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Abstract: The local dependence function, introduced by Holland and Wang (1987)

and studied by Wang (1993) as a continuous version of the local cross-ratio, de-
scribes the local relation between two random variables. Three explicit numerical

algorithms are proposed to approximate bivariate densities given the marginal den-

sities and the local dependence function. This approach is suited for simulation
purposes, to provide illustrative examples of densities with given marginals, and

for estimation of model parameters. The technique involves non-classical integral
equation theory. The accuracy of the approximations is investigated.
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1. Introduction

The construction of bivariate distributions with specified marginals has been
discussed by several authors, e.g. Morgenstern (1956), Plackett (1965), Johnson
(1987), Johnson and Tenenbein (1981) and Marshall and Olkin (1988). These
methods concentrate on fixing the marginal distributions. However, the asso-
ciation structure is either indirectly modelled (Morgenstern family, Edgeworth
expansion) or difficult to interpret.

Recently, Holland and Wang (1987) and Wang (1993) introduced the local
dependence function of a bivariate density. It is the rate of change of the local
cross-ratio and is defined as the limit of the local cross-ratio defined for adjacent
cell probabilities, formed by a two-dimensional rectangular grid, when length
and width of the rectangles shrink to zero. They show that it equals the mixed
derivative of the natural logarithm of the density function. It completely char-
acterizes the local behaviour of the density function. Holland and Wang (1987)
show that, under mild regularity conditions, specification of the bivariate density
is equivalent to the specification of the marginal densities, together with the local
dependence function. Wang (1993) suggested a theoretical method to determine
a bivariate density function, given its marginal densities and its local dependence
function: the iterative marginal replacement algorithm.

In this paper, the work of Holland and Wang (1987) and Wang (1993) is
extended by proposing numerical algorithms to approximate the bivariate density,
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given the marginals and the local dependence function. The algorithms are based
on the solution of non-linear integral equations. Numerical techniques, used to
solve a classical eigenvalue problem (Baker (1977)) are the basis for constructing
iterative methods to solve the equations of interest. An important feature of
our approach is that approximations are given by explicit functional expressions,
enabling the calculation of the density over the whole domain. This feature
makes the approach suited for e.g. simulation and estimation purposes, as will
be illustrated using a real example.

A brief review of the approach of Holland and Wang (1987) and Wang (1993)
is presented in Section 2. Section 3 is dedicated to integral equation theory.
Section 3.1 presents a short overview of integral equation theory. Three numerical
techniques are suggested to compute bivariate densities, all based on adapting
classical integral equation methods for our purpose. Section 3.2 presents the
degenerate kernel method, Section 3.3 the expansion method and Section 3.4 the
numerical integration method. Both the expansion method and the numerical
integration method can be viewed as specific implementations of the iterative
marginal replacement algorithm. The advantage of the methods we propose is the
availability of a functional form. In Section 4 error bounds for the approximations
are derived. The method is applied to reconstruct some well-known densities
in Section 5, and to generate some “new” densities. In Section 6 we discuss
application of the technique, including a real data example.

2. The Local Dependence Function

Consider an r × c table with cell probabilities pij , (1 ≤ i ≤ r, 1 ≤ j ≤ c).
For any two pairs of indices (i, j) and (k, l) the cross-product ratio is defined as
αij,kl = ( pij.pkl)/( pil.pkj). The local cross-product ratios are defined by

αij =
pij .pi+1,j+1

pi,j+1.pi+1,j
, 1 ≤ i ≤ r − 1, 1 ≤ j ≤ c− 1. (2.1)

Often the log cross-ratios γij = lnαij are considered for the added advantage of
linearity on the log scale. It is well-known that the set (αij)ij (or (γij)ij) together
with the marginal probabilities ( pi.)i and ( p.j)j completely determine the table
of cell probabilities. They are a maximal invariant of ( pij) under row and/or
column multiplication. Holland and Wang (1987) and Wang (1993) extended this
construction to the situation of continuous bivariate densities. They proceeded
as follows.

Consider a bivariate density function f(x, y) with supportD = {(x, y)|f(x, y)
> 0}. Partition the support by an infinitesimal rectangular grid. The probability
of the rectangle [x, x+ dx]× [y, y + dy] equals f(x, y) dx dy. The cross-ratio of a
pair of points (x, y) and (u, v) is defined as

α(x, y;u, v) =
f(x, y).f(u, v)
f(x, v).f(u, y)

.
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The local cross-ratio at (x, y) is given by

γf (x, y) = lim
dx→0,dy→0

lnα(x, y;x + dx, y + dy)
dx dy

.

The function γf (x, y) is called the local dependence function (ldf). It is easily
seen that

γf (x, y) =
∂2

∂x∂y
ln f(x, y). (2.2)

γf (x, y) is defined whenever ln f(x, y) is a mixed differentiable function. The
local dependence function has some attractive properties :
1. the random variables X and Y with joint density f(x, y) are independent if

and only if γf equals zero,
2. γf is margin free in the sense that γf = γg if g(x, y) = f(x, y)ψ1(x)ψ2(y),
3. if f1.2 and f2.1 are the obvious conditional densities, then γf = γf1.2 = γf2.1 ,

and
4. γf is maximal invariant under both x-marginal and y-marginal replacement,

defined in the sense of Wang (1993), Def. 2.1: x-marginal replacement is given
by f(x, y)g1(x)/f1(x) where f1(x) is the x margin of f(x, y) and g1(x) is an
arbitrary density with the same support as f1(x).
For the bivariate normal density with correlation coefficient ρ the local de-

pendence function is constant and equal to γN = ρ/(1 − ρ2). For the bivariate
Cauchy family with density function f(x, y) = c/[π(x2 +y2 + c2)3/2], (c > 0), the
local dependence function is equal to γc = 6xy/[(x2 + y2 + c2)2] (see Figure 1).

Figure 1. The local dependence function of the bivariate Cauchy density.
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Observe that γc is positive in the first and third quadrants and negative
in the others. This fact indicates that a single number association measure
(Pearson’s and Spearman’s correlation, Kendall’s τ) cannot describe the sign-
varying association structure.

Holland and Wang (1987) prove the following result :

Theorem 1. (Holland and Wang) For any given integrable function γ(x, y),
defined over D =]a, b[×]c, d[ and any given continuous density functions f1(x)
and f2(y), defined on ]a, b[ and ]c, d[ respectively, there exists a unique bivariate
density function f(x, y) defined over D such that
(a) (2.2) holds with γf ≡ γ,
(b) f1(x) and f2(y) are the respective marginal densities of f(x, y).

For a proof, see Holland and Wang (1987), Theorem 6.1 or Wang (1993), Theorem
3.1.

This result implies that the bivariate normal density is the only one with
normal marginals and constant local dependence function.

