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Abstract: Dirichlet process (DP) priors are a popular choice for semiparametric

Bayesian random effect models. The fact that the DP prior implies a non-zero mean

for the random effect distribution creates an identifiability problem that compli-

cates the interpretation of, and inference for, the fixed effects that are paired with

the random effects. Similarly, the interpretation of, and inference for, the variance

components of the random effects also becomes a challenge. We propose an ad-

justment of conventional inference using a post-processing technique based on an

analytic evaluation of the moments of the random moments of the DP. The ad-

justment for the moments of the DP can be conveniently incorporated into Markov

chain Monte Carlo simulations at essentially no additional computational cost. We

conduct simulation studies to evaluate the performance of the proposed inference

procedure in both a linear mixed model and a logistic linear mixed effect model.

We illustrate the method by applying it to a prostate specific antigen dataset. We

provide an R function that allows one to implement the proposed adjustment in

a post-processing step of posterior simulation output, without any change to the

posterior simulation itself.
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probability measure.

1. Introduction

We propose an adjustment for inference in semiparametric Bayesian mixed
effect models with a Dirichlet process (DP) prior on a random effect distribution
G. The need for adjustment arises from two challenges. The first is a difficulty
in the interpretation of fixed effects that are paired with random effects, due to
an identifiability issue. We formally define the notion of paired fixed and ran-
dom effects later. The second challenge is a similar issue related to the variance
components of the random effects. We show that inference based on a conven-
tional interpretation of the fixed effects and variance components is often poor.
Using a parametrization with hierarchical centering (Gelfand, Sahu, and Carlin
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(1995)), we interpret the first two moments of G, denoted by µG and CovG, as
the fixed effects paired with random effects and the variance components of the
random effects, respectively. We derive easy-to-evaluate formulas for the poste-
rior moments of µG and CovG, and propose to use them in a straightforward
post-processing step for Markov chain Monte Carlo (MCMC) output. In an ap-
plication to inference for PSA profiles, we show that the proposed adjustment
can significantly change parameter estimates in a typical data analysis: poste-
rior means for some fixed effects change between 11 and 32%; the corresponding
posterior standard deviations (SDs) and credible interval (CI) lengths change by
more than 200%; the changes in the posterior means, SDs, and lengths of CIs for
the variance components are similarly large. We provide an R function for users
to implement the proposed procedure.

Linear and generalized linear mixed models (LMMs & GLMMs) are an im-
portant and popular tool for analyzing correlated data. The random effects in
such models are typically assumed normal, mainly for reasons of technical conve-
nience. However, many applications require a more heterogeneous random effect
distribution. For example, potentially relevant subject-specific covariates may
not have been measured or are difficult to measure. Missing covariates can lead
to a multimodal random effect distribution. In other applications, the distribu-
tion of the random effects may be skewed.

Estimation of the random effect distribution is important for predictive in-
ference. Consider, for example, the joint modeling of a primary endpoint and a
longitudinal covariate. Valid estimates of the random effects are crucial. Inap-
propriately assuming normality can lead to excessive shrinkage towards zero and
result in poor prediction.

These concerns lead many investigators to use nonparametric alternatives to
normal random effect distributions. The DP is a popular choice as a nonpara-
metric prior for the random effect distribution in mixed effect models within the
Bayesian framework. For example, Kleinman and Ibrahim (1998a,b) modeled
the random effect distribution as

bi | G
i.i.d.∼ G, G ∼ DP (M,G0), G0 = N(0, D), (1.1)

where DP (M,G0) denotes a DP with a total mass parameter M and a base
probability measure G0 (Ferguson (1973)). We refer to a fixed effect as paired
with a random effect if the columns in the design matrices of fixed effects and
random effects match. See the discussion after equation (2.1) for a formal defi-
nition. In short, if the sampling model for the j-th repeated observation for the
ith subject involves a linear predictor ηij = xT

ijβ + zT
ijbi with fixed effects β,

subject-specific random effects bi and known design vectors xij and zij , then we
refer to a subvector βR of β as paired with bi if the corresponding subvector of
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xij matches zij , e.g., both contain an intercept. Posterior simulations in a LMM
or GLMM based on model (1.1) for the random effects can be carried out using
Gibbs sampling. A similar approach has been used by Bush and MacEachern
(1996) in randomized block designs and many others. We argue that there is a
difficulty in interpreting posterior inference for fixed effects that are paired with
random effects in the above models, due to an identifiability issue. With a non-
parametric random effect distribution, a difficulty also arises in the interpretation
of the variance components of the random effects.

