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Abstract: Despite the availability of large amounts of genomics data, medical treat-

ment recommendations have yet to use them successfully. In this study, we consider

the utility of high-dimensional genomic-clinical data and nonparametric methods

for making cancer treatment recommendations. Our work builds on the framework

of the individualized treatment rule (Qian and Murphy (2011)) but we aim to over-

come their method’s limitations, specifically when the method encounters a large

number of covariates and when the model is misspecified. We tackle this problem

using a dimension reduction method, namely Sliced Inverse Regression (SIR, Li

(1991)), with a rich class of models for the treatment response. Notably, the SIR

defines a feature space for high-dimensional data, offering an advantage similar to

those found in the popular neural network models. With the features obtained from

the SIR, we use a simple visualization to compare different treatment options and

recommend a treatment. Additionally, we derive the consistency and the conver-

gence rate of the proposed recommendation approach using a value function. Lastly,

we demonstrate the effectiveness of the proposed approach using simulation studies

and a real-data example of the treatment of multiple myeloma.

Key words and phrases: Dimension reduction, individualized treatment rules, sliced

inverse regression, visualization.

1. Introduction

The conventional approach to recommending treatments for a disease has

been to use expert-driven guidance, based on knowledge built over decades. With

the increasing availability of large amounts of data, there is growing interest

in using such data to help choose different treatment options. For instance,

cancer research has generated extensive genomics data, for example, on genetic

mutations and mRNA expressions, along with clinical data including treatment

options and clinical outcomes. These data add valuable information to support

and complement expert knowledge for cancer treatments. In this study, we aim to

develop a data-guided tool with simple visualizations to help doctors and patients

evaluate different treatment options and to recommend a treatment.
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As a case study, we examine a data set of gene expressions and treatment

responses from multi-center clinical trials of bortezomib for the treatment of mul-

tiple myeloma (Mulligan et al. (2007)). Multiple myeloma is a malignant bone

marrow cancer. This disease is highly heterogeneous, meaning that different pa-

tients with diverse genomic information show different clinical outcomes (Mitra et

al. (2017)). However, the current treatment strategy is limited to the experience

of physicians and experts, mainly using the patient’s clinical information, such

as age and cancer stage. Using a specific genomic-clinical data set, we aim to

make a treatment recommendation between two therapeutic choices, namely, a

traditional chemotherapy drug called dexamethasone, and a targeted drug borte-

zomib.

Our goal is related to research on precision medicine, which has attracted

a considerable amount of interests. A recent study on precision oncology for

acute myeloid leukemia (Gerstung et al. (2017)) analyzed genomic-clinical data

to support clinical decision-making. Zhu and Xie (2015) used a nonparametric

method to identify patient subpopulations that would experience stronger treat-

ment effects than the rest of the patient population. However, these studies were

exploratory, with no formal framework to define an optimal treatment rule. A

valuable formulation has been contributed by Qian and Murphy (2011). Formally,

we consider a list of random variables (X, A, Y ) from a genomic-clincial dataset,

where Y denotes a treatment response variable (where larger values are better),

X ∈ X ⊂ Rp denotes a set of clinical covariates plus genetic variables, for exam-

ple, gene expressions, and A ∈ A denotes a treatment index taking values in a

finite discrete space of treatment options, for example, A = {−1, 1} corresponding

to a control and a treatment, or A = {1, . . . ,M} corresponding to M treatment

options. A treatment recommendation rule is a function d(X) : X → A, and is

called an individualized treatment rule in Qian and Murphy (2011). An individ-

ualized treatment rule that gives the highest mean response is the optimal one

that we hope to find.

There are two types of approaches to constructing an optimal treatment rule,

namely, direct methods and indirect methods. The indirect methods consist of

two steps. The first step estimates a conditional mean of the treatment response,

given clinical variables and the treatment index, E(Y |X, A). The optimal treat-

ment rule is then defined as the one that maximizes the estimated conditional

mean (Rosenwald et al. (2002); van’t Veer and Bernards (2008); Qian and Murphy

(2011); Cui, Zhu and Kosorok (2017); Hager, Tsiatis and Davidian (2018); Bai et

al. (2017); Zhao et al. (2019); Guo, Zhou and Ma (2021)). The indirect methods

rely heavily on a correct model specification for the conditional mean E(Y |X, A)



TREATMENT RECOMMENDATION WITH FEATURE SCORES 2499

(Qian and Murphy (2011)), which is often challenging to achieve. On the other

hand, the direct methods are one-step procedures that circumvent the need for a

conditional mean estimation. The basic idea is to obtain a treatment recommen-

dation rule d(X) directly by optimizing a criterion, called the Value function.

The direct methods use a weighted classification framework and are based on

the support vector machine (SVM) approaches. These methods include Outcome

Weighted Learning (Zhao et al. (2012)), Residual Weighted Learning (Zhou et

al. (2017)), and other variations (Dasgupta and Huang (2020); Mo, Qi and Liu

(2021)). However, these methods are often confined by the limitations of the

SVM procedure, such as difficulties with small separation margins, choices of

kernels, and so on. Furthermore, there are also methods focusing on dynamic

treatment regimes that consider treatment recommendations at multiple times

and on Bayesian approaches of dynamic treatment regimes (Schulte et al. (2014);

Zhang et al. (2013); Luckett et al. (2020); Liu et al. (2018); Yang, Tsiatis and

Blazing (2018); Laber and Davidian (2017); Xu et al. (2016); Murray, Yuan and

Thall (2018)). Nevertheless, the existing methods do not work well with high-

dimensional data.