In spite of this result, no explicit methods have been given to construct bi-
variate densities, given marginals and ldf. Wang (1987) suggested a contingency
table approach to approximate the bivariate normal density. This method can be
extended in a straightforward fashion to construct discretized bivariate densities
with other marginals and local dependence function. It is a direct application of
the iterative proportional fitting algorithm. The continuous version is the itera-
tive marginal replacement algorithm, proposed by Wang (1993). Wang showed
that his algorithm converges but did not provide a close-form solution of the
density function. This will be the purpose of the next section.

3. An Analytical Construction of the Bivariate Density

Assume that γ(x, y) and the marginal distributions fulfill the requirements
of Theorem 1. As γ(x, y) is margin-free it is sensible to introduce a dependence
kernel as follows :

Definition 1. An integrable function K(x, y), defined over D is called a depen-
dence kernel for γ(x, y) if

γf (x, y) =
∂2

∂x∂y
lnK(x, y).

Note that a dependence kernel is the continuous analogue of the initial table used
with the iterative proportional fitting algorithm (Bishop et al. (1975), Plackett
(1981), p. 36). Due to the uniqueness of f(x, y) one necessarily has f(x, y) =
K(x, y)φ1(x)φ2(y), where f is the bivariate density satisfying Theorem 1.
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For a constant local dependence function the simplest dependence kernel is
given by K(x, y) = exp(γxy). Furthermore, for any given ldf, a straightforward
integration

K(x, y) = exp
( ∫ ∫

γ(x, y) dx dy
)

yields a dependence kernel. Otherwise, if f(x, y) is known, K ′(x, y) = f(x, y)/
(f1(x)f2(y)) also provides a dependence kernel. Note that f(x, y), f(x|y), and
f(y|x) are also dependence kernels. In general, the bivariate density function can
be expressed as

f(x, y) = φ1(x)φ2(y)K(x, y) (3.1)

and, hence, the two marginal conditions can be written as

f1(x) = φ1(x)
∫ d

c
φ2(s)K(x, s)ds,

f2(y) = φ2(y)
∫ b

a
φ1(s)K(s, y)ds. (3.2)

In the special but important case where both marginals are the same function
f(x) and K is a symmetric function, (3.2) reduce to

f(x) = φ(x)
∫ b

a
φ(s)K(x, s)ds. (3.3)

Eqs. (3.2) and (3.3) are examples of integral equations. However, these
are not classical cases due to the appearance of the unknown functions in a
multiplicative way.

3.1. Integral equations

Some basic ideas of linear integral equations will be presented. For a thor-
ough discussion we refer to Hochstadt (1973). The most studied integral equation
is the Fredholm equation of the second kind

φ(x) = f(x) + λ

∫ b

a
φ(s)K(x, s)ds. (3.4)

Here, K(x, y) is a known kernel, f(x) is a known function and φ(x) is an unknown
function; x assumes all values in [a, b] and λ is a paramater. The associated
eigenvalue problem (found by setting f(x) ≡ 0) is written in operator form as
φ = λKφ, with obvious notation. For a solution, φ is called an eigenfunction
and λ is called an eigenvalue. A crucial role is played by the eigenvalues and
eigenfunctions of the operator K (see Section 3.2).
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Although (3.2) are non-linear integral equations, they are compared to the
eigenvalue problem. We will proceed by adapting (numerical) techniques to solve
the eigenvalue problem, described in Baker (1977), to our setting.

Theorem 1 guarantees a unique solution of the equations. Three approxima-
tion techniques for finding expressions for φ1(x) and φ2(y) are presented. The
first method approximates the kernel K by degenerate kernels (the definition is
given in Section 3.2). This method makes it possible to meet the marginal condi-
tions exactly. The other two methods use the exact expression for the kernel (and
thus of the local dependence function) and approximate the marginal conditions.

3.2. The degenerate kernel method

Let us first give some definitions.

Definition 2. A set of functions hi(x), i = 1, . . . , n is called linearly independent
if
∑n

i=1 aihi(x) = 0 almost everywhere implies that all ai vanish.
Definition 3. A (dependence) kernel is called degenerate if it can be expressed
as a finite sum

K(x, y) =
n∑

i=0

gi(y)hi(x), (3.5)

where gi(y) and hi(x) are integrable functions.
In what follows, assume that {hi(x), i = 1, . . . , n} is a linearly independent

set of functions. This property will be required in both variables, so decompose
the kernel alternatively as

K(x, y) =
m∑

j=0

qj(x)pj(y), (3.6)

with { pj(y), j = 1, . . . ,m} linearly independent.
Note that the word “degenerate” is used in accordance with its meaning in

integral equation theory, and not in the usual statistical sense. For a detailed
discussion on degenerate kernels we refer to Hochstadt (1973). A degenerate
kernel may be considered as a truncated series expansion of a general kernel.

It is a commonly used technique to approximate kernels by infinite series. A
critical issue is how to choose an accurate expansion which can be truncated to
form a series of degenerate kernels. In the case of a square integrable, symmetric
kernel, there is a very natural solution to this problem. In that case, K(x, y) can
be expressed as (see Hochstadt (1973), pp. 44-64)

K(x, y) =
∑

i

αiϕi(x)ϕi(y), (3.7)
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where the αi and ϕi are eigenvalues and eigenfunctions of the operator K (see
Section 3.1). It also holds true that

∑
i α

2
i is finite. Thus, it is possible to control

the error of a degenerate approximation by considering
∑

i>n α
2
i . However, for

general kernels it is difficult to determine these eigenvalues and eigenfunctions.
In the case of a degenerate kernel the following result holds.

Theorem 2. Let K(x, y) be a degenerate kernel, decomposed as in both (3.5) as
well as in (3.6). The solution to (3.2) then is of the form φk(x) = fk(x)/Pk(x),
(k = 1, 2), where P1(x) =

∑n
i=0 µihi(x) and P2(y) =

∑m
j=0 νjpj(y). The unknown

coefficients µi and νj can be found by solving

µi =
∫ d

c

f2(s)gi(s)
P2(s)

ds, (0 ≤ i ≤ n),

and

νj =
∫ b

a

f1(s)qj(s)
P1(s)

ds, (0 ≤ j ≤ m).

Proof. First, plug in the proposed forms for φk in (3.2), and use the kernel de-
composition (3.5) in the first equation and (3.6) in the second equation. Equating
coefficients, and using linear independence, yields the proper expressions for µi

and νj , completing the proof.
The solution for the symmetrical situation (3.3) is found by dropping the

indexes for φ, f and P in Theorem 2 and putting µi ≡ νi(i = 1, . . . , n ≡ m):

Corollary 1. Let K(x, y) =
∑n

i=0 hi(x)hi(y) be a symmetric degenerate kernel,
with (hi)i a linearly independent set. Then the solution to (3.3) is of the form
φ(x) = f(x)/P (x), where P (x) =

∑n
i=0 µihi(x) and the unknown coefficients µi

can be found by solving

µi =
∫ b

a

f(s)hi(s)
P (s)

ds, (0 ≤ i ≤ n).

Example 1. Degenerate approximations to the constant dependence kernel
exp(γxy). Consider the following approximations

Kn(x, y) =
n∑

i=0

γi

i!
xiyi. (3.8)

Choosing both marginals equal to f(x), the solution is of the form φn(x) =
f(x)/(

∑n
i=0 aix

i), where

ai =
γi

i!