In related work, Newton, Czado, and Chappell (1996) proposed a centrally
standardized Dirichlet process prior for the link function in a binary regression,
under which each realization of the link function has a median of zero. The
approach is restricted to univariate distributions.

We propose a modified DP model and a post-processing procedure to address
the aforementioned challenges. The model uses a DP prior for the sum of the ran-
dom effects and their corresponding fixed effects with a base measure centered
at an unknown mean. The post-processing technique is based on an analytic
evaluation of the moments of the random moments of a random probability mea-
sure with a DP prior. Several recent references have discussed the distribution of
these random moments. For example, many authors have discussed the distribu-
tion of the mean of a DP random measure, including Hjort and Ongaro (2005)
and Lijoi and Regazzini (2004). Epifani, Guglielmi, and Melilli (2006) studied
the distribution of the random variance of a DP random measure. Gelfand and
Mukhopadhyay (1995) and Gelfand and Kottas (2002) used Monte Carlo integra-
tion to evaluate marginal posterior expectation of linear and nonlinear functionals
of a nonparametric distribution whose prior is a DP mixture. They approximate
the conditional expectation of the functional by a sample of the functional based
on the predictive distribution of the parameters of the kernel. In this paper, we
instead provide closed-form formulas for the mean and covariance matrix of the
(random) moments of a random measure with a DP prior. These expressions
can be incorporated into MCMC simulations and used to adjust for inference for
both the fixed effects paired with the nonparametric random effects and the sec-
ond moments of the random effect distribution. We conduct simulation studies
to evaluate the performance of the proposed moment-adjustment procedure and
illustrate the method by analyzing a prostate specific antigen (PSA) dataset.

The remainder of this article is organized as follows. In Section 2 we discuss a
difficulty with the näıve inference in the DP random effect model, propose a mod-
ification to the conventional DP prior, and briefly discuss the posterior propriety
of the model. In Section 3 we propose adjusted inference for fixed effects paired
with random effects, and for the variance components of the random effects.
Specifically, in Section 3.1 we derive the posterior mean and variance-covariance
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matrix for fixed effects that are paired with random effects, using results on the
moments of the random first and second moments of a DP random measure.
In Section 3.2 we derive new closed-form results concerning the expectation of
the random third and fourth moments of a DP. We use these results to report
posterior summaries for the (random) covariance matrix of the random effects.
In Section 4 we report results from simulation studies to show the performance
of the proposed inference procedure in both a LMM and a logistic random effect
model. In Section 5 we illustrate the method with inference for the PSA data.
We provide concluding remarks in Section 6. Proofs are given in the Appendix.

2. A Hierarchically Centered Dirichlet Process Prior

For convenience, we use a nonparametric GLMM to illustrate our proposed
method. However, unless indicated otherwise, all results remain applicable for
any nonparametric hierarchical model that contains the DP model (1.1) or (2.3)
as a submodel. For example, model (5.1) in our data example contains a nonlinear
component.

Suppose yij arise independently from an exponential family with mean µb
ij

and variance vb
ij = φv(µb

ij) with a known dispersion parameter φ, conditional on
the cluster-specific random effects bi (q×1), i = 1, . . . ,m, j = 1, . . . , ni. Consider
the GLMM

g(µb
ij) = ηb

ij , (2.1)

where ηb
ij = xT

ijβ + zT
ijbi, g(·) is a monotone differentiable link function with

inverse h(·), and the bi are independent and identically distributed with E(bi) =
0. Let yi = (yi1, . . . , yini)

T and y = (yT
1 , . . . ,yT

m)T . Model (2.1) emcompasses
the general LMM as a special case. Without loss of generality we assume that
the fixed effects are partitioned into (βF ,βR) and similarly xij = (xF

ij ,x
R
ij), with

xR
ij = zij . We refer to βR as fixed effects paired with the random effects bi. For

example, in equation (4.1), (β0, β1) are fixed effects paired with random effects
(b(1)

i , b
(2)
i ) with xR

ij = zij = (1, xij)T . If we add an additional term β2wij on the
right hand side (RHS) of (4.1), then β2 is considered a fixed effect that is not
paired with either random effect, b

(1)
i or b

(2)
i .