We focus on the indirect method, and improve it by developing an approach

that contains a class of rich conditional mean models. Specifically, we apply

Sliced Inverse Regression, or SIR (Li (1991)), to predict the treatment response.

The SIR is designed to retrieve interesting features of high-dimensional data

by using low-dimensional projections. The method can model the relationship

between a treatment response and a set of genomic and clinical variables using

an arbitrary unknown function. There is no linear model assumption about the

conditional mean of the treatment response. In other words, the model space

of E(Y |X, A) from the SIR method is often bigger than that of other indirect

methods, such as Qian and Murphy (2011). Therefore, we gain robustness to the

model specification.

An important strength of the SIR procedure is that it directly estimates the

low-dimensional projection space and represents the high-dimensional data us-

ing only a few features. This resembles the feature definition component of the

neural network models that are popularly used nowadays. We name the SIR

projected data Feature Scores. Specifically, the SIR works well when the effects

from individual clinical or genetic variables are weak, but the treatment response

may depend on an unknown feature, which is common in cancer treatment. A

simple scatter plot of the treatment response versus Feature Score allows users to

visualize and compare different treatment options. We also obtain a nonparamet-

ric functional fitting of the treatment response versus Feature Score by LOESS
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(Cleveland and Devlin (1988)). LOESS, namely, locally estimated scatterplot

smoothing, was proposed by Cleveland and Devlin as a locally weighted regres-

sion method. It provides a simple estimation of E(Y |X, A). We further prove

that the SIR plus LOESS procedure consistently estimates the optimal treatment

rule under moderate assumptions. Thus, our method offers a tool for doctors,

and even patients, to assess and confirm available treatment plans.

In summary, the primary contribution of this study is to define a small feature

space in a framework of individualized treatment rules. The major advantages

of the proposed method include 1) dimension reduction with feature detection,

2) rich conditional mean models for consistent estimation of the optimal treat-

ment, 3) visualization of the optimal treatment recommendation, 4) a theoretical

guarantee with a convergence rate.

The remainder of the article is organized as follows. In Section 2, we introduce

the Value function, define the Feature Score, and show a visualization of the

treatment recommendation. In Section 3, we prove the consistency and derive

the convergence rate of the proposed recommendation approach. In Section 4,

we present the results of our simulations and compare our proposed method with

other methods. Section 5 demonstrates the results of applying the proposed

method to the case study of treatments for multiple myeloma. Some discussions

are given in Section 6. The Supplementary Materials include the information on

the data, code, and technical proofs of the lemmas and theorems.

2. Treatment Recommendation through Feature Scores

Formally, we have a set of random variables (X, A, Y ) in the data set, where

X ∈ X ⊂ Rp denotes clinical covariates plus a big set of genetic variables, A ∈ A
is the treatment index, taking values in a finite discrete space A of treatment

options, and Y is the treatment response variable, with a larger values indicating

a better treatment response. A treatment recommendation rule is a function

d(X) with values in A. Denote the distribution of (X, A, Y ) by P . Following

the framework of individualized treatment rules (Qian and Murphy (2011)), we

will first show that an optimal treatment recommendation rule must maximize

E(Y |X, A = a) over a ∈ A. This result justifies the use of indirect methods,

which focus on the estimation of E(Y |X, A = a). Next, we will apply the SIR (Li

(1991)) to estimate E(Y |X, A = a) and then obtain the optimal recommendation

rule. The model space for the estimation of E(Y |X, A = a) in the SIR method

is very large, which is the biggest advantage of our proposed method.
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2.1. Value function and optimal recommendation

By convention, we use uppercase letters for random variables, and lowercase

letters for the values of the random variables. The likelihood of (X, A, Y ) under

P is f0(x)p(a|x)f1(y|x, a), where f0 is the unknown density of X, p(·|x) is the

randomization probability of A given X = x, and f1 is the unknown distribu-

tion of Y conditional on (X, A). Let P d denote the distribution of (X, A, Y )

when a treatment recommendation rule d(X) is used to assign treatments. Then,

the likelihood becomes f0(x)1(d(x) = a)f1(y|x, a). We assume all treatment

options, a ∈ A, are available to the patient population, so the support spaces

supp(d(X )) = supp(A). Define the Value of d as V (d) , Ed(Y ). Assume

p(a|x) > 0, for any a ∈ A and x ∈ X . The Value of any treatment rule d

can be expressed as

V (d) =

∫
Y dP d =

∫
Y
dP d

dP
dP =

∫
Y
1d(X)=A

p(A|X)
dP = E

[
Y
1d(X)=A

p(A|X)

]
.

An optimal treatment recommendation rule, denoted as d0, is a rule that has the

maximum Value over all possible treatment recommendation rules,

d0 ∈ argmax
d

V (d).

Moreover, denote Q0(X, A) , E(Y |X, A). We also have

V (d) = E

[
1(d(X) = A)

p(A|X)
E[Y |X, A]

]
= E

[∑
a∈A

1d(X)=aQ0(X, a)

]
= E [Q0(X, d(X))] .

Note that the Value for the optimal treatment rule V (d0) = E[Q0(X, d0(X))]

≤ E[maxa∈AQ0(X, a)]. Meanwhile by the definition of d0, V (d0) ≥
V (d)|d(X)∈argmaxa∈AQ0(X,a) = E[maxa∈AQ0(X, a)]. Thus, the optimal treatment

rule satisfies d0(X) ∈ argmaxa∈AQ0(X, a). Note that the optimal treatment rec-

ommendation rule d0 is unique in many cases. For example, when the conditional

mean function Q0(X, a) has distinct values over a ∈ A, the optimal rule is unique.