∫ b

a

f(s)si∑n
j=0 ajsj

ds, 0 ≤ i ≤ n. (3.9)
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Eq. (3.9) describes a system of n+ 1 non-linear equations in n+ 1 unknowns. It
can be solved in various iterative ways. All methods produce a sequence (φ(k)),
which, if the problem is well conditioned, converges to the solution for (3.8). The
meaning of convergence is made precise by the following definition.

Definition 4. (φ(k)
i )k≥0, (i = 1, 2) is called a couple of convergent sequences for

(3.2) if and only if
1. f1(x) = φ

(k+1)
1 (x)

∫ d
c φ

(k)
2 (s)K(x, s)ds, (k ≥ 0),

2. f2(y) = φ
(k+1)
2 (y)

∫ b
a φ

(k)
1 (s)K(s, y)ds, (k ≥ 0),

3. φ(k)
i

L2−→ φi, (i = 1, 2),
4. (φ1, φ2) is the solution to (3.2).
Note that a pair (φ(k+1)

1 , φ
(k)
2 ) statisfies the first marginal condition and a pair

(φ(k+1)
1 , φ

(k+2)
2 ) satisfies the second marginal condition. The dependence con-

dition is satisfied throughout the process. Thus, this algorithm is similar to
the iterative proportional fitting algorithm (IPF). It is known that the IPF al-
ways converges (Bishop et al. (1975), p. 85). A similar argument guarantees
the convergence of the algorithm, described in Defintion 4. In fact, the iterative
marginal replacement algorithm, defined in Wang (1993) produces instances of
such a sequence.

Example 1. (continued) As a numerical illustration, consider the constant de-
pendence kernels for n = 12, 18, 24 with γ = 1, or equivalently, ρ = 0.618, and
normal margins, on the rectangle [−5, 5] × [−5, 5]. Symmetry entails that odd
coefficients ai in φn(x), defined in (3.9) are equal to zero. The even coefficients
are displayed in Table 1. Clearly, the convergence of the lower order coefficients
is already acceptable for n = 12.

Table 1. Degenerate kernel method. Truncated normal density on [−5, 5]
with γ = 1. Coefficients ai of φn(x) = f(x)/(

∑
i aix

i) for n = 12, 18, 24.
Coefficients of order 20 and higher are smaller than 1e-10 and have been
omitted from the table.

ai

i n = 12 n = 18 n = 24
0 0.88664 0.88665 0.88665
2 0.27400 0.27399 0.27399
4 0.04237 0.04233 0.04233
6 0.00437 0.00436 0.00436
8 0.00034 0.00034 0.00034

10 0.00002 0.00002 0.00002
12 1e-6 1e-6 1e-6
14 - 5e-8 4e-8
16 - 2e-9 2e-9
18 - 1e-10 1e-10
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In the next sections methods are described to construct functions that satisfy
the condition on the local dependence function exactly, and approximate the
marginal conditions to any degree of accuracy.

3.3. The expansion method

In Section 3.2 the dependence function is replaced by an approximation and
the two marginal conditions are solved iteratively for that approximation. φk,
presented in Theorem 2, contains the marginal density in the numerator, the
denominator is a linear combination of the same functions as occur in the kernel.
Here, we shall express the solution as φ(x) = f(x)/ψ(x), with ψ(x) a series of
the form

ψ(x) =
∑

i

µihi(x). (3.10)

For (hj(x))j any convenient basis for L2[a, b] (the square integrable functions
on the interval [a, b]) can be taken. If hj(x) = xj, (j ≥ 0), then the solution
is expressed as a formal power series, where (µj)j is a sequence of unknown
coefficients. In general, substituting (3.10) in (3.3) gives

∑
j

µjhj(x) =
∫ b

a

1∑
i µihi(s)

f(s)K(x, s)ds. (3.11)

To determine a numerical solution, ψn(x) say, restrict the series expansion in
(3.10) to n+ 1 terms. Whence (3.11) is approximated by

n∑
j=0

µjhj(x) �
∫ b

a

1∑n
i=0 µihi(s)

f(s)K(x, s)ds = P (x). (3.12)

Note that this method leaves the dependence function exact but approximates
the marginal densities via (3.10). An exact solution cannot be obtained anymore,
but, as there are n+1 unknown parameters µi, an exact solution can be obtained
for all x in the set of n+ 1 points {x0, . . . , xn}.

Again, this system can be solved iteratively. Let m be the column vector
with elements µi, A be the matrix with elements aij = hj(xi) and p be the
column vector with ith element P (xi). This system of equations is written in the
form

Am = p. (3.13)

Since the hj(x) are linearly independent and the xi are different, A is nonsingular
with probability 1. We may write m = A−1p, which can be used in an iteration
scheme. Eq. (3.13) differs from a classical eigenvalue problem in that λIm (where
I denotes the identity matrix), is replaced by p, which is nonlinear in the µi.
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When using power functions hj(x) = xj, we chose starting values to be
µ0 = 1 and µi = 0 for i > 0. This simple set yields very satisfactory results in
the sense that we never observed divergence, except for uniform marginals with
high n, a problem discussed in Section 4.2.

The method is presented for identical marginals, but generalization to dif-
ferent marginals is straightforward. In that case, there are n +m + 2 unknown
parameters (µi)i and (νj)j , arranged in two column vectors m and n respectively.
Further, there are two matrices A and B, and two functional column vectors p

and q. The iteration scheme is given by(
m

n

)
=

(
A−1 0
0 B−1

)(
p

q

)
.

Inevitably, the solutions will depend on the choice of the functions hj(x). It
is natural to seek an optimal choice. Note that if hj(x) = xj , the matrix A is
equal to a Vandermonde matrix, which is known to be ill-conditioned. Therefore,
these functions should only be used with great care.

Example 1. (continued) Let us consider the bivariate normal example again for
approximation orders n = 12, 18, 24. To enable comparison of this solution with
the one obtained for the degenerate kernel method, we opt for power functions
hj(x) = xj and the nodes xi are chosen to be equally spaced in [−5, 5]. The
coefficients are displayed in Table 2. Alternatives to power functions, in the
context of the degenerate kernel method, are discussed in Section 4.1. Observe
that the coefficients of φ24(x) in Table 1 and the coefficients of ψ24(x) in Table
2 are virtually identical. However, the lower order approximations are clearly
better in Table 1. In Section 4.3 we study whether this property translates into
better approximations for the true (bivariate normal) density.

Table 2. Expansion method. Truncated normal density on [−5, 5] with γ = 1.
Coefficients µi of ψ(x) =

∑
i µix

i for n = 12, 18, 24. Coefficients of order 20
and higher are smaller than 1e-10 and have been omitted from the table.