Consider the GLMM (2.1) with the DP prior model (1.1) for the random
effects. The model includes the awkward feature that the unknown random
effect distribution G has a non-zero mean almost surely. This makes inference
on the fixed effects βR difficult to interpret. Let µG =

∫
bidG(bi) denote the

random mean of G. We argue that, instead of reporting inference on βR, it is
more appropriate to report inference on βpair ≡ βR + µG.

Following the above arguments, we propose to model the distribution of
βR + bi as

βR + bi
i.i.d.∼ G, G ∼ DP (M,G0), G0 = N(βb, D), (2.2)
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where βb is an unknown vector of the mean parameters for the base probability
measure. Given a lack of interpretation for inference on βR and µG separately,
we propose to remove the paired fixed effects βR from (2.1). As a result, the
random effect vector in the revised model, again denoted by bi, corresponds to
βR + bi in the original model. The prior model (2.2) now becomes

bi
i.i.d.∼ G, G ∼ DP (M,G0), G0 = N(βb, D). (2.3)

The specification of (2.3) follows the notion of hierarchical centering (Gelfand,
Sahu, and Carlin (1995)). We further use β ≡ βF and xij ≡ xF

ij to denote
the remaining fixed effect vector and corresponding design vector. Instead of
inference on βR in the original model, we report inference on βpair = µG in the
revised model. For later reference we state the revised centered GLMM as

g(µb
ij) = ηb

ij with ηb
ij = xT

ijβ + zT
ijbi. (2.4)

This is the same as model (2.1), except that now xij only contains xF
ij , and bi

follows (2.3).
We complete the GLMM with commonly used (hyper-)priors on the remain-

ing parameters: we assume a diffuse normal prior for each component of β and
βb, a proper prior to be described below for D, and a diffuse inverse Gamma
(IG) prior for the residual variance if the GLMM (2.4) reduces to a LMM. All
these priors are assumed independent. For a proper prior for D, we consider
both an inverse Wishart (IW) prior (or an IG prior if D reduces to a scalar) and
a uniform shrinkage prior (USP) (Natarajan and Kass (2000)). For the latter, we
define the USP as if the random effects were normally distributed. See Natarajan
and Kass (2000) for corresponding detail.

One can show that under a flat prior for (β, βb) and a proper prior for both
D and M (including the case of M being a constant), the posterior is proper. In
the case of a LMM with an improper prior for σ2 that is proportional to 1/σ2,
the posterior is also proper. As a side note, one can also show that an improper
prior for M leads to an improper posterior. These results justify the common
use of a diffuse normal prior for the fixed effects and a diffuse IG prior for the
residual variance, when applicable, provided that the prior for the covariance
matrix in the DP base measure is proper. Posterior simulation of the random
effects follows the usual posterior MCMC scheme for DP mixture models. The
simulation can include the total mass parameter M if the model is augmented
with a gamma prior for M . See, for example, Neal (2000) for a review. Posterior
simulation of the remaining model parameters can follow Kleinman and Ibrahim
(1998a,b).
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3. Adjusted Inference for Fixed Effects and Variance Components of
the Random Effects

3.1. Adjustment for fixed effects

Let b = (bT
1 , . . . , bT

m)T , bm+1 be the random effect for a future subject, and
G? = {M · N(βb, D) +

∑m
i=1 δbi

} /(m + M), with δbi
denoting a point mass at

bi. We further let µG?
= Mβb/(m + M) + (

∑m
i=1 bi)/(m + M) and CovG? =

{M(βbβT
b + D) +

∑m
i=1 bibi

T }/(m + M) − µG?
µG?

T , the mean and covariance
matrix of G?.

Proposition 1.
(i) E(µG | y) = E(µG?

| y) = E
(

M
m+M βb + 1

m+M

∑m
i=1 bi | y

)
;

(ii) Cov(µG | y) = E
(

CovG?
m+M+1 | y

)
+ Cov(µG?

| y).

