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Before proving the main theorems, we introduce some elementary lem-
mas first. Let pu; = u(i/ni,j/na), Si([n - to]) and S¥([n - to]) be de-
fined as S;([n - to]) by replacing Yi; by Y;; — pi; = €;; and p;; respec-
tively. For example, S;([n - to)) = é Zz(:;f” Zjﬁk" g7 and S{([n - to]) =
o3 Sty k. Then

T([n - to])

4

Z ([ - to]) = Sisa([n - a]))* + Y (S ([m - to]) — SEy ([ - o]))?

+2Z (In - t0]) — Sisa([n - o)) (SE (- o)) — S%4, ([ - 80])). (S.1)

We first establish the joint convergence of (Sy([n-to)), ..., Si([n-to))).

Lemma 1. Under Conditions of Theorem 1,
kn(Si([n- o)), - -, Su([n - &) -5 0X,

where X = (Xq,...,Xy) and Xy, -+ , Xy are i.i.d. standard normal vari-

ables.
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Proof. By Cramér-Wold device, it suffices to show that for any real numbers

Qaty ..., 04,

4
Z 'n to —>Uzaz i (82)
i=1 i=1

Note that when all the a; = 0, (S.2) holds. Without loss of generality, we
assume at least one of the a; # 0. By Proposition 2 of El Machkouri, Volny

and Wu (2013) (EVW, hereafter), we can show that as n — oo,

E(aik:ngi([n . to])>2 — a? Z E(sgej) =ajo?, fori=1,...,4. (S.3)
Jez?

If 0 = 0, then follows directly by . Next, we assume o # 0. Let

Fm(2) = o(nj, |2 — j|| < m), g;(m) = E(g;|Fn(i)) be the project of ¢

on F,,(¢) and S;([n - to],m) be defined as S;([rn - ty]) with &;;(m) instead of

gij. Take m = m,, as in Lemma 3 of EVW, then by their Proposition 3 and

Lemma 2, if m,, — oo,

E Zaikn{gi([n ~to]) — Si([n - to],ma)}

< 163 a?B{ky(Si(n- to]) = Silln -, ma)Y 0. (3.4)
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Define

1 io+kn  Jotkn

Siln-tol,ma) = 5 Yo > eylma),

1=ig+Mmn j=jo+mn

Saln-tol,ma) = 15 Yo eulma),
i=to—kn j=Jo+mn

i0—Mn Jo—Mn

Ss(ln-tol,ma) = 15 Yo D culma),

i=i0—kn j=jo—kn
io+kn  Jo—mn

Sulm - ko], mn) = /?12 S Y cylm).

" i=iotmn j=jo—kn
By the stationarity of {e;;} and m}?/k, — 0 (see Lemma 3 of EVW), we

have
E{kn(Si([r - o], mn) — Si([n - to],mn))}* < (ms/K2)E{en}” = 0. (S.5)

Thus, by (S.4) and (S.5)), it suffices to show

4 4

Z azan’Z([n . to], mn) i) g Z CLZXZ (S6)

i=1 i=1
Since {g;j(my,)} is an m,, dependent field, by the central limit theory (CLT)

of m dependent random field (see Theorem 2 of Heinrich (1988)), we have

as n — oo,
ken{Si([n - to), mn) —= N(0,02), i =1,...,4, (S.7)

more details can be found in Theorem 1 of EVW. By the definition of

gij(my,), we have that S;([n - to],m,), i = 1,...,4 are independent each
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other. Thus, from (S.7)), it follows that

4
> aiknSi(n - o], ma) 5 N(O, (0 + -+ + a3)o?) (S.8)
i=1

On the other hand, since Xi,..., X, are i.i.d normal variables, it follows

that

4
aZaiXi L N0, (a2 + - -+ a2)a?).
=1

Thus, by (S.8]), we have (S.6) and complete the proof of the lemma. ]