µi

i n = 12 n = 18 n = 24
0 0.88703 0.88665 0.88665
2 0.22454 0.27409 0.27399
4 0.14592 0.04185 0.04233
6 -0.05064 0.00501 0.00436
8 0.01132 -0.00003 0.00034

10 -0.00089 0.00012 0.00002
12 0.00003 -0.00001 1e-6
14 - 1e-6 3e-8
16 - 6e-8 1e-8
18 - 1e-9 -8e-10
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Alternatively, an approximation method can be developed which is invariant
to the choice of a linearly independent base. This is the subject of the next
section.

3.4. The numerical integration method

Without aproximating the dependence kernel, we could approximately solve
the problem by replacing the exact integrations by numerical integrations. Con-
sider numerical quadrature rules for an integrable function g and h on [a, b] and
[c, d ] respectively: ∫ b

a
g(x)dx =

n∑
i=0

wig(xi),

∫ d

c
h(y)dy =

m∑
j=0

vjh(yj), (3.14)

where wi (vj) are the weights and xi (yj) are the nodes of the quadrature rule.
Using (3.14), (3.2) can be approximated as follows

f1(x)
φ1(x)

=
∫ d

c
φ2(y)K(x, y)dy �

m∑
j=0

vjφ2(yj)K(x, yj),

f2(y)
φ2(y)

=
∫ b

a
φ1(x)K(x, y)dx �

n∑
i=0

wiφ1(xi)K(xi, y). (3.15)

An approximate solution can be derived by letting x (y) assume all values xi (yi).
Putting µi = φ1(xi) and νj = φ2(yj) leads to a system of n +m + 2 non-linear
equations in the same number of unknowns:

f1(xi)
µi

=
m∑

j=0

vjνjK(xi, yj), (0 ≤ i ≤ n),

f2(yj)
νj

=
n∑

i=0

wiµiK(xi, yj), (0 ≤ j ≤ m).

Solving this system and substituting the solution in (3.15) gives the approximate
formulae

φ1(x) � f1(x)∑m
j=0 vjνjK(x, yj)

,

φ2(y) � f2(y)∑n
i=0wiµiK(xi, y)

. (3.16)

Note that the weights wi and vj depend on the quadrature rule and the inte-
gration interval only, and are therefore independent of the integrands. Further,
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they remain constant throughout the iterative process. We opted for a repeated
Newton quadrature rule with n = 3k and equally spaced nodes xi. The weights
are determined as follows. Let I = (3/8)(b − a)/n, then w0 = wn = I, w3� = 2I,
for � = 1, . . . , k−1, and w3�+1 = w3�+2 = 3I, for � = 0, . . . , k−1. The number of
µi is odd with this scheme. A similar construction is made for nodes yj , weights
vj, and unknowns νj. We chose as starting values a vector of zeros, with a single
1 for the middle entry. At the tth iteration, µ(t)

i and ν(t)
j have been determined.

A simple updating scheme is:

µ
(t+1)
i =

f1(xi)∑m
j=0 vjνjK(xi, yj)

, (0 ≤ i ≤ n),

ν
(t+1)
j =

f2(yj)∑n
i=0 wiµiK(xi, yj)

, (0 ≤ j ≤ m).

This method always led to convergence.

Example 1. (continued) Using the quadrature rule and the nodes described
previously, we revisited the bivariate normal example. The number of nodes was
chosen to be n = 12, 18, 24, to enable comparison with the previous methods.
Coefficients are presented in Table 3. Although coefficients for different degrees
of approximation n were easy to compare with the previous methods (Tables 1
and 2), a similar comparison is less straightforward with the current method.
Indeed, changing n also changes the grid at which the function φ(x) is evaluated.
For instance, the grid for n = 12 is a subset of the grid for n = 24, but the
grid for n = 18 overlaps only partially. However, it is seen that comparable
function values are very close to each other. A more formal comparison of the
three methods will be made in Section 4.3.

Table 3. Numerical integration method. Truncated normal density on [−5, 5]
with γ = 1. Coefficients µi of φ(x) for n = 12, 18, 24. The first column shows
the nodes xi of the integration method. Since φ(x) = φ(−x), only positive
nodes are displayed.

µi µi

xi n = 12 n = 18 n = 24 xi n = 12 n = 18 n = 24
0.0000 0.46241 0.45121 0.44999 2.7778 0.00088
0.4167 0.39099 2.9167 0.00046
0.5556 0.35076 3.3333 0.00006 0.00006 0.00006
0.8333 0.25774 0.25652 3.7500 5e-6
1.1111 0.16531 3.8889 2e-6
1.2500 0.12710 4.1667 4e-7 4e-7
1.6667 0.04632 0.04746 0.04756 4.4444 5e-8
2.0833 0.01343 4.5833 2e-8
2.2222 0.00830 5.0000 7e-10 7e-10 7e-10
2.5000 0.00282 0.00287
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4. Error Bounds

We now investigate how close the dependence condition (3.1) and the two
marginal conditions (3.2) are met by the three approximations described in Sec-
tion 3. Note that the error made consists of a
numerical part caused by numerically solving a (non-linear) system of equa-
tions: rounding errors, convergence criterion,
analytical part caused by replacing exact equations by approximate formulae.
For this discussion, suppose that the first error is negligible when compared to
the second one.

In Section 4.1 we consider the error of the degenerate kernel method. We also
study some properties of the degenerate kernel approximations to the dependence
kernel K(x, y) = exp(γxy) with constant ldf. Section 4.2 is devoted to the other
methods. A simple but useful error bound for the departures from the marginal
conditions is given. Finally, an indication is given for the comparison of the three
methods, by solving a problem for which the exact solution is known.

4.1. Error for the degenerate kernel method

In this case the error arises from the approximation of the kernel K(x, y) by
a degenerate one Kn(x, y).

We first consider the degenerate kernel approximations (3.8) of the constant
dependence case and then continue with eigenvalue and eigenfunction approxi-
mations to square integrable kernels.

Of major importance is the fact that (3.8) may only be called a dependence
kernel if it corresponds to an integrable local dependence function γn(x, y). For
this, Kn(x, y) should be positive on D = [a, b]× [c, d ], as otherwise the logarithm
is not defined. It follows from next lemma, that this condition is met for every
rectangle D if and only if n is an even integer. In the sequel we suppose n is
even. Consider a constant ldf and the finite terms approximation Kn(x, y) as in
(3.8).

Lemma 1. Let Hn(t) =
∑n

i=0
ti

i! . Then, for all n, H2n has no real roots and
H2n+1 has exactly one real root.

Proof. The assertion clearly holds for n = 0. The result follows by induction.
It follows from Definition 1 that the dependence function γn(x, y), associated

with Kn(x, y) equals

γn(x, y) = γ − γλ(n)

Kn(x, y)
+
nγλ(n)

(
Kn−2(x, y) γxy

n−1 − λ(n−1)
)

Kn(x, y)2
, (4.1)

where λ(k) = γk

k! x
kyk. Convergence of γn(x, y) to γ(x, y) is guaranteed by the

following lemma.
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Lemma 2. For n = 2k, γn(x, y) converges pointwise to γ as k → ∞. Further-
more, convergence is uniform on every bounded domain.