Our ultimate goal is to estimate d0, which will be achieved by first estimating

the conditional mean Q0(X, A).

More specifically, the estimated treatment recommendation rule is defined as

d(X) ∈ argmax
a∈A

Q(X, a), (2.1)
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where Q(X, A) is an estimator of the true conditional mean Q0(X, A). The

following result, modified from Qian and Murphy (2011), shows that the difference

between the largest Value V (d0) and V (d) is controlled by the mean squared error

of the estimator Q(X, A).

We require an assumption similar to the margin condition in classification.

Assume both the true conditional mean Q0(X, A) and its estimator Q(X, A) are

square integrable. Define T (X, A) = Q(X, A) − E[Q(X, A)|X] and T0(X, A) =

Q0(X, A)−E[Q0(X, A)|X]. They are referred to as the treatment effect terms in

Qian and Murphy (2011). The following assumption is about the margin of T0,

i.e., the difference in the mean responses between the optimal treatment and the

suboptimal treatment.

(A.1) There exist some constants C > 0 and α > 0 such that

P

(
max
a∈A

T0(X, a)− max
a∈A\argmaxa T0(X,a)

T0(X, a) ≤ ε
)
≤ Cεα,

for any ε > 0.

Lemma 1. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a) pairs

and assume (A.1). For any treatment rule d : X 7→ A and square integrable

function Q : X ×A 7→ R, such that d(X) ∈ argmaxa∈AQ(X, a), we have

V (d0)− V (d) ≤ C ′ [
E(Q(X, A)−Q0(X, A))2

](1+α)/(2+α)
,

where C
′

= (22+3αS1+αC)1/(2+α).

The proof is provided in the Supplementary Material.

2.2. A rich conditional mean model

Lemma 1 justifies the use of indirect methods. When we have a consistent

estimator of Q0(X, A) = E(Y |X, A), that is, an estimator Q(X, A) converges

to Q0(X, A), Lemma 1 shows that the Value of the estimated treatment recom-

mendation rule, i.e., V (d) of d(X) ∈ argmaxa∈AQ(X, a), also converges to the

optimal value V (d0). However, this does not happen if the conditional mean is

modeled incorrectly. In fact, if the approximation space used to estimate Q0 does

not contain the truth, then the estimated treatment recommendation rule will

not be consistent. Qian and Murphy (2011) pointed out this challenge but did not

present methods to address it. We attempt to offer a solution via Sliced Inverse

Regression (SIR) (Li (1991)). SIR is a novel method for reducing the dimension

of X, without going through any model-fitting process in the first place. It is
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developed under a very general model, Y = g(β1X, β2X, . . . , βkX, ε), where β’s

are unknown row vectors, k is a small number, ε is the error term independent of

X, and g is an unknown function. When applying the SIR, we make the following

very general assumption:

(A.2) For each treatment group a ∈ A, the conditional mean response depends on

a low-dimensional projection of X. That is, E[Y |X, A = a] = E[Y |βa,1X,
βa,2X, . . . , βa,kX, A = a], with k as a small number, for example, k = 1 or

2.

In other words, given a treatment a ∈ A, the conditional mean response is as-

sumed to be E(Y |X, A = a) = ηa(βa,1X, βa,2X, . . . , βa,kX), where ηa is an un-

known function that can take a general form.

There is a slight difference between the model assumption of the SIR, i.e.,

Y = g(β1X, β2X, . . . , βkX, ε), and (A.2). In this study, we aim to estimate the

conditional mean function E(Y |X, A), and use (A.2) to achieve dimension reduc-

tion for the mean function. The space defined by β’s in (A.2) is called the central

mean subspace in the literature. On the other hand, SIR was originally developed

to estimate the central dimension-reduction subspace (Cook (1994)), which, by

definition, contains the central mean subspace. There is also a rich body of liter-

ature on dimension reduction and estimating of the central dimension-reduction

subspace. Important approaches include the SIR, sliced average variance esti-

mate (SAVE) (Cook (2000)), principal Hessian direction (Li (1992)), and their

variations. We choose to use the SIR, owing to its simplicity.

With Assumption (A.2), the projection of a set of predictors X onto the

k-dimensional subspace, (βa,1X, βa,2X, . . . , βa,kX), captures all we need to know

about Y for the given treatment A = a. The projection space and the ar-

bitrary function ηa are allowed to be different for different treatment groups

a ∈ A. This assumption offers a rich class of models for the conditional mean

Q0(X, A) = E[Y |X, A]. Specifically, if we denote Q as the approximation space

for Q0, then Q contains the linear model, the commonly used generalized linear

models, and many more. In fact, our assumption does not impose any struc-

ture on how the projected variable affects the mean response E[Y |X, A]. There-

fore, it gives a very general approximation space Q, likely containing the true

function Q0. When Q0 ∈ Q, we obtain a consistent estimator Q, and hence

the estimated recommendation rule in Formula (2.1) converges to the optimal

rule, as per Lemma 1. In contrast, Qian and Murphy (2011) used linear models

(with certain basis functions) to approximate Q0. Our approximation space Q
improves on the methods of Qian and Murphy (2011) when a low-dimensional
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projection of X exists that contains most of the information required to predict

Y . In conclusion, our rich class of approximation space Q eliminates the model

misspecification problem, to a certain degree, because a big space Q is likely to

contain the correct model.