Proof. These are straightforward results of Theorems 3 and 4 of Ferguson (1973).
Proposition 1 suggests that the posterior mean and variance-covariance ma-

trix of µG, equivalently βpair, can be computed based on the posterior samples
of (b,βb,D,M). A CI for the ith component of µG, denoted as µG,i, can then
be constructed. Specifically, the construction can be based on a normal ap-
proximation of the posterior distribution of µG,i using the estimated posterior
mean E(µG,i | y) and the estimated posterior variance, the (i, i)th element of
Cov(µG | y).

Corollary 1. Suppose θ is a function of (β, b, βb, D) and has the same dimen-
sion as bi. Then

(i) E(θ + µG | y) = E(θ | y) + E
(

M
m+M βb | y

)
+ E

(
1

m+M

∑m
i=1 bi | y

)
;

(ii) Cov(θ + µG | y) = E
(

CovG?
m+M+1 | y

)
+ Cov(θ + µG?

| y).

Proof. E(θ+µG | y) and Cov(θ+µG | y) can be computed by first conditioning
on (β, b, βb, D,y) and then marginalizing over (β, b, βb, D).

Corollary 1 is used to make inference for µg1 +dg and µg2 +dη in the analysis
of the PSA data in Section 5.

3.2. Adjustment for variance components

In addition to the inference for the fixed effects βpair, the centered DP
GLMM (2.4) and (2.3) also allows us to make inference on the random variance-
covariance matrix CovG of G. In particular, we have the following proposition.

Proposition 2. (i) E(CovG | y) = E ([(m + M)/(m + M + 1)]CovG? | y).

Proof. This is another straightforward result of Theorems 3 and 4 of Ferguson
(1973).
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In order to derive the posterior second moments for CovG, we need two
lemmas.

Lemma 1. Let P ∼ DP (M,α), where M > 0. Suppose Z1, Z2 and Z3 are
random variables. If for all i1, i2, i3 ∈ {0, 1},

∫
| Zi1

1 Zi2
2 Zi3

3 | dα < ∞, then

E

∫
Z1dP

∫
Z2dP

∫
Z3dP = µ1µ2µ3 +

σ12µ3+σ13µ2+σ23µ1

M + 1
+

2σ123

(M+1)(M+2)
,

(3.1)
where µi =

∫
Zidα, σij =

∫
(Zi − µi)(Zj − µj)dα, i, j = 1, 2, 3, i 6= j, and

σ123 =
∫

(Z1 − µ1)(Z2 − µ2)(Z3 − µ3)dα.

See the proof of Lemma 1 in Appendix A.1.

Lemma 2. Let P , α be as in Lemma 1. Let Z1, Z2, Z3 and Z4 be random
variables. If for all i1, i2, i3, i4 ∈ {0, 1},

∫
| Zi1

1 Zi2
2 Zi3

3 Zi4
4 | dα < ∞, then

E

∫
Z1dP

∫
Z2dP

∫
Z3dP

∫
Z4dP

= µ1µ2µ3µ4+
R1

M+1
+

2R2

(M+1)(M+2)
+

MR3

(M+1)(M+2)(M+3)

+
6σ1234

(M+1)(M+2)(M+3)
, (3.2)

where R1 = σ12µ3µ4 + σ13µ2µ4 + σ14µ2µ3 + σ23µ1µ4 + σ24µ1µ3 + σ34µ1µ2, R2 =
σ123µ4 + σ124µ3 + σ134µ2 + σ234µ1, R3 = σ12σ34 + σ13σ24 + σ14σ23, and µi, σij,
σijk and σ1234 are defined in a similar manner as in Lemma 1.

See the proof of Lemma 2 in Appendix A.2.
Let CovG,ij and CovG?,ij be the (i, j)th component of CovG and CovG? for

i 6= j, respectively. Let Var G?,i be the (i, i)th component of CovG? . For notation
in the next result, see Appendix A.3.