Proof. Consider (4.1). Let (x, y) be an arbitrary but fixed point. As Kn(x, y) →
exp(γxy), there exists N1 such that for all n > N1: 1

|Kn(x,y)| < A and |Kn(x, y)| <
B, with A and B constants. Also, if n > N2: | γxy

n−1 | < C for constants N2 and C.
For every ε > 0, there exists N3 such that if n > N3: max{|λ(n)|, |nλ(n)|} < ε.
Choose n > max{N1 +2, N2, N3 +1}, then |γn(x, y)−γ| < |γ|{A+(BC+ε)A2}ε,
implying that γn(x, y) → γ. The proof is complete.

The above lemma is illustrated in Figure 2 (top row plots) where we have
plotted in the case γ(x, y) = 1, γn(x, y) for n = 2, 10, 18. Observe that for n = 18
the approximation is much better, but spikes are still found at the corners (2,−2)
and (−2, 2). Indeed, the system xiyi is not the most optimal choice.

Figure 2. Degenerate kernel approximation Kn(x, y) for a constant depen-
dence function γ(x, y) = 1. Plot of γn(x, y) on [−2, 2] × [−2, 2] for: power
functions: (a) n = 2, (b) n = 10, and (c) n = 18; and eigenfunctions (c)
n = 6, (d) n = 9, and (e) n = 12.

In the case of a square integrable, symmetric kernel, it is advisable to consider
expansion (3.7) which is in terms of eigenvalues and eigenfunctions. Indeed,∑+∞

i=0 αi is finite, whence for each positive value ε, there exists an integer nε such
that ‖K −Kn‖2

2 < ε whenever n exceeds nε.
Let us consider such a decomposition for the constant dependence kernel.

We approximate K(x, y) by K̃(x, y) such that

K̃(x, y) =
n∑

s=0

αsϕs(x)ϕs(y)
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with αs eigenvalues and ϕs eigenfunctions of K. These functions can be approxi-
mated in turn, using the numerical integration method (Baker (1977), Chapter 3).
Consider an integration rule such as (3.14), then

∑n
j=0wjK(x, yj)ϕ(yj) = αϕ(x)

and by choosing x = yi for all grid points a standard eigenvalue problem follows:
(KW )ϕ = αϕ with the matrices K and W defined by (K)ij = K(yi, yj) and
(W )jr = δjrwj and the vector ϕ by (ϕ)r = ϕ(yr). Solving this system yields the
following approximate eigenfunctions:

ϕs(x) � 1
αs

n∑
j=0

wjK(x, yj)ϕs(yj).

Figure 2 (bottom row plots) shows the approximations that result for the cor-
responding ldf, for degrees n = 6, 9, 12 (n has to be a multiple of 3 with the
adopted quadrature rule). The superiority of the eigenfunctions is immediately
clear. To support this claim, we computed the error over a grid of 50×50 points.
The error for n = 6 with the eigenfunctions is of the same order as the one with
n = 10 using power functions. For n = 12 the maximum error is 6.0123 × 10−4

and for n = 18 the maximum error is 1.79 × 10−8. In the case of power func-
tions, the maximum error for n = 18 is still 1.35 × 10−2. Therefore, the use
of eigenfunctions can be advocated, in particular when tail probabilities of the
approximated densities are of direct interest.

4.2. Error for the expansion and numerical integration methods

Since the expansion and numerical integration methods use the exact depen-
dence kernel, it suffices to consider the marginal quantities

ε1 = max
x∈[a,b]

∣∣∣f1(x) − φ1(x)
∫ d

c
φ2(y)K(x, y)dy

∣∣∣,
ε2 = max

y∈[c,d]

∣∣∣f2(y) − φ2(y)
∫ b

a
φ1(x)K(x, y)dx

∣∣∣.
Sharp error bounds can be derived for square integrable symmetric kernels

in standard eigenvalue problems but are difficult for more general kernels (Baker
(1977)). Even for this type of kernel our problem is non-standard, so we present
only a simple error bound, which necessarily is too pessimistic.

First, consider the expansion method. For simplicity we assume a symmetric
kernel and marginal densities that coincide. Let us choose an arbitrary point x in
[a, b] and let xi be the closest grid point. We assume the grid points to be equally
spaced. Let f denote the true marginal density and f (n) the approximation of
order n. Then f(xi) = f (n)(xi) and |f(x)− f (n)(x)| ≤ |f(x)− f(xi)|+ |f (n)(x)−
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f (n)(xi)|. Let Hg = maxx∈[a,b] |g′(x)| for a function g defined over [a, b], then

|f(x) − f (n)(x)| ≤ (Hf +Hf(n))|x− xi|
≤ (Hf +Hf(n))

b− a

n
.

As the order of n increases, it is sensible to approximate Hf(n) by Hf , yielding
(for n sufficiently large)

‖f − f (n)‖∞ ≤ 2Hf
b− a

n
. (4.2)

Note that this inequality is only approximate and could be violated in the tail
areas. Its primary use therefore lies in the areas where Hf(n) is close to Hf , most
probably around the mode of f .

A similar result holds for the numerical integration method, but we also need
to consider the term |f1(xi) − f

(n)
1 (xi)| as it differs from zero in this case. Note

that

f1(xi) = µi

m∑
j=0

vjνjK(xi, yj),

f
(n)
1 (xi) = µi

∫ d

c
φ

(n)
2 (y)K(xi, y)dy.

Hence, |f1(xi)− f
(n)
1 (xi)| = |µi|En(φ2(y)K(xi, y)) with En(g) the error attached

to the quadrature method adopted. For a trapezoidal rule, the error is O(n−2),
while for Simpson’s rule we obtain O(n−4). This term must be added to (4.2).

Sometimes it is of interest to study the error directly in terms of the bivariate
density. We restrict attention to the symmetric case. Observe that the true joint
density can be expressed as (3.1) where the function φ(x) is approximated by
φn(x) = f(x)/ψn(x) in the expansion method and by (3.1) in the numerical inte-
gration method. Given that the dependence kernel is exact with these methods,
the error in the joint density depends only on the error in φ(x). In particular,
an approximate upper bound for the error is given by

|f(x, y) − fn(x, y)| ≤ 2|fn(x, y)|.‖φ − φn‖∞.
The error in φ(x) will be discussed in Section 4.3.

The difference of accuracy between both methods, is clearly seen in an exam-
ple. Table 4 compares the expansion and numerical integration methods directly
on three bivariate densities with constant dependence function (γ = 1) and with
marginal density functions: uniform on [0, 1], standard normal and Cauchy. The
powers of x were used as expansion functions. The numerical integration method
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used is the repeated Newton rule (based on a quadratic approximation of the inte-
grand). It is clear from the table that the numerical integration method improves
monotonically as the order of the polynomial increases. This is not necessarily
true for the expansion method.