The number k is supposed to be very small (e.g., 1 or 2), and βa,1X, or

(βa,1X, βa,2X), provides summary information about a patient that we use to

predict the treatment response. We name βa,1X, or (βa,1X, βa,2X) if k = 2,

as Feature Score. Using the Feature Score enables us to represent the cancer

treatment situation in which there is no strong effect from an individual genetic

variable but the treatment response depends on unknown features. Li (1991)

provided a direct etimator of β’s through the SIR procedure. For each treatment

group A = a, suppose we have patient samples of the treatment response and

the covariate vector {(yi,xi)}. We apply the SIR and obtain the first projection

direction β̂1. The Feature Score is denoted as ui = β̂1xi, which can be interpreted

as a summary feature of a patient, and is supposed to capture the majority of data

information for the prediction of the treatment response Y . More interestingly,

this feature definition is analogous to that of the neural network model, and the

SIR is able to directly estimate the features without knowing the link function

ηa.

2.3. Simple visualization with the Feature Score

Suppose A = {1, . . . ,M}. Therefore, there are M different treatment groups

in a given data set. We conduct a SIR for each treatment group and obtain the

first projection direction β̂a,1, for a = 1, . . . ,M . We can project all patients onto

a one-dimensional space (line) and calculate their Feature Scores ui = β̂a,1xi,

where the Feature Scores vary across different treatment groups. We draw a

simple scatter plot of yi versus ui for each treatment group, for a = 1, . . . ,M .

Even though the Feature Scores of different treatment groups ui = β̂a,1xi are not

comparable, we can still compare the treatment response via the vertical axis,

which has the same scale over different scatter plots (see Figure 1). These plots

provide a visualization of the treatment options, i.e., a = 1, . . . ,M , where a larger

vertical value indicate a better treatment response.

We also obtain a nonparametric fitting of the function, ĝa(u), for example, by

local constant estimates, or LOESS (Cleveland and Devlin (1988)), for each of

the treatment groups a = 1, . . . ,M . These nonparametric estimates provide the

predicted treatment responses for each treatment option. Given a new patient

with data vector x, we first calculate its Feature Score, ua = β̂a,1x. Then, the best

treatment option is the one that maximizes the predicted treatment responses.
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More specifically, we recommend a treatment choice as

argmax
a=1,...,M

g̃a(β̂a,1x), (2.2)

where β̂a,1 is from the SIR procedure, and g̃a(·) is the nonparametric function

estimate based on the patient samples {(yi, ui)}, with ui = β̂a,1xi. In general,

we have the subspace dimension k > 1, and the SIR may project data from

different treatment groups onto different subspaces. Nevertheless, we obtain a

nonparametric estimate of the functional relationship, g̃a(β̂a,1x, . . . , β̂a,kx). The

treatment recommendation is defined similarly to (2.2).

The visualization through the scatter plot of yi versus Feature Score ui is

a very useful tool. We can locate a patient’s Feature Score ua = β̂a,1x on the

horizontal axis (or on the projected space when the Feature Score is more than

one dimensional), and then consider the treatment response values on the verti-

cal axis in the scatter plots, as shown in Figure 2. We can also use the vertical

axis to compare the predicted treatment responses between our proposed treat-

ment plan and the plan based on current expert guidelines, which will indicate

the improvements in the treatment response that may be achieved by using the

proposed treatment recommendation.

2.4. Data preprocessing and the algorithm

Before implementing the SIR procedure, we need to preprocess the data.

First, we need to confirm that a given genomics data set contains significant

information for the prediction of the treatment response. We evaluate the overall

dataset information through a global hypothesis testing method, namely, the

Cauchy combination test developed by Liu and Xie (2019). The p-value from

this test serves as evidence to support a data-guided treatment recommendation.

If the test gives a large p-value, we should not consider using the genomic data

to forecast a patient’s prognosis and to recommend treatments.

In the second step of the data preprocessing, we conduct initial variable se-

lection before implementing the SIR when we analyze a large number of genomic

variables. The SIR is a dimension reduction method involving principal com-

ponent analysis (PCA). In general, some initial reduction in dimensionality is

desirable before applying any PCA-type methods (Johnstone and Lu (2009)). In

fact, as proven by Lin, Zhao and Liu (2018), when the dimension p is larger than

the sample size n, the SIR estimate of the central space is inconsistent. Hence,

we require certain structural assumptions, such as the sparsity of the projec-

tion vectors β’s. Various high-dimensional sparse SIR regression methods have
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been proposed in the literature (Jiang and Liu (2014); Lin, Zhao and Liu (2019);

Tan, Shi and Yu (2020); Lin et al. (2021)). Here, we perform a screening plus

low-dimensional SIR procedure.

In terms of computational cost, “screening + SIR” has a clear advantage,

because high-dimensional sparse SIR methods always involve operations of the p-

dimensional matrix var(E(X|Y )). Our experience shows that “screening + SIR”

reduces the computational time of a high-dimensional sparse SIR method by at

least half.

In terms of assumptions for theoretical properties, a high-dimensional SIR

regression requires that the whole p-dimensional distribution of X satisfies the

linearity assumption, that is, for any ξ, E(ξTX|βT1 X, . . . , βTk X) is a linear com-

bination of (βT1 X, . . . , β
T
k X). It also requires coverage assumption, that is, the

k nonzero eigenvalues λi’s of var(E(X|Y )) satisfy κλ ≥ λ1 ≥ · · · ≥ λk ≥ λ, for

some constants κ and λ. In contrast, “screening + SIR” requires a mild condition

that the subset of variables in the true SIR regression model are all marginally

correlated with Y , and hence will survive from the screening step. Then, only

the low-dimensional joint distribution of the selected Xi’s needs to satisfy the

linearity and coverage assumptions.