Proposition 2. (ii) Recall that [bm+1 | b, βb, D,M ] = G?. If b
(i)
m+1 is the ith

component of bm+1, then

Cov(CovG,i1j1 , CovG,i2j2 | y)

= E(L1 − L2 − L3 + L4 | y)

−E

(
m + M

m + M + 1
CovG?,i1j1 | y

)
E

(
m + M

m + M + 1
CovG?,i2j2 | y

)
, (3.3)

where

L1 =
E[b(i1)

m+1b
(j1)
m+1b

(i2)
m+1b

(j2)
m+1 | G?]+(m+M)E[b(i1)

m+1b
(j1)
m+1 | G?]E[b(i2)

m+1b
(j2)
m+1 | G?]

m + M + 1
,
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L2 = µ
(L2)
1 µ

(L2)
2 µ

(L2)
3 +

σ
(L2)
12 µ

(L2)
3 + σ

(L2)
13 µ

(L2)
2 + σ

(L2)
23 µ

(L2)
1

m + M + 1

+
2σ

(L2)
123

(m + M + 1)(m + M + 2)
,

L3 = µ
(L3)
1 µ

(L3)
2 µ

(L3)
3 +

σ
(L3)
12 µ

(L3)
3 + σ

(L3)
13 µ

(L3)
2 + σ

(L3)
23 µ

(L3)
1

m + M + 1

+
2σ

(L3)
123

(m + M + 1)(m + M + 2)
,

L4 = µ
(L4)
1 µ

(L4)
2 µ

(L4)
3 µ

(L4)
4 +

R
(L4)
1

m + M + 1
+

2R
(L4)
2

(m + M + 1)(m + M + 2)

+
(m + M)R(L4)

3

(m + M + 1)(m + M + 2)(m + M + 3)

+
6σ

(L4)
1234

(m + M + 1)(m + M + 2)(m + M + 3)
.

In particular,

Var (CovG,ij | y) = E(O1 − 2O2 + O3 | y) −
[
E

(
m + M

m + M + 1
CovG?,ij | y

)]2

,

(3.4)
where

O1 =
E

(
[b(i)

m+1b
(j)
m+1]

2 | G?

)
+ (m + M)

[
E

(
b
(i)
m+1b

(j)
m+1 | G?

)]2

m + M + 1
,

O2 = µ
(O2)
1 µ

(O2)
2 µ

(O2)
3 +

σ
(O2)
12 µ

(O2)
3 + σ

(O2)
13 µ

(O2)
2 + σ

(O2)
23 µ

(O2)
1

m + M + 1

+
σ

(O2)
123

(m + M + 1)(m + M + 2)
,

O3 = µ
(O3)
1 µ

(O3)
2 µ

(O3)
3 µ

(O3)
4 +

R
(O3)
1

m + M + 1
+

2 R
(O3)
2

(m + M + 1)(m + M + 2)

+
(m + M)R(O3)

3

(m + M + 1)(m + M + 2)(m + M + 3)

+
6σ

(O3)
1234

(m + M + 1)(m + M + 2)(m + M + 3)
.

See the proof of Proposition 2 (ii) in Appendix A.4.

Remark. Proposition 2 allows us to compute the posterior mean and variance-
covariance matrix of CovG (it is easiest to write CovG as a stacked column vector
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of its lower-diagonal elements). Noting the typical skewness of the posterior
distribution of a variance, we construct a CI for Var G,i by matching its posterior
mean and variance to those of a log-normal distribution. We choose the log-
normal distribution because of its positive support. Similar to the approach to
constructing a CI for µG,i, we use a normal approximation for CovG,ij with i 6= j.

Propositions 1 and 2 hold under model (2.3) for the random effects bi. There-
fore, as long as the posterior samples of (b, βb, D,M) can be obtained (e.g.,
through MCMC simulations), one can post-process the samples and report ad-
justed inference for µG and CovG, i.e., the “fixed effects” paired with bi, and
the variance components of bi.

