪J

j=1[aj, bj ]) >

1 − δ. Thus, there exist finitely many open intervals whose union, say U , con-
tains ∪J

j=1[aj , bj ], P∞(U) > 1 − δ, and Pθ0(U) can be arbitrarily small. The
set U c is a union of finitely many closed intervals with P∞(U c) < δ. Thus
lim supn→∞ Pθ̂n

(U c) ≤ P∞(U c) < δ. Consequently there exists a large enough N

such that whenever n ≥ N , we have Pθ̂n
(U c) < δ. Moreover,

n+1∑
j=1

log
Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)

Fθ0(Xj:n) − Fθ0(Xj−1:n)
=

( ∑
j∈nU

+
∑

j �∈nU

)
log

Fθ̂n
(Xj:n) − Fθ̂n

(Xj−1:n)
Fθ0(Xj:n) − Fθ0(Xj−1:n)

,

where nU is the index set of spacings [Xj:n,Xj+1:n] which intersect the open set
U . Since

∑
j �∈nU

[Fθ̂n
(Xj:n) − Fθ̂n

(Xj−1:n)] ≤ Pθ̂n
(U c) < δ,

sup
θ̂n

1
n + 1

∑
j �∈nU

log
Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)

Fθ0(Xj:n) − Fθ0(Xj−1:n)

≤ 1
n + 1

∑
j �∈nU

log
( δ

n − |nU | [Fθ0(Xj:n) − Fθ0(Xj−1:n)]−1
)

= −n − |nU |
n + 1

log
(n − |nU |

n + 1

)
+

n − |nU |
n + 1

log δ

−n − |nU |
n + 1

1
n − |nU |

∑
j �∈nU

log([n + 1][Fθ0(Xj:n) − Fθ0(Xj−1:n)]).

By the SLLN, n−|nU |
n+1 → Pθ0(U). By Theorem 2.1 of Shao and Hahn (1995),

1
n − |nU |

∑
j �∈nU

log([n + 1][Fθ0(Xj:n) − Fθ0(Xj−1:n)]) → −γ.
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Thus almost surely,

lim sup
n→∞

1
n + 1

∑
j �∈nU

log
Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)

Fθ0(Xj:n) − Fθ0(Xj−1:n)

≤ −Pθ0(U
c) log Pθ0(U

c) + Pθ0(U
c)(log δ + γ).

Moreover, since
∏

j∈nU
[Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)] ≤ ( 1

|nU |)
|nU |,

1
n + 1

∑
j∈nU

log
Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)

Fθ0(Xj:n) − Fθ0(Xj−1:n)

≤ 1
n + 1

∑
j∈nU

log
( 1
|nU | [Fθ0(Xj:n) − Fθ0(Xj−1:n)]−1

)

= − |nU |
n + 1

log
|nU |
n + 1

− |nU |
n + 1

1
|nU |

∑
j∈nU

log((n + 1)[Fθ0(Xj:n) − Fθ0(Xj−1:n)])

→−Pθ0(U) log Pθ0(U) + Pθ0(U)γ, as n → +∞.

Thus

0 ≤ lim sup
n→∞

1
n + 1

∑
j∈n+1

log
Fθ̂n

(Xj:n) − Fθ̂n
(Xj−1:n)

Fθ0(Xj:n) − Fθ0(Xj−1:n)

≤ −Pθ0(U
c) log Pθ0(U

c) − Pθ0(U) log Pθ0(U) + γ + Pθ0(U
c) log δ.

This contradicts the fact that Pθ0(U
c) log δ → −∞ when δ → 0. Thus we

cannot have a sequence of MPS estimates θ̂n → ∞ with positive probability.

Proof of Theorem 3.1. The MPS method does not depend on the version of the
density, thus there is no loss of generality in assuming that each non-increasing
density is left-continuous. First consider Case (1), i.e., both σ0(F ) and σ1(F ) are
known finite constants. Without loss of generality, let σ0(F ) = 0 and σ1(F ) = 1.
The MPS estimate of the unknown underlying distribution function is

F̂n = arg sup
F∈F

n+1∏
i=1

[F (Xj:n) − F (Xi−1:n)], (A.7)

where F = {F : F has a non-increasing left-continuous density on [0, 1]}. To
derive the explicit form of the MPS estimate, recall the derivation of the MLE
for a non-increasing density on [0,∞). Let fF be the density of F ∈ F . Then
the MLE is defined as

f̂n = arg sup
{fF :F∈F}

n∏
i=1

fF (Xi:n). (A.8)

Given points X1:n < · · · < Xn:n, Grenander (1956) proved the following two
results.
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(I) To achieve the maximum in (A.8) over all non-increasing densities on [0,∞),
it suffices to consider only those non-increasing densities which are step
functions with possible jumps at the given points X1:n < · · · < Xn:n.

(II) The density fF which achieves the maximum in (A.8) is the slope of the
least concave majorant (LCM) of the function (1/n)

∑n
j=1 I[0,x](Xj:n).