Table 4. Comparison of error bounds of the expansion and numerical inte-
gration methods applied to three densities with constant dependence (γ = 1)
and marginals: Uniform on [0, 1], standard Normal and standard Cauchy.

n Expansion Numerical Integration
Uniform Normal Cauchy Uniform Normal Cauchy

3 1.13e-4 0.399 0.364 5.59e-6 2.064 1.617
6 1.00e-8 0.401 0.366 3.12e-7 0.0823 0.0406

18 3.75e-6 4.01e-6 2.28e-4 3.81e-9 1.32e-3 5.25e-3
24 - 3.06e-9 3.87e-6 1.21e-9 4.22e-5 1.45e-3
30 - 4.91e-8 5.02e-8 4.99e-10 5.13e-7 4.07e-4

The expansion method did not converge in the case of uniform marginals,
for n = 24, 30. On the other hand, its fit was already excellent for n = 6, judged
from the maximal error of 1.00e-8. The numerical problem with the expansion
method can be described as follows. With both normal and Cauchy margins
the coefficient with the largest absolute value is the intercept µ0. It converges
to 0.887 and 0.810 respectively. Higher order coefficients are relatively small.
With uniform margins, a similar pattern is observed up to order 18. The in-
tercept converges to 0.890. For higher order approximations, the coefficients
increase rapidly, e.g. for n = 21, the coefficient of order 13 lies around 240. The
problem is ill-conditioned, as can be deduced from the fact that consecutive it-
erates do not converge but show an irregular oscillating pattern. It is worthwile
to note that no such problems are encountered with the numerical integration
method. The absolute value of the largest coefficient converges to 0.450 for nor-
mal and Cauchy margins, while it tends to 1.123 for uniform margins. Using
Legendre or Chebychev polynomials as expansion functions did not remove this
ill-conditioning problem. Alternatively, an orthonormal system in terms of eigen-
values and eingenfunctions of the kernel could be used.

These results are very plausible in the light of the derived error structure.
Observe that the numerical integration method error is greater for smaller values
of n, due to the presence of the numerical integration term in the error formula.
However, this term approaches zero much faster than the other terms, explaining
why finally this method is able to perform better. Also, note that for the uniform
density the numerical integration method is better from the start. Indeed, in this
case the integration is exact.
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4.3. Comparison of the three methods

If the exact solution is known, the three approximate solutions can be com-
pared to it. For example, the bivariate normal density is specified by a constant
local dependence function and normal marginals. The exact solution clearly is

φ(x) =
[ 1√

2π
exp

(
− x2

2

)][
−4

√
1 − ρ2 exp

(
− ρ2

1 − ρ2

x2

2

)]

and γ(x, y) = γ = ρ/(1 − ρ2). Suppose f(x, y) is the exact density and we have
an approximation f∗(x, y) = φ∗(x)φ∗(y)K∗(x, y). Let us compare f with f∗. Let
fd, fe and fi denote the degenerate kernel, expansion and numerical integration
solutions respectively. In all three cases, let n = 30 and truncate the density
on D = [−5, 5] × [−5, 5]. Take γ = 1, corresponding to a correlation coefficient
ρ = 0.618. Then for all (x, y) ∈ D the absolute errors are

|fd(x, y) − f(x, y)| < 1.09e − 7,

|fe(x, y) − f(x, y)| < 1.09e − 7,

|fi(x, y) − f(x, y)| < 4.34e − 7.

For the relative error the following figures are obtained :

| (fd(x, y) − f(x, y)) /f(x, y)| < 1.08e + 20,

| (fe(x, y) − f(x, y)) /f(x, y)| < 2.35e + 2,

| (fi(x, y) − f(x, y)) /f(x, y)| < 1.47e − 2.

All three methods give an excellent fit, but based on the relative error the nu-
merical integration method is far better than the others. Table 4 indicates that
these conclusions may not be generalized. Several remarks ought to be made.
First, the interval [−5, 5] is fairly wide for a standard normal density. If the
region D is reduced to D = [−3, 3]× [−3, 3] then all three absolute errors for the
bivariate density are equal to 4.7e− 4, and the relative errors vary between 0.14
(numerical integration) and 0.47 (degenerate kernel). Secondly, although Table 1
suggests that the approximation is better for the degenerate kernel method, one
should keep in mind that the kernel itself is approximated. It was seen in Section
4.1 that eigenfunctions are able to improve the latter approximation. Thirdly,
the maximum absolute (relative) errors for the corresponding univariate normal
marginals are 3e − 5 (2e + 1) for the expansion method and 5e − 7 (7e − 5) for
the numerical integration method. Although in both cases graphs of the true
and the approximated marginal densities cannot be distinguished visually, there
is a small anomaly with the expansion method, where the true density in x = 5
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equals 1e − 6, and the approximation equals 3e − 5. This is due to the odd
terms in the expansion: while theoretically zero, some have very small nonzero
values because of numerical inaccuracies. Restricting them to zero removes this
anomaly and reduces the relative error for the expansion method to 2.9.

In Section 4.2 it was stated that the error in the bivariate density is directly
related to the error in the functions φ(x) for the expansion and numerical inte-
gration methods. The maximum absolute (relative) errors for φ(x) are 5e − 7
(2e+1) for the expansion method and 7e−6 (7e−3) for the numerical integration
method. Restricting the odd coefficients in the expansion method to zero reduces
the relative error to 1.0.

In conclusion, the numerical integration method is best suited for this par-
ticular problem. In addition, a more optimal choice for the expansion functions
in both the degenerate kernel method and the expansion method could improve
the performance. More work on optimal choices of expansion functions would be
welcome. There is a trade off between the simplicity of e.g. power expansions and
the performance of expansion functions that could turn out to be less tractible.

The errors in this section are computed on an equally spaced grid of 40× 40
subintervals of the region D.

5. Examples

It has long been a tradition in statistics to construct bivariate densities with
normal marginals; two famous examples are the Morgenstern and Plackett fam-
ilies of densities. Our technique adds to these an infinite number of bivariate
densities with normal marginals but with a variety of association structures. As
an illustration, we have constructed two such densities, with local dependence
function: (1) the Cauchy dependence function and (2) γ(x, y) = −4xy/(x2+y2)2.
Both densities have negative dependence in two quadrants and postive in the oth-
ers and the dependence vanishes as one moves away from the origin. In Figure
3 these densities are compared with the standard normal density (γ = 1). All
three densities are truncated on the rectangle = [−5, 5] × [−5, 5], and computed
using the numerical integration method. Observe that the third density has 4
modes !

It is also illustrative to vary the constant dependence and again keep the
marginals fixed. Figure 4 shows three bivariate densities with uniform marginals
and constant dependencies (1, 3 and 5). The densities are constructed with the
degenerate kernel method of degree 12.



732 GEERT MOLENBERGHS AND EMMANUEL LESAFFRE

Figure 3. Three densities with standard normal marginals and local depen-
dence function (a) γ(x, y) = 1, (b) Cauchy dependence γ(x, y) = 6xy/(x2 +
y2 + c2)2 and (c) γ(x, y) = −4xy/(x2 + y2)2.