We consider here two variable-screening methods, to select a subset of vari-

ables before running the SIR process. The first selects variables with the smallest

p-values from a simple regression of Y over Xj and A, for j = 1, . . . , p, at a false

discovery rate (FDR) cutoff, for example, of 5%. The second method screens the

important variables from a nonparametric local regression of Y over Xj and A

using LOESS, with the smallest 5% residual errors. Either method can be used

before implementing the SIR. These two methods are based on the idea of sure

independence screening (Fan and Lv (2008)), which are computationally efficient

and can attain the sure screening property. The sure screening property guar-

antees that important variables survive the screening approach with probability

tending to one. With a proper screening threshold, the sure screening property

holds as long as the correlation coefficients between the true active variables Xj ’s

and Y are bounded away from zero (e.g., Assumption 3 in Fan and Lv (2008)).

To determine the number of Feature Scores k, which is the number of di-

mensions for the reduction in the proposed SIR model, we can use the χ2 test

suggested by Li (1991). On the other hand, as SIR is a PCA-type method, it

is common practice to consider one or two Feature Scores, that is, one or two

principal components, for visualization. The specific algorithm for our treatment

recommendation is provided in Algorithm 1.
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Algorithm 1 Treatment recommendation procedure

1: procedure s = TreatRcmd(Y,X, A,xnew)

Input : A training data set with observed (X, A, Y ), where Y is the treatment re-
sponse, X = (X1, . . . , Xp) is the set of genomic variables and clinical covariates,
and A is the treatment index; A new observation with vector value xnew for
treatment recommendation.

Output : Scatter plots of Y versus Feature Scores; The predicted response under
each treatment option for xnew and the optimal treatment option.

. Overall information summary
2: Calculate p-value from the Cauchy combination test.
3: Alert if the overall p-value is large. Continue only if the p-value is small.

. Subset selection (Optional)
4: Select a subset of Xj ’s for the following SIR procedure, using either a linear

regression or a nonparametric local regression of Y over Xj and A. A default cutoff
is the false discovery rate 5%, or using LOESS with the smallest 5% residual errors.

. Dimension reduction (SIR)
5: For each treatment group A = a, conduct the SIR to obtain the low-dimensional

projection directions β̂a.
6: Construct scatter plots of Y versus Feature Score ua = β̂aX for each treatment

group.
. Prediction

7: For the new data point xnew, calculate its Feature Scores ua = β̂axnew under
each treatment option A = a, and predict the response under the corresponding
treatment.

8: Obtain the optimal treatment recommendation that gives the largest predicted
response.

9: end procedure

3. Consistency and Convergence Rate

Our treatment recommendation rule is d(X) ∈ argmaxa∈AQ(X, a), where

Q(X, A) is an estimator of Q0(X, A) = E(Y |X, A) and is obtained by SIR and the

nonparametric procedure LOESS. Recall the Value function defined in Section

2.1. The following theorem shows that we can have V (d) converging to the

optimal Value V (d0) at a certain rate. In addition to the margin condition (A.1),

we require further assumptions for the SIR (Li (1991)) and the nonparametric

LOESS estimator. We first rewrite the SIR assumption (A.2) by denoting the

treatment index as i ∈ A = {1, . . . ,M} and the projection directions β’s as

Bi ∈ Rk×p, for k < p.

(A.2) There exist some full-rank matrices Bi ∈ Rk×p, for k < p, such that

E[Y |X, A = i] = E[Y |BiX, A = i] = ηi(BiX), where ηi(·)’s are ρ-Lipschitz

continuous and have continuous second derivatives. Furthermore, for any
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row vector ξ ∈ Rp, E [ξX|BiX] is a linear function of BiX. In addition,

the dimension of the central inverse curve E [X|y,A = i] is equal to the

dimension of the space spanned by the columns of Bi, col(Bi), and the

variance vi(u) = Var[Y |BiX = u,A = i] is a continuous function.

(A.3) Denote the kernel function of LOESS by KH(u) = |H|−1/2K(H−1/2u),

where u ∈ Rk and the bandwidth matrix H ∈ Rk×k. Assume the kernel

function K(·) is ρ-Lipschitz, compactly supported, and satisfies
∫
uu>K(u)

du = µ2(K)I, where I is the identity matrix and µ2(K) is a constant

depending on K. Moreover, all odd-order moments of K are equal to zero,

that is,
∫
ul11 · · ·u

ld
d K(u)du = 0 for all non-negative l1 · · · ld when their sum

is odd. Furthermore, the bandwidth matrix H is symmetric and positive

definite with each entry, as well as n−1|H|, tends to 0 as n→∞, and the

ratio of the largest and the smallest eigenvalue of H is uniformly bounded

for all n.

(A.4) For all i ∈ A, let fi(·) be the conditional density function of BiX given

A = i. Assume that fi(·) is uniformly bounded away from zero and has a

continuous gradient function Dfi(·).

(A.5) Denote ni = |{j : Aj = i}| as the number of observations in the treatment

group A = i. Assume mini∈A P (A = i) > c, for some positive constant c,

and the support set of X is bounded.

As represented in (2.2) in Section 2.3, we write the treatment recommenda-

tion rule as d(x) ∈ argmaxi∈AQ(x, i), where Q(x, i) = g̃i(B̂ix), with B̂i as the

estimated projection directions from the SIR and g̃i(·) as the LOESS function

from the training data {B̂ixj , yj}{j:Aj=i}.