4. Simulation Studies

4.1. A linear mixed model

We conducted a simulation study to examine the performance of the pro-
posed center-adjusted inference in a LMM with nonparametric random intercept
and slope. We generated 200 datasets from the LMM

Yij = β0 + b
(1)
i +

(
β1 + b

(2)
i

)
xij + εij , i = 1, . . . , 50, j = 1, . . . , 10, (4.1)

i.e., with β = (β0, β1)′. We used β0 = 1, β1 = 1, xij = j + 0.025i − 5, εij
i.i.d.∼

N(0, σ2 = 1), and bi = (b(1)
i , b

(2)
i )′ i.i.d.∼ 1/3×N(µ(1),Σ(1))+2/3×N(µ(2),Σ(2)),

where µ(1) = (µ(1)
1 , µ

(1)
2 )′ = (−2, 2)′, Σ(1) = [σ(1)

ij ] with σ
(1)
11 = σ

(1)
22 = 0.1, and

σ
(1)
12 = −0.09; µ(2) = (µ(2)

1 , µ
(2)
2 )′ = (1,−1)′, Σ(2)] = [σ(2)

ij with σ
(2)
11 = σ

(2)
22 = 0.5,

and σ
(2)
12 = −0.45. Under this bivariate bimodal normal mixture of bi, we have

E(bi) = (b(1)
i , b

(2)
i )′ ≡ µ = (µ1, µ2)′ = (0, 0)′ and Cov(bi) = Cov((b(1)

i , b
(2)
i )′) ≡

Σ = [σij ], with σ11 = σ22 = 2.37 and σ12 = −2.33.
We used the semiparametric LMM proposed in Section 2 for analysis. In

particular, we used the centered DP prior model (2.3) for bi. We assumed in-
dependent N(0, 104) priors for βb0, βb1, and an IG prior IG(10−2, 10−2) for σ2.
Let I2 denote the 2 × 2 identity matrix. Recall that D denotes the variance-
covariance matrix of the base measure G0. We assumed an IW prior IW (2,Ω)
for D with mean E(D−1) = 2Ω where Ω = 10−2I2. The hyperparameters of
the IW prior were chosen such that posterior inference was dominated by the
data (c.f., Bernado and Smith (1994)). Posterior simulations followed Kleinman
and Ibrahim (1998b) with an additional step of sampling βb. Inference for the
fixed effects β ≡ (β0 β1)′ and the random effect covariance matrix Σ followed
the moment-adjustment procedure proposed in Sections 3.1 and 3.2.

In light of the documented difficulties with the use of an IG or IW prior
for a random effect variance or covariance matrix (Natarajan and McCulloch
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Table 1. Simulation results using center-adjusted vs conventional (i.e., non-
centered and unadjusted) inference using DP prior with M ∼ G(2.5, 0.5) in
model (4.1) based on 200 replicates. An IWP or USP was used for D in the
DP base measure.

Center-adjusted Conventional
Parameter π(D) Bias MSE (SE) CIL CP Bias MSE (SE) CIL CP

β0 IWP 0.04 0.04 (0.004) 0.85 0.93 0.16 0.08 (0.01) 2.88 0.99
USP 0.03 0.04 (0.004) 0.81 0.93 0.15 0.09 (0.01) 1.89 0.97

β1 IWP -0.04 0.04 (0.004) 0.84 0.93 -0.15 0.08 (0.01) 1.88 0.80
USP -0.03 0.04 (0.004) 0.80 0.95 -0.15 0.09 (0.01) 1.60 0.85

σ2 IWP 0.04 0.01 (0.001) 0.29 0.94 0.04 0.01 (0.001) 0.29 0.94
USP 0.04 0.01 (0.001) 0.29 0.92 0.03 0.01 (0.001) 0.29 0.94

σ11 IWP 0.01 0.10 (0.01) 1.62 0.99 0.15 0.33 (0.03) 2.44 0.99
USP -0.07 0.11 (0.01) 1.29 0.93 -0.20 0.31 (0.02) 1.46 0.45

σ22 IWP 0.01 0.08 (0.01) 1.53 1.00 0.16 0.30 (0.03) 4.31 0.96
USP -0.06 0.09 (0.01) 1.19 0.96 -0.20 0.31 (0.02) 2.49 0.98

σ12 IWP -0.01 0.09 (0.01) 1.54 0.99 -0.15 0.30 (0.03) 4.16 1.00
USP 0.06 0.09 (0.01) 1.20 0.94 0.20 0.31 (0.02) 2.44 0.99

(1998); Natarajan and Kass (2000); among others), alternatively we propose to
extend the USP (Natarajan and Kass (2000)) to our semiparametric LMM and
GLMM for the covariance matrix D in the DP base measure. While Natarajan
and Kass (2000) show posterior propriety under mild conditions in their GLMMs
with normal random effects, similar posterior propriety results hold in our semi-
parametric GLMMs. Posterior MCMC simulation can include a Metropolis step
for sampling D with an IW density as the proposal.