Proof of Theorem 1.  We first show (i). By Lemma |l| and the contin-

uous mapping theorem,

4

k2> (Si([n - t]) = Sia([n - to))) 022)( X)) (S.9)

i=1

Let Z = (Zl, ZQ, Z3, Z4)T = Z(Xl,Xg,Xg,X4)T, where

Then Z is a multivariate normal vector with mean zero and covariance
A=3IY and Y1 (Xi — Xip1)2 =30, 72
On the other hand, suppose that to = (t2,t)) € B;and D;, i =1,...,4

are the blocks with central (n,t?, n,t9) and block length k,, (see Introduction
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section for the definition of D;), then on D = (Ji_, D;,

max |lu(s) —pu(d)]| = max || fi(s) — fi(t)||
8,teDN(B;\0B;) 8,teDN(B;\0B;)

k:a(nl + ng)a

< C-n , (S.10)

/rLOé
where B; \ 0B; = {s:s € B;, but s ¢ 0B;}. Similarly, we have

ky(ny + ng)®
max [u(s) — pu(e)| < cEt )

(S.11)
8,teDN(BL\IB;) ne

Since k1T®(ny + ny)®/n® — 0, it follows from equations (S.10) and (S.11])

that lim, o SI'([n - £o]) exists for all i = 1,...,4. Further, by Lemma [1]

k2

= 0,(1).

Thus, conclusion (i) follows by equations ({S.1)), (S.9)—(S.12)).

Next, we show (ii). By Theorem 1(i), the limit distribution of each
block T,,(¢k,,) is determined by the first term or the third term of equation
(2.5) for continuous case or the structural break case respectively. Thus, the
limit distribution of G,, does not depend on the second term of equation
(2.5). As a result, G,, — EG,, has the same limit distribution as that of
G, — EG,,, where G,, is defined as G,, with Yg being replaced by eg. Thus,
it suffices to show that the conclusion holds for G,. To this end, we split

the proof into two steps as follows:

Z(gi([n +to]) = Siva(fn - to]))(SY([n - to]) — St (I - o)) — (1 — Mi+1))‘

(S.12)
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First, we show that G,, can be approximated by a partial sum (G,,(m,,))
of an m, dependence process, in particular, G,(m,) is defined as G,, by
replacing e;; with €;;(m,,) (defined in Lemmal[1]). This is done in Lemma [2]

Second, we show G,,(m,,) has an asymptotically normal distribution by
using a block technique. This is done in Lemmas [3] and [4]

Therefore, by Lemmas , and , we have (ii) and complete the proof

of Theorem 1. O

Lemma 2. Suppose that Ay < oo and m,, — oo as n — oo, then under

H07

V1tkin| G — Gon(1n) — B(Gr — G(mn))] =2 0. (S.13)

Proof. Note that

= Z . . [Sl(lkna]kTJ + Sl((ana]kn)amn) - Sl+1(iknajkn) - Sl+1((iknajkn)>mn)]
[(gl ikna kn) - gl((ana]kn)amn)) - (§l+1(iknajkn) - Sl—l—l((iknajkn)amn))]

= DY > asias (s +es(mny))(es — eg(my)), (S.14)

=L 0<B<([L1[12]) (2-1)kn<8,8'<(T+1)ky

<

where ag; = 1 if s lies in the [-th quadran with start point (ik,, jk,) and
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edge length k,, say [;(i,j) and ag; = —1if s € [;44(i,5). As for the
definition of [;(, ), we take I;(i,7) for example, I;(i,7) = {s = (s1, $2) :
ik < 81 < (i 4+ Dk, ko < 89 < (5 + 1)k, }. Let 7: Z — Z¢ be a bijection,
Fi = olerq : | < i) and Pieg) = Eleg|Fi] — Eleg|Fia]. Let 2% and

?:{Sh) (m,,) be defined by replacing 7y, in g and £g(m,,) by its independent

copy n;. For simplicity, we write ZOS’L‘S([%],[%D Z(i—nkngs,s'g(iﬂ)kn as
>.i Ys.s denote || X||, = (EXP)/P and || - || for p = 2. By Burkholder

inequality, it follows that

E( 3 asias{(es +es(mn))(es —es(mn))