Theorem 1. Assume (A.1)-(A.5) hold. Then, the difference between the optimal

Value, V (d0), and V (d) of our treatment recommendation rule converges to zero

in probability as n→∞:

V (d0)− V (d) ≤
(
|H|−1‖H−1/2‖2FOp(

1

n
) +Op

(
|H|−1/2

n
+ ‖H‖21

))(1+α)/(2+α)

,

(3.1)

where ‖H‖1 denotes the maximum column absolute sum, and ‖·‖2F denotes the Fr-

obenius norm. When the bandwidth matrix H=diag{h, . . . , h}, with h=n−1/(k+3),

the upper bound on the right-hand side becomes Op(n−(2(1+α))/((k+3)(2+α))).

The proof is provided in the Supplementary Material.
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Remark 1. Theorem 1 is obtained by combining the estimation errors of the

SIR procedure and the LOESS nonparametric regression. The second error term

in (3.1) is the intrinsic estimation error of the LOESS regression, and the first

error term is the additional estimation error induced by the uncertainty of the

SIR procedure. With an appropriate choice of the kernel bandwidth, for example,

h = n−1/(k+3), our treatment recommendation rule is consistent in the sense that

V (d) converges to the optimal Value V (d0).

Remark 2. The smoothness assumption of ηi and vi, the requirements on the

kernel choice in (A.3) and (A.4) ensure the consistency of the nonparametric

estimation for each mean regression function ηi via the local linear regression ap-

proach. The bandwidth matrix H usually takes a simple form as diag{h, . . . , h},
where h > 0. Given this simplification, the last statement in assumption (A.3) is

satisfied automatically.

Remark 3. The compactness assumption on the support set of X in (A.5) greatly

facilitates our theoretical analysis, for example, by trivially ensuring that ‖Df (·)‖
is bounded. This assumption is reasonable for most medical treatment applica-

tions, because patient measurements, such as gene expression levels, are usually

bounded or standardized. We conjecture that our theoretical results will still

hold for an unbounded X, such as the Gaussian design. A rigorous convergence

analysis for such cases is left for future work. Assumption (A.5) also ensures that

ni � n, in probability.

Remark 4. For simplicity of representation, our theorem considers only fixed p

and k situation. If p and k increase with respect to n, then the corresponding

convergence rates can be studied rigorously by utilizing the high-dimensional

algorithm and the SIR theory developed by, e.g., Zhu, Miao and Peng (2006) and

Lin, Zhao and Liu (2018), Lin et al. (2021), Lin, Zhao and Liu (2019). In Section

3 of the Supplmentary Material, we present a convergence result under p → ∞
and p/n→ 0.

4. Simulation Studies

To assess the proposed method, we perform extensive simulations. We com-

pare our method with three existing approaches, namely, Outcome Weighted

Learning (OWL) (Zhao et al. (2012)), Residual Weighted Learning (RWL) (Zhou

et al. (2017)), and a linear regression method with an ordinary least squares

estimation of the conditional mean of the treatment response, denoted as OLS.

We generate p covariates X1, . . . , Xp from uniform [−1, 1], where a small
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and a large covariate set are considered with p = 8 or 100. We consider two

treatment options A = {1,−1} of a randomized controlled study. The response

Y follows a normal distribution with mean µ(x) + t0(x)a and standard deviation

one, where µ(x) represents the effect of the covariates x = (x1, x2, . . . , xp) and

t0(x)a represents the treatment effect, which may depend on x. We simulate two

sample sizes, n = 100 and n = 400, with half of the samples in the treatment

group and the other half in the control group. The terms µ(x) and t0(x)a are

chosen from the following four scenarios:

1. µ(x) = 2 + 4x1 + 4x2 + 4x3, when a = 1; µ(x) = (2 + 4x1 + 4x2 + 4x3)
2,

when a = −1; t0 = 0.

2. µ(x) = 2 + 2x1 + 2x2 + 4x3 + 4x4; t0(x) = 1.3(x2 − 2x21 + 0.3).

3. µ(x) = 10x1/(0.5 + (x2 + 1.5)2); t0(x) = 1.3(x2 − 2x21 + 0.3).

4. µ(x) = 10x1/(0.5 + (x2 + 1.5)2); t0(x) = 3.8(0.8− x21 − x22).

Scenario 1 is modified from a simulation model of OWL (Zhao et al. (2012)). We

define the mean function as a linear function for a = 1, and its quadratic function

for a = −1. Scenario 2 is similar to the second scenario in RWL (Zhou et al.

(2017)). Scenarios 3 and 4 have nonlinear functions, with µ(x) modified from a

simulation model of SIR (Li (1991)).

We first conduct the Cauchy combination test on the entire set of covariates

X1, . . . , Xp. The test gives significant results for all simulations. For data sets

with a small number of covariates, i.e., p = 8, we directly implement the SIR

method. On the other hand, for data sets in which the dimension is comparable

to the sample size, i.e., p = 100, we conduct an initial variable selection before

implementing the SIR (see Algorithm 1). A simulated data set typically has

between two and seven selected variables, with the exact number varying for

different model scenarios and different simulation replicates. We then conduct

a SIR for each treatment group and obtain the first projection direction β̂a, for

a = 1 or −1. Feature Scores are calculated for subjects in the corresponding

treatment group, for a = 1 or −1, as ui = β̂axi.

Figure 1 shows two scatter plots of yi versus ui, one for each treatment

group. These plots display the functional relationships between the response Y

and Feature Score and are used to predict responses for a new observation x.