Thus the MLE of a concave distribution function on [0,∞), (or on [0, b) with b
unknown) is the LCM of the empirical distribution function.

Next we prove that the MPS estimate of a concave distribution function is the
LCM of Pyke’s modified empirical πn. Let gi(F ) = [F (Xi:n)−F (Xi−1:n)]/[Xi:n−
Xi−1:n] for 1 ≤ i ≤ n + 1. Then by the concavity of F , g1(F ) ≥ g2(F ) ≥ · · · ≥
gn(F ) ≥ gn+1(F ). Define a step function gF (x) on [0, 1) such that gF (x) ≡
gi(F ) for x ∈ [Xi−1:n, Xi:n). It is easy to see that gF (x) is a non-increasing
density function on [0, 1] with possible jumps only at the observation points.
Furthermore, F maximizes the product of spacings in (A.7) if and only if the gF

so defined maximizes the following “likelihood”
n+1∏
i=1

gF (Xi:n). (A.9)

One can regard X1:n ≤ · · · ≤ Xn:n ≤ Xn+1:n ≡ 1 as the n+1 ordered “observation
points” from a non-increasing density on [0,+∞). By (I), maximizing (A.9) is
equivalent to determining the MLE for non-increasing densities on [0,+∞) when
the ordered “observations” {X1:n, · · · ,Xn:n,Xn+1:n} are given. Then (I) and (II)
yield the explicit representation for “the MLE” which maximizes (A.9), i.e., the
MPS estimate which maximizes (A.7). Thus, the MPS estimate of the under-
lying distribution function is the LCM of the following “empirical distribution
function”: Hn+1(x) = (n + 1)−1 ∑n+1

i=1 I[0,x](Xi:n). Equivalently, the MPS esti-
mator of a concave distribution on [0, 1] is the LCM of Pyke’s modified empirical
distribution πn.

Next we study Case (2). Estimating a cdf with a non-increasing density on
[σ0(F ),∞) is equivalent to estimating a cdf which has a nonincreasing density
on [σ0(F ), σ1(F )] with σ1(F ) unknown. For any non-increasing density function
g(x) on [σ0(F ),+∞), define

αg =
∫ ∞

Xn:n

g(t)dt, Gαg (x) =
∫ x

σ0(F )

g(t)
1 − αg

dt.

Then {Gαg (x) : x ∈ [σ0(F ),Xn:n], 1 > αg ≥ 0} is the family of all distribution
functions with non-increasing densities on [σ0(F ),Xn:n]. Given the observations,
the maximum (over αg) of

n∏
j=1

[Gαg (Xj:n) − Gαg (Xj−1:n)] (A.10)
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does not depend on g. The maximum in (A.10) is achieved by spacings of the
LCM of the empirical distribution function. Now consider the following decom-
position of the product of spacings:

n+1∏
j=1

[F (Xj:n) − F (Xj−1:n)] =
( ∫ ∞

Xn:n

f(t)dt
) n∏

j=1

[F (Xj:n) − F (Xj−1:n)]

= αf (1 − αf )n
n∏

j=1

[Fαf
(Xj:n) − Fαf

(Xj−1:n)] ≤ αf (1 − αf )nMn. (A.11)

Note that in (A.11), Mn does not depend on αf . So maximizing
∏n+1

j=1 [F (Xj:n)−
F (Xj−1:n)] over F is equivalent to maximizing S(αf ) ≡ αf (1−αf )nMn over αf .
Differentiating S(αf ) and setting the derivative equal to zero yields a maximum
at αf = 1/(n + 1). Thus, the MPS estimator of a concave distribution function
F (x) on [σ0(F ),∞) is a concave distribution function which is n/(n + 1) times
the least concave majorant of Fn for x in [σ0(F ),Xn:n] and which puts mass
1/(n + 1) on [Xn:n,∞). Such an estimator is easy to construct and is uniquely
determined on [σ0(F ),Xn:n].

Estimating a concave cdf on [σ0(F ), σ1(F )) with σ0(F ) unknown is an inter-
esting problem, since the likelihood function can be unbounded without further
constraints.

Given n i.i.d. observations from a distribution F (x) which has a non-incre-
asing density f(x) on [σ0(F ),+∞), f(x) is non-increasing on [X1:n,+∞). For any
non-increasing density function g(x) which is not identically zero on (X1:n,+∞),
define

βg =
∫ X1:n

−∞
g(t)dt and Gβg (x) =

∫ x

X1:n

g(t)
1 − βg

dt.

Then {Gβg (x) : x ∈ [X1:n,∞), 1 > βg ≥ 0} is the family of all distribution
functions with non-increasing densities on [X1:n,∞). An argument similar to the
proof of Case (2) shows that the MPS estimate of F (x) is a concave distribution
function which is n/(n + 1) times the least concave majorant of the empirical
distribution Fn(x) for x in [X1:n,Xn:n] and which puts mass 1/(n + 1) on each
of the intervals (−∞,X1:n] and [Xn:n,∞).
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