Table 1 reports relative bias, MSE, CI length (CIL), and coverage probability
(CP) for the estimates of the fixed effect intercept and slope using both the
traditional DP prior and the proposed centered DP prior approaches using both
the IW and USP priors for variance components. Commonly used posterior
inference involves larger biases and MSEs, much wider CIs, and either worse
coverage probabilities with comparable CI lengths, or slightly better coverage
probabilities at the cost of doubled or even tripled CI lengths. In contrast, the
proposed center-adjusted inference procedure led to estimates of the fixed effects
and variance components that had small biases; the 95% coverage probabilities
for the fixed effects were close to the nominal values. Note that the corresponding
coverage probabilities for the variance components of the random effects using
both procedures appeared to be high when the IW prior was used. When the
USP was used instead, the average CI lengths for the variance components were
considerably shorter than their IW counterparts, with the coverage probabilities
preserved at a reasonable level (93-96%), being close to the nominal value. Similar



CENTER-ADJUSTED INFERENCE IN DP MIXED MODELS 1211

Table 2. Simulation results using center-adjusted vs unadjusted inference
using DP prior with M = 5 in model (4.2) based on 200 replicates. An IWP
or USP was used for D in the DP base measure.

Center-adjusted Conventional
Parameter π(D) Bias MSE (SE) CIL CP Bias MSE (SE) CIL CP

β0 IWP 0.03 0.06 (0.01) 1.01 0.97 0.04 0.13 (0.02) 2.68 1.00
USP 0.07 0.05 (0.01) 0.91 0.94 0.24 0.14 (0.01) 2.32 1.00

β1 IWP 0.03 0.07 (0.01) 1.16 0.97 -0.03 0.13 (0.02) 2.70 1.00
USP -0.06 0.06 (0.01) 0.96 0.93 -0.25 0.14 (0.01) 2.19 1.00

σ11 IWP 0.22 1.26 (0.19) 4.77 0.99 0.51 3.83 (0.66) 10.11 1.00
USP 0.02 0.57 (0.09) 3.31 0.97 -0.19 0.58 (0.04) 4.54 0.99

σ22 IWP 0.34 2.04 (0.31) 6.26 0.99 0.50 3.80 (0.61) 10.34 1.00
USP -0.02 0.49 (0.06) 3.67 0.97 -0.29 0.77 (0.04) 4.18 0.97

σ12 IWP -0.27 1.32 (0.19) 5.26 0.99 0.50 3.33 (0.54) 9.80 1.00
USP 0.03 0.39 (0.05) 3.13 0.92 -0.27 0.67 (0.04) 4.14 0.99

results were obtained when varying the prior for M or fixing M to different
constants.

4.2. A logistic random effect model

We used the following logistic linear mixed effect model as our simulation
truth for the sampling model:

logit(pij) = β0 + b
(1)
i +

(
β1 + b

(2)
i

)
xij , i = 1, . . . , 100, j = 1, . . . , 10, (4.2)

where the xij were the same as in Section 4.1. We investigated the performance
of the proposed adjustments in inference again using both an IW prior and a
USP for the covariance matrix D in the DP base measure. The assumptions on
the random effect distribution and the priors for the remaining parameters were
similar to those in Section 4.1. We fixed M = 5. When a USP was used, the
posterior conditional sampling of D followed the same strategy as for the LMM
in Section 4.1. The corresponding results are summarized in Table 2. Note that
when the IW prior was used for D, even after the moment adjustments, the
inference for the random effect covariance matrix was still poor and seriously
biased. In contrast, the use of the USP resulted in a good performance using the
proposed inference on all model parameters, with a minimal bias and a coverage
probability that was close to the nominal value.