~El(es +es(m)) (e — s (m)]} )
= E{ Z Z Z P {asas (cs +es(my))(es — 53/(mn))}}2

h=-cc 4 8,8

o0

< 4 Z E{ Z Z P{as as (es +es(my))(es — 53'(mn))}}2
< 4 Z {ZHZPh{a,glasf (es +es(my))(es —es(Mmy)) }
< 3 Z (ZZ ||E{Zas,zasaz<es +e5(my) — 25" — 5" (ma))(es — esf<mn>>|fh}||)2

h=—o00

s Z (Z Z ”E{Z asyag  (es — g/ (Mmy) — g(shf) + g(shf) (mn))(g{sh)

For IIy,,, similar to (S.4)), by Proposition 3 and Lemma 2 of EVW, we can

+

G

()| F )

(S.15)
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show that as m,, — o0,

o< 8 Y {25 nes +eotml (| Ztew —eotman] )}

< (3w -] 1X - 3 (Aten  catml (| Stew —estma])}

= o(nk2A}]) = o(nk?).

Similarly, we have
Iy, = o(nk?).

Thus, by (S.14)) and (S.15]), we have

E{(G, — Gn(my)) — E(G,, — Gp(m,))}* = o(n 'k, ?).

n

This completes the proof of Lemma [2] m

Next, we use a block technique to show the asymptotic normality of

G, (my). Let

/{72 (ln+4)kn} [(ln+4)kn] [i(ln44)+n] [F(In+4)+1n]

Gni(m,) = E Z Z Z Z T, (pkn, gkyn, my)

p= l(ln+4) q= J(ln+4)

[(ln+411)kn] [(ln+4)kn] [Z(l7L+4)+l7L} (J+1 (l7L+4)

kn
Gn,Q(mn) = g Z Z Z Z T (pknaqkmmn)
1=0 p=i(ln+4) q=j(In+4)+in
2 [ larom] 41 (n+4) [(ln+4)+in]
Gua(ma) = - Z > Y Tulpkn, gkn,my)
7=01 p=i(ln+4)+ln ¢=j(ln+4)
12 [(znzi)kn [(zn i)kn] (+1)(In+4)  (G+1)(In+4)
Gn,4(mn) = En Z Z Z T (pkmqkmmn)a
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where T, (pkn, q¢k,, m,,) is defined as T,,(pk,, ¢k, ) by replacing es by es(m,,)
and I,, is a constant sequence tending to infinity. Then G,,(m,,) = 21, Gp.i(my,).

The next lemmas consider the limit behaviors of the G, ;(m,,), i =1,...,4.

Lemma 3. When A, < oo for some p > 4, then

Vnk,[Gni(m,) — EG, (m,)] 250, fori=2,3,4.

Proof. The proofs for G, ;(m,,), i = 2, 3,4 are similar, we only give G,, 2(m,,)

in details. Let &; = Zp lf(;:ijl"] qutlznliziz T(pkn, qkn, my).  Since

{es(my,)} is a stationary m,-dependent sequence with m,, = o(k,), it fol-

lows that {¢;;} is an independent sequence. Thus,

k6 [(ln+4)kn ] [(ln+4)kn ]

E{v/nkn(Gna(mn) — EGpa(m,))}* = Z Z E(&; — E&y)?

]{Z4
= mE(&]O - Efoo)Q. (Sl6)

Let I,(i,j) be defined as in Lemma [2] and I5(i,5) = [;(4,7) and [, satisfy
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ln/4 € Z. Then

ki (500 - EgOO)