Figure 2 shows plots of the predicted response versus Feature Scores, where each

sample xi, for i = 1, . . . , n, is considered as a new observation (a test data). Each

sample has two Feature Scores, ua,i = β̂axi, for a = 1 or −1, and two predicted



TREATMENT RECOMMENDATION WITH FEATURE SCORES 2511

−1.5    −1.0     −0.5      0.0       0.5      1.0       1.5

−
15

   
 −

10
   

   
 −

5
0

5
10

Treatment A = 1 
(one simulation training sample200)

Feature score

O
bs

er
ve

d 
re

sp
on

se

−1.5    −1.0     −0.5      0.0       0.5      1.0       1.5

−
15

   
 −

10
   

   
 −

5
0

5
10

Treatment A = −1 
(one simulation training sample200)

Feature score
O

bs
er

ve
d 

re
sp

on
se

Figure 1. Scatter plot of Y versus Feature Score ua = β̂ax under each treatment (Scenario
3).
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Figure 2. Predicted response value versus Feature Score ua = β̂ax under each treatment
(Scenario 3). A specific data point, ID 139, is marked for visualization of the optimal
treatment.

treatment responses from the LOESS fits of Figure 1. We use the R package

loess() with its default bandwidth parameter h = 0.75. The vertical axes of

these plots use exactly the same scale for the treatment response, and thus are

directly comparable. It clearly demonstrates the optimal treatment option, either

a = 1 or −1, for each sample. Specifically, the subject with ID 139, marked by
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a small triangle in the plots, has the predicted response value Ŷ = −11.44723

when assigned to the treatment a = 1, and Ŷ = −2.79185 when assigned to the

treatment a = −1. This subject is then recommended to get treatment a = −1

due to the larger predicted response value.

For the simulation studies, we know the true optimal treatment recommenda-

tion, that is, the treatment option with the larger value of µ(x)+t0(x)a, for a given

subject with covariate values x. Thus, we can evaluate our method and compare

it with existing methods by calculating a misclassification error. Specifically, if

an approach recommends the same treatment option as the truth, then there is

no misclassification error. Otherwise, the misclassification error is one. We apply

four treatment recommendation methods: OWL (Zhao et al. (2012)); RWL (Zhou

et al. (2017)); a linear regression to predict Y , and then to recommend the treat-

ment with the larger predicted value (OLS); and our proposed method, denoted

as SIR. We use an existing R package to perform OWL and RWL, available at

https://cran.r-project.org/web/packages/DynTxRegime/index.html. We

make a treatment recommendation for each sample, while considering all other

samples as training data. Figure 3 displays the misclassification rates. The rate is

the percentage of the number of misclassified treatments over the total number of

patients (sample size n). We repeat the whole simulation procedure 1,000 times

and plot the mean value and the standard deviation, with two error bars around

the mean, in Figure 3.

In general, our approach (SIR) shows better performance with lower misclas-

sification rates. In particular, our approach performs substantially better than

RWL and OWL in Scenarios 2, 3, and 4. The results for SIR and RWL are com-

parable in Scenario 1. In addition, our approach shows lower misclassification

rates than those using OLS in Scenario 1, 3, and 4. The results for SIR and OLS

are comparable in Scenario 2. The favorable performance of SIR is because of

the general assumption of the treatment response model, i.e., Assumption (A.2),

which gives a large approximation space for the true conditional mean function

Q0. In other words, the model space of SIR is often bigger than those of existing

methods with mostly linear models. We improve the treatment recommendation

by obtaining a good estimator of Q0.

5. A Case Study

In this section, we apply our proposed method to the study of bortezomib in

the treatment of multiple myeloma (Mulligan et al. (2007)). Bortezomib is the

first therapeutic proteasome inhibitor tested in humans. It is approved in the

https://cran.r-project.org/web/packages/DynTxRegime/index.html
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Figure 3. Comparison of different treatment recommendation methods in terms of the
mean (center) and the standard deviation (error bars) of misclassification rates from
1,000 simulations: A. FDR is used to screen all p = 100 variables in the first step; B.
LOESS is used to screen all p = 100 variables in the first step; C. No screening but p = 8.

United States for treating relapsed multiple myeloma. Because bortezomib is a

therapeutic choice in addition to the standard chemotherapy, there is a need to

be able to recommend a treatment for a given patient. Our goal is to provide

a treatment recommendation, either dexamethasone (dex) or bortezomib, based

on data information.

To achieve this, we use a genomic-clinical data set from the Gene Expression

Omnibus (GEO) database (GSE9782). Data from two platforms of Affymetric

microarrays (GPL96 and GPL97) are merged to obtain a large sample size, with a

total of 477 patients, 338 of whom received bortezomib and 139 received dex. The

merged data contain a smaller number of gene probesets (or simply genes) than

each of the individual platform data. On the other hand, we verified that signif-

icant genes from each data set are included in the merged data. The variables

considered in our analysis include:

• a set of clinical prognostic factors, i.e., gender, race, and age;

• a treatment index, either bortezomib or dex, denoted as A;

• gene expression measurements of 168 genes in the merged data, denoted as

Xj , for j = 1, . . . , 168; and

• clinical response, denoted as Y , with five levels coded as 1-5 corresponding to
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progressive disease (PD), no change (NC), minimal response (MR), partial

response (PR), and complete response (CR), respectively.

We first evaluate whether this data set provides significant information for the

prediction of treatment response Y . The three clinical factors, i.e., gender, race,

and age, have no significant effect on Y (R2 = 0.004179), and hence are not

considered in the following anlaysis. The Cauchy combination test (Liu and Xie

(2019)) gives a p-value of 0.0004, suggesting that the genomic data set contributes

to the treatment response and provides useful information for treatment recom-

mendation.

Given that the sample size and the number of genes are comparable, we deem

an initial variable selection to be necessary before running the SIR procedure.