5. Application

We applied the proposed method to analyze data from a phase III clinical
trial with prostate cancer patients. The trial was conducted at M.D. Anderson
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Experimental (CH) arm Control (AA) arm

Figure 1. Observed PSA trajectories.

Cancer Center. The sample size was n = 286 patients. Patients were random-
ized to two treatment arms: a conventional androgen ablation (AA) therapy
(149 patients) and the AA therapy plus three eight-week cycles of chemother-
apy (CH) using ketoconazole and doxorubicin (KA) alternating with vinblas-
tine and estramustine (VE) (137 patients). The outcome variable of interest is
y = log(PSA + 1). PSA level is reported repeatedly over time starting with
treatment initiation. The number of repeated measurements varies from 1 to 65
across patients. The investigators were interested in the PSA profiles post ini-
tialization of both treatments. Figure 1 displays the observed PSA trajectories
for all patients in each treatment arm. For a more detailed description of the
data, see Zhang, Müller, and Do (2010).

We consider a model for the log-transformed PSA level as

yvij = µ0 + θ0vi + (θ1vi + vdg)svij + (θ2vi + vdη)
(
e−φvsvij − 1

)
+ εvij , (5.1)

where v = 0 or 1 indicates treatment arm CH or AA, respectively, i (= 1, . . . ,mv)
denotes the patient ID (in arm v), and j (= 1, . . . , nvi) indicates the measurement
number for subject i in arm v, and svij is the time since treatment initiation
(measured in years) at the jth repeated observation for patient i in arm v. The
fixed effects dg and dη describe the effect of treatment on PSA slope and the

size of the initial drop. We assume θ0vi
i.i.d.∼ N(0, σ2

0), (θ1vi, θ2vi)
i.i.d.∼ G ≡

(G1, G2)T with G ∼ DP (M,N (β ≡ (β1, β2)′,D ≡ [dij ])), εvij
i.i.d.∼ N(0, σ2), and

θ0vi, (θ1vi, θ2vi) and εvij are mutually independent.
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Figure 2. A scatterplot of the joint posterior means (θ̂1vi, θ̂2vi) assuming
normally distributed (θ1vi, θ2vi) (with unknown means) in model (5.1).

Equation (5.1) models the typical features of PSA profiles for prostate cancer
patients post treatment initiation. In particular, PSA levels tend to drop sharply
after treatment initiation, and there is an additive increasing trend over time
(linear in the log-transformed PSA level). Both, the initial drop and the trend,
may differ between treatments.

We assume θ0vi ∼ N(0, σ2
0) mainly for simplicity, assuming that neither

the distribution of θ0vi nor their estimates are of main scientific interest for the
study. A scatterplot of the joint posterior means of (θ1vi, θ2vi) (Figure 2) suggests
clear skewness and significant departure from normality (Verbeke and Lesaffre
(1996)). This justifies the use of the centered DP prior model for the distribution
of (θ1vi, θ2vi).

The prior used for the parameters in model (5.1) was independent across
parameters with p(µ0) = p(β1) = p(β2) = p(dg) = p(dη) = N(0, 104), p(φ0) =
p(φ1) = G(0.01, 0.001), p(σ2

0) = p(σ2) = IG(0.01, 0.01), and p(D) = IW (2,
0.01 I2). Here I2 denotes a 2 × 2 identity matrix and the IW distribution is
parametrized such that E(D−1) = 0.02I2. We fixed M = 5.

We implemented posterior simulation using a Gibbs sampler. An additional
Metropolis step was used to define a transition probability to update φ0 and φ1,
respectively. After a burn-in of 5,000 iterations, 20,000 samples were obtained
with every 10th saved for posterior inference. Evaluation of Geweke’s statistic
(1992) suggested practical convergence of the Markov chains. We applied the
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adjustments for moments of the DP in posterior inference. Specifically, we report
inference on (µg1 , µg2) ≡ (

∫
θ1idG1(θ1i),

∫
θ2idG2(θ2i)) as inference on the slope

of PSA and the initial drop for arm CH. Similarly, we report inference on (µg1 +
dg, µg2 + dη) as inference on the corresponding parameters for arm AA. Denote
the 2 × 2 covariance matrix of (θ1