In ln+4
p=0 g= ln
In Int+4d 4
5533 Mi[D SIETSED SRS,
p=0 g=l,, I=1 ~ S€l,(p,q) Seliy1(p9)
“E( Y estma) = Y. es(ma))’]
Sel;(p,q) Sel1(p,q)
4y lp+4 9 2
= XXX cstm) (X cslm)
=1 p=0 ¢=l, Seli(p,q) Seli(p.q)
2 2
(X estm) —B( X estma) |
Sel1(p,g) Seli11(p,9)
4 ln ln+4
PSS F ) X cam
=1 p=0 gq=l, 8SeIli(p,q) Seli11(p,q)
“E( Y eslma) Y es(ma)
Sel(p,g) Seliy1(p9)
ln ln+d
=8 [( X estm)—B( Y es(m)]
p=0 g=l, SeIi(p,q) Seli(p,q)
ln ln+d
2SS catn X catm
=1 p=0 q=l, ScI;(p,q) Scli41(p,9)
SBCY eslm) Y es(mn)]
Sseli(p,q) Seli1(p9)
= 8Xn1—2Xn2.

We write X,,; as the sum of independent blocks:

ZZZ[< Y. es(m))’—E( ) 53(mn))2]_

q=ln i=0 j=0  SeI(4j+i,q) Sel (4j+i,q)
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Since m,, = o(k,), it is easy to see that for any given i and g,

{2 estm))?—E( Y es(ma)?)

Seli(4j+i,q) Seli(p,q)
is an independent sequence. This gives that

In/4

B(XuP < 2003 B[( Y estma)?—B( Y s(m,))?]

Seli(4j+i,q) Seli(45+4,9)

< 1001nE[ 3 53(mn))}4

Seli(4j+1,q)

= 1001, > Y ElPi(es, (mn)) Pues, (mn)) Pu(es, (mn)) Pi(es, (ma))]

S, ,34611(4]'-1-'5, q) h,lEZ

= O(l,kY).
Similarly, we can show E(X,2)* = O(l,k?). Consequently,
E[k, (b0 — E&oo)]* < 64E(X1)” + 4E(X2)* = O(luk,). (S.17)
Thus, by , we have
E{Vnk,(Gua(my) — EGra(mn))} = O(1/1n) = o(1), (S.18)
and complete the proof of Lemma O

Lemma 4. When A, < oo for some p > 4 and m,, = o(k,), then there

exists a constant og > 0 such that
V1ikn[Grt (my) — EG i (my)] == N(0,02).

Proof. Let n;; = Zg(lf;::[l" Z[J_l;‘(?;i:l"] T (pkn, qky, my). Since {eg(my,)

is an m,,-dependent stationary process and m,, = o(k,,), it follows that {7;;}
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is an independent sequence and

itk |Gt () =BGyt ()]

[(ln+4)kn] [(ln+4)l€n}

- ”4 3 Z (L + 4) K2 (15 — Eny).

By the Lindeberg Central Limit Theorem, it suffices to show that
E[(l, +4) 7"k (noo — Enoo)]? < o0 (S.19)
and for any € > 0,
E{[(ln +4) "k (oo — Enoo)*I(Jnoo — Enoo| > ev/n/k))} — 0. (S.20)
By Holder inequality, it follows that
E{[(Ln +4)7"k2 (00 — Eneo) 1 (Ino0 — Enoo| > ev/n/k;)} (S.21)
< (bn +4) "k {Elmoo — Enoo”*}*P{P (o0 — Enoo| > e/n/kj)} /"
Similar to &g, we have

Kz (1100 — Enoo)

- SIi (Y esm))?=E( Y es(ma)?]

p,g=0  Sel;(p,q) Seli(p.g)
4 I
233 D st Y estma) —E( Y estm) > es(ma)]
I=1 p,g=0  SeIl(p,q) Seliy1(pq) Sel(p.g) Ssel1(p,q)
= 8§n1_2Cn2

Write (,,; as the sums of independent blocks, i.e.,

In/4

G = Z S0 Y estma-EC Y estma)?.

b1,b2=0 a1,a2=0 Sel (4(11 +b1, 4a2+b2) Sel (4(11 +b1 ,4a2+b2)
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Since {<28611(4a1+b1,4a2+b2) €S<mn)) (Zsell(4a1+b1 4a2+b2 E:S(mn)) } IS

a sequence of independent blocks for any given (by,bs), it follows from

Burkholder inequality that

[E‘Cnl |p/2]4/p
In/4

< Y B Y ) —E( Y esm)]
ai,a2=0 Seli(4a1+b1,4az+b2) Seli(4a1+b1,4az+b2)
< zngE[ 3 53(mn)r = O(2kY). (S.22)