We select a subset of the eight most significant genes at a false discovery rate

cutoff (0.002). These are the genes of ribosomal proteins and translation initiation

factors. Interestingly, these genes match with the results reported in the literature

that patients with perturbations of certain ribosomal proteins and translation

initiation factors showed responses to the bortezomib treatment (Mulligan et al.

(2007); Sulima and De Keersmaecker (2017); Hofman et al. (2016)). We then

apply our SIR method of treatment recommendation using this set of eight genes

and compare the performance with that of OLS and RWL. For the SIR method,

Feature Score is calculated as a one-dimensional projection of the gene predictors

for each treatment group.

More specifically, we randomly split the data into five equal-sized parts. Four

parts (training data) are used to fit a model, either OLS, SIR, or RWL, and the

remaining one part (test data) is used to evaluate the corresponding treatment

recommendation methods. Different from the simulation examples, we do not

know the true optimal treatment recommendation for this case study, and hence

cannot calculate misclassification errors. Instead, we calculate an unbiased es-

timator of the Value function, as in Qian and Murphy (2011). We repeat the

process 1,000 times, and report the mean and standard deviation of the esti-

mated Value functions in Table 1. The observed treatment index A in the data

also corresponds to a treatment recommendation rule. Its estimated Value func-

tion serves as a baseline for the performance comparison.

Table 1 shows that SIR improves the baseline Value function from 2.542

to 2.825, and is slightly better than the OLS and RWL methods, although the

difference from OLS and RWL is minimal. Plots of Y versus Feature Score

(plots not shown here) actually display a certain degree of a linear trend, and

the predicted Y curves from OLS and SIR are not very different from each other.
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Table 1. Comparison of the empirical Value function in a random testing dataset using
different methods, OLS, SIR, and RWL. Mean (std) values of the empirical Value function
through 1,000 resampling are reported.

Observed OLS SIR RWL
2.542(0.127) 2.818(0.157) 2.825(0.158) 2.804(0.166)
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Figure 4. Scatter plot of treatment response versus Feature Score for each treatment
group in a test data set of the real data example. A specific data point, patient ID 471,
is marked for visualization of the optimal treatment.

This explains the similar result of different methods in Table 1. On the other

hand, RWL is computationally expensive, costing about 300 times more than SIR

and OLS.

Figure 4 is a plot of the predicted treatment response versus Feature Score

in a random test data set. To demonstrate the projection directions β̂ for Fea-

ture Scores, Table 2 shows the specific directions of the two treatment groups

calculated from a training data set. There are eight values in β̂, representing

the weights of the corresponding eight genes for Feature Score. A larger absolute

value indicates a greater contribution by the respective gene. Table 2 also shows

that the two treatment groups have different directions for Feature Score. Despite

this difference, we can still directly compare the predicted treatment responses

on the vertical axes. A specific data point, patient ID 471, is marked to visualize

the treatment recommendation. This patient has a lower predicted treatment

response value under bortezomib than under dex. Therefore, the optimal treat-

ment recommendation is the standard chemotherapy dex for this patient. This
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Table 2. The estimated projection directions for Feature Score, denoted as β̂bort and
β̂dex of the two treatment groups, in the case study example.

Gene 200010 at 200023 s at 200082 s at 200005 at 200017 at 200024 at 200036 s at 200094 s at

β̂bort -0.038 -0.945 -0.079 0.312 0.013 -0.025 -0.010 0.041

β̂dex -0.581 -0.581 0.455 -0.073 -0.203 0.234 0.079 0.103

recommendation is based on the gene expression data through the Feature Score

generated by SIR. To conclude, our data-guided method is able to provide pa-

tients with multiple myeloma a treatment recommendation between bortezomib

and dexamethasone. The data-guided method attempts to connect information

from the gene expression data with that from treatment responses, and may

reveal relationships between genes and a corresponding phenotype.

6. Discussion

A major advantage of the proposed method lies in its low-dimensional repre-

sentation of data, i.e., the Feature Score definition, and the automatic detection

of these features through the SIR approach. Compared with the lasso-type ap-

proaches, such as seen in Qian and Murphy (2011), SIR outperforms the variable

selection methods when the effects from individual predictors are minimal. The

features from the SIR approach resemble the feature definition of the popular

neural network models, with a wide potential of applications. However, the SIR

procedure is much simpler than learning a neural network model and does not

require a very large sample size.

SIR is a novel method for reducing the dimension of X without going through

any model-fitting process in the first place. It is developed under a very general

model assumption that the treatment response Y depends on the covariates X

through a low-dimensional projection space. Assumption (A.2) is the most criti-

cal assumption for the theoretical guarantee, whereas the other assumptions are

standard. If the true conditional mean function Q0 does not satisfy Assumption

(A.2), we cannot obtain a consistent estimation of the optimal recommendation

rule. However, Assumption (A.2) takes the weakest form when we believe a low-

dimensional space exists in modeling the response variable Y . The existence of a

low-dimensional projection space is also the basic idea behind all dimension re-

duction methods for high-dimensional data. This general assumption does offer

a large approximation space for the true function Q0, hence likely resulting in a

consistent estimation of the optimal recommendation rule.

The proposed method does not consider dynamic treatment regimes that

involve treatment recommendations being made at multiple times. However,
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because there are far more datasets with only one-time treatment information

than there are with multiple-time treatment information, the proposed method

can be applied more widely than the methods of dynamic treatment regimes.

In addition to recommending treatments, the proposed method can be applied

to other precision medicine research, such as risk prediction, treatment effect

estimation, and even causal inference. These will be the topics of our future

work.

Supplementary Material

The reader is referred to the online Supplementary Materials for the infor-

mation of data and code and technical proofs.
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