Figure 4. Three densities with Uniform marginals and local dependence
function equal to (a) 1, (b) 3 and (c) 5.
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One could also show how the shape of the density changes if the dependence
function is held constant but the marginals vary.

6. Applications

Let us first discuss some categorical data applications. There is an analogy
with loglinear modelling of r × c contingency tables, where the marginal proba-
bilities are modelled via a logit function and the dependence is modelled via the
local cross-ratios (see e.g. Agresti (1990)). This analogy can be used to model
contingency tables, arising from a discretized underlying distribution: one can
model the marginals in a very general way, together with certain prescribed local
dependence structure. The simplest case is to assume a constant local cross-ratio.
This establishes a connection with the bivariate probit model, where bivariate
categorical data are assumed to arise from discretizing an underlying bivariate
normal density.

Simulation studies form another area of application. Dale (1986) intro-
duced the Dale model for bivariate ordered categorical data, and her method was
generalized to arbitrary dimension by Molenberghs and Lesaffre (1994). Both the
probit and Dale models assume an underlying (multivariate) density: the bivari-
ate normal density for the probit model and the Plackett density for the Dale
model. A simulation study was performed by Lesaffre, Verbeke and Molenberghs
(1994) to investigate the sensitivity of these models to departures from their den-
sities. Some ad hoc departures were chosen. Using the techniques proposed in
this paper, a more systematic study could be undertaken. Indeed, as the Plackett
distribution is characterized via a constant global cross-ratio it is natural to in-
vestigate the performance of the bivariate Dale model using alternatives with the
same marginals but non-constant global cross-ratio structure. Similarly, for the
probit model, one could construct alternatives for the bivariate normal underly-
ing density with normal marginals but non-constant local dependence functions.

The method is potentially useful with bivariate continuous outcomes. Most
bivariate methods assume bivariate normally distributed data, and even though
marginal normality is relatively straightforward to assess, the testing of bivariate
normality can be a complex task. Therefore, it can be useful to investigate
the performance of a particular method under departures from normality, e.g.
by varying the local dependence function while maintaining marginal normality
or keeping the constant local dependence but elongating the normal marginals
(Gleason (1993)). Again, simulation studies are useful in this context. Maximum
likelihood estimation within wide classes of densitities becomes feasible with the
proposed approach. For instance, if bivariate data are assumed to be marginally
normal, but the association structure is expected to be more complex (e.g. a
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Cauchy type dependence), then such a family can be proposed. The use of the
proposed method within this framework will be illustrated with an example.

The Tibet Study
In this study, demographic variables together with several blood related char-

acteristics on 320 subjects are collected. The age of the subjects ranges from 20 to
59 years (median of 39.5 years). We will study the relationship between age and
the outcome variables high density lipoprotein (HDL) and low density lipopro-
tein (LDL). HDL ranges from 29 to 115, with a median of 53, while LDL ranges
from 11.9 to 234, with a median value of 89. The Pearson correlation between
HDL and LDL is −0.179. Age is positively correlated with HDL (0.139) and
LDL (0.232). All three correlations are statistically significant at the 5 % level.

The (HDL,LDL) pair forms the bivariate outcome of interest. We seek a
joint model that describes the dependence of this outcome on age. A classical
“marginal” approach is standard bivariate regression, where the functional de-
pendence of HDL and LDL on age is modelled, together with the correlation
between HDL and LDL. Such a model can be fitted with standard statistical
software (e.g. SAS procedures GLM and MIXED). The methodology outlined in
this paper allows extending standard bivariate regression in two aspects: (1) the
normal marginal structure can be replaced by any other marginal density; in the-
ory both outcomes can be modeled using different densities, (2) the dependence
structure can be generalized from a constant (such as the correlation coefficient)
to arbitrary functions. It is wortwhile to note that each outcome separately, as
well as the association between them, is allowed to depend on covariates such as
age.

Alternatively, both conditional distributions (HDL given LDL and vice versa)
could be specified, as in Arnold, Castillo, and Sarabia (1992). This procedure
has severe drawbacks, such as the presence of an often intractible normalizing
constant, making standard maximum likelihood difficult to implement (their page
38). Further, conditional normal densities lead not only to the bivariate normal
model but also to an unexpected density with anomalous properties, such as a
biquadratic regression function (their page 87).

We considered a set of models for the Tibet data. Parameters were estimated
by maximum likelihood. Let us first outline the algorithm. The approximation
techniques, suggested in this research, allow an efficient computational scheme.
Indeed, within each iteration of a numerical likelihood maximization algorithm,
the numerical values for the coefficients approximating the assumed density need
to be computed only once. Let β1 be the parameter vector for the regression of
HDL and β2 be the parameter vector for the regression of LDL. Both vectors
contain an intercept, an age effect, and the square root of the variance. Further,
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let β3 parametrize the local dependence function between HDL and LDL. Assume
that for all parameters starting values have been chosen and that t iterations have
been carried out. It suffices to explain how the next iterate is obtained. At the
current value of the parameter vector, compute an approximation to the density
(for which only β3 is needed). In case β3 is independent of the covariates, we
need to approximate the density only once within an iterative cycle, and then we
proceed by calculating the density in all observed points. (When β3 depends on
covariates, then this evaluation needs to be performed for each covariate level.)
For subject i, with outcomes (HDLi,LDLi) and covariate AGEi, this amounts to
evaluating the density in(

HDLi − β11 − β12AGEi

β13
,
LDLi − β21 − β22AGEi

β23

)

with βj3 ≡ σj, (j = 1, 2), the square root of the variance for the jth variable.
Denote the contribution of subject i to the log-likelihood by ln fi with fi =
f(HDLi,LDLi|AGEi, β1, β2, β3). The log-likelihood immediately follows as the
sum of these contributions and is easy to handle, in contrast to the conditional
approach of Arnold, Castillo, and Sarabia (1992). We implemented the log-
likelihood function in GAUSS, and maximized it numerically using a Newton-
Raphson scheme by means of the built-in GAUSS routine OPTMUM. The data
set, as well as the GAUSS routines, are available from the authors upon request.

Next, we present some examples of bivariate models, which are all based
on univariate normal marginals, but have varying local dependence functions.
Assuming a model with normally distributed outcomes and a constant ldf is
equivalent to assuming a bivariate normally distributed outcome, and hence the
estimates for the regression parameters should equal the values found by the
ordinary least squares estimator. This was observed up to 7 decimal places.
The values are presented in Table 5, Model 1. Departure of the constant local
dependence (constant correlation) was investigated by two models:

Model 2 : K(x, y) = exp(β30xy + β31x
2y + β32xy

2),

Model 3 : (x, y) = exp(β30xy + β33x
2y2),

corresponding to ldf’s

Model 2 : γ(x, y) = β30 + 2β31x+ 2β32y,

Model 3 : γ(x, y) = β30 + 4β33xy.