Seli(4a1+b1,4a2+b2)
Similarly, we can show that [E|(,2|?/?]*? = O(I2k*). Thus,

{1 (00 — EUOO)’p/2}4/p =k, [Elk, (oo — E7700)|p/2]4/p
= O(Ik,"). (S.23)
This combining with Holder inequality implies that
P(jnoo — Eneo| > ev/n/ky) < (5\/ﬁ/k2)7p/2E|7700 — EUOO’p/Z

= O{(evik, ) Pk

= O{(n""Pknln)?*}.
Thus, by virtue of and and taking l,, = o(n'/?k; '), we have
E{[(l +4) ™ &7 (00 — Enoo)*I (1100 — Enoo| > ev/n/k3)}
= O{(n"Y?k,l,)P?} = o(1).

Therefore, (S.20) holds. Equation (S.19)) follows directly from ([S.23]) and

Lemma [4] is proved. O
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Lemma 5. Let U, ; = bnkn[TT’{(An(Ij)) — E*T;(An(Ij))]. Suppose that by,

and k,, satisfy the condition of Theorem 2. Then for any ¢ > 0,
P*{|Unj| > e/ |Tul} = 0, in probability.

Proof. Observe that

PHIU, ;1 > eV/|Tnl} = II%I Z I([bnkn[To(An(3)) = E'TL(AR(Z))]] > /| Tnl)-

Jez,

Thus, it is enough to show that for all 7, as n — oo,
P{bnknyTn(An(j)) ~ BT (Au(Z))] > g\/yjny} 0. (S.24)

By the definition of T,,(A,(j)), we have

PLbukal T Au(9)) ~ BT (AZ))] > =/l |
r{ > (T, (i) = BT (k)| > b/ [T]/(382) }

L:[(2—1)kn,(2+1)kn] CAR(J)

JFP{L 2 > (T (i) — E(T (k)| > V10l

|Z,| 3k,

IA

JE€Tn T[(E—1)kn, (T+1)kn] S An(J)

+P{| 3 E(Tn(ikn)—ﬁz 3 B(T, (k)| > oV 1Tl V’j"’}

R , 3k;
1:An(7) JET, :AL(])
=: BT, + BT,s + B1,3,

where Zi:An(j) denotes the sum: Zi:[(’i,—l)kn,(’i+1)kn]§An(j)' Since b, =

o(min(ny,ng)), it is easy to get that BT,3 — 0. Using the same arguments
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as in the proofs of G,, (see Lemmas [2H4]), we have

Var( 3 To(ika) ) = 002k, °),
i
which combining with condition b, = o(min(n;,ny)) implies that

BT, < 96—2n—1k2\/ar< 3 Tn(ikn)> — O 2) =o0(1). (S.26)
L:AL(J)
Similarly,

BT, = O(n ') = o(1). (S.27)
Thus, by (S.25)), we have (S.24]) as desired. ]

Proof of Theorem 2. GivenYs, s € I,,, \/| 7|02k, (G —E*G%) is a sum
of ii.d. variables U, ; = {bnkn| Tl ™"/* T, (Ba(I §))—E* [baku| Tl =T (Ba( §))]}-
By Lindeberg-Fell central limit theory, it is enough to show the Lindeberg
condition E*[Ujj](|Unj| > ¢)] — 0 in probability. Since E{E*(Ujj)} =
var{b,|J,|/*T,(B,(1)} < oo, it follows that E*[UjjIUUnj’ > ¢)] =
E*[Ujjl(yUnjy > M)] + E*[Ujj[(a < U < M)] = 0,(1) by Lemma
and taking M — oo. Thus, the Lindeberg condition holds and Theorem 2

is proved. O]