Model 2 includes linear deviations of the constant ldf, while Model 3 includes
an interaction term between both variables. From Table 5 it is seen that these
models do not provide a significant improvement over Model 1. These models
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allow for detection of well-defined departures of the constant local dependence
function. The raw correlation coefficient between HDL and LDL of −0.179 is
reflected in the negative value for the dependence parameter β30. In Model 4,
the ldf is replaced by the Cauchy dependence function. Although this model
clearly misspecifies the association (given the decrease in the log-likelihood),
the marginal parameters are not too much affected. However, the marginals
are affected with Model 5, where the local dependence function is of the form
−4xy/(x2 + y2)2. Clearly, misspecifying the association could have an impact on
the marginal regression parmaeters.

Table 5. Parameter estimates (standard errors) for five models fitted to the
Tibet study. All models assume normal marginals. The local dependence
functions are: (1) constant, (2) constant and linear term, (3) constant and
interaction term, (4) Cauchy dependence, (5) −4xy/(x2 + y2)2.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
HDL
Intercept 48.62(2.79) 49.04(2.84) 48.57(2.80) 48.74(2.64) 47.49(2.25)
Age 0.17(0.07) 0.16(0.07) 0.17(0.07) 0.17(0.07) 0.23(0.05)
σ 13.77(0.54) 13.84(0.56) 13.79(0.55) 13.84(0.55) 13.78(0.56)
LDL
Intercept 67.35(6.48) 67.31(6.45) 67.46(6.40) 66.63(6.21) 79.74(4.27)
Age 0.67(0.16) 0.67(0.16) 0.66(0.16) 0.70(0.15) 0.35(0.11)
σ 32.02(1.27) 32.05(1.29) 32.06(1.27) 32.28(1.28) 31.83(1.26)
Association
β30 −0.23(0.06) −0.26(0.08) −0.26(0.07)
β31 0.02(0.04)
β32 0.04(0.04)
β33 −0.02(0.02)
loglik −2221.03 −2220.47 −2220.55 −2226.25 −2279.68

All models show that both HDL and LDL significantly increase with age.
From Models 1–3 it is clear that the negative association between HDL and LDL
remains, even after adjusting for age. Further, it can be deduced that the dif-
ference between HDL and LDL increases with age. Indeed, a simple univariate
regression of HDL minus LDL on age reveals a significant effect (P = 0.007).
The corresponding model is HDL−LDL = 18.7 + 0.5AGE. It could be expected
that this relationship has an effect on the association between HDL and LDL.
In particular, one could foresee that this association changes with age. How-
ever, extending Model 1 to include an age effect in the association, e.g. β30 =
β300 + β301AGECLASS, where AGECLASS is 1 if age exceeds the median and
0 otherwise, yields parameter estimates β300 = −0.23 and β301 = −0.0046. The
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log-likelihood changes only in the third decimal place. Our example illustrates
the flexibility with which the dependence can be modeled as a function of covari-
ates.

7. Concluding Remarks

We suggested a general method to construct bivariate densities, controlling
the marginal densities and the local association structure separately. All tech-
niques depend on numerical methods, involving approximations. Nevertheless
it was shown that an excellent fit can be obtained by taking the order of the
approximation sufficiently high and by choosing adequate expansion functions.
An advantage of the proposed method over the contingency table approach of
Wang (1987) is that the density can be computed in any point, without having
to store a complete table of cell probabilities. The method improves the tech-
nique of Wang (1993) by producing functional expressions that can be evaluated
over the whole domain. The performance of the numerical techniques can be
assessed by checking the dependence and marginal conditions. A further area of
research is the generalization of the local dependence function to a multivariate
version. Wang (1993) suggested a trivariate version. The generalization of the
existence and uniqueness theorem of Holland and Wang will certainly not have a
straightforward generalization, as compatibility conditions of the marginals will
be involved. Furthermore, numerical techniques will involve systems of several
non-linear integral equations.

Finally, the method makes it feasible to compute extensions of bivariate
normal regression to other margins and other dependence structures. It was
shown using the Tibet study that computations are feasible. As a referee pointed
out, this is potentially useful in economic data, where the dependence pattern is
often more complicated than in medical or biological data.

All programs were written in GAUSS. They can be obtained from the cor-
responding author upon request.

Acknowledgements

The authors wish to thank an anonymous referee for helpful comments on
earlier drafts of this manuscript. This research was made possible by Nationaal
Fonds voor Wetenschappelijk Onderzoek (Belgium).

References

Agresti, A. (1990). Categorical Data Analysis. John Wiley, New York.

Arnold, B. C., Castillo, E. and Sarabio, J.-M. (1992). Conditionally Specified Distributions.

Lecture Notes in Statistics 73. Springer, Berlin.



738 GEERT MOLENBERGHS AND EMMANUEL LESAFFRE

Baker, C. T. H. (1977). The Numerical Treatment of Integral Equations. Clarendon Press,

Oxford.

Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (1975). Discrete Multivariate Analysis:

Theory and Practice. MIT Press, Cambridge, Mass.

Dale, J. R. (1986). Global cross-ratio models for bivariate, discrete, ordered responses. Biomet-

rics 42, 909-917.

Edlefsen, L. E. and Jones, S. D. GAUSS. Aptech Systems Inc., Kent, WA.

Gleason, J. R. (1993). Understanding elongation: the scale contaminated normal family. J.

Amer. Statist. Assoc. 88, 327-337.

Hochstadt, H. (1973). Integral Equations. John Wiley, New York.

Holland, P. W. and Wang, Y. J. (1987). Dependence function for continuous bivariate densities.

Comm. Statist. Theory Methods 16, 863-876.

Johnson, M. E. (1987). Multivariate Statistical Simulation. John Wiley, New York.

Johnson, M. E. and Tenenbein, A. (1981). A bivariate distribution family with specified

marginals. J. Amer. Statist. Assoc. 76, 198-201.

Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. J. Amer. Statist.

Assoc. 83, 834-841.

Molenberghs, G. and Lesaffre, E. (1994). Marginal modeling of correlated ordinal data using a

multivariate plackett distribution. J. Amer. Statist. Assoc. 89, 633-644.

Lesaffre, E., Verbeke, G. and Molenberghs, G. (1994). A sensitivity analysis of two multivariate

response models. Comput. Statist. and Data Anal. 17, 363-391.

Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilungsblatt für

Mathematische Statistik 8, 234-235.

Plackett, R. L. (1965). A class of bivariate distributions. J. Amer. Statist. Assoc. 60, 516-522.

Plackett, R. L. (1981). The Analysis of Categorical Data (2nd ed ). Griffin, London.

Wang, Y. J. (1987). The probability integrals of bivariate normal distributions: a contingency

table approach. Biometrika 74, 185-190.

Wang, Y. J. (1993). Construction of continuous bivariate density functions. Statist. Sinica 3,

173-187.

Biostatistics, Limburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Bel-

gium.

E-mail: gmolenb@luc.ac.be

Biostatistical Centre for Clinical Trials, School of Public Health, Katholieke Universiteit Leuven,

Capucijnenvoer 35, B-3000 Leuven.

E-mail: emmanuel.lesaffre@biostat.be

(Received May 1993; accepted August 1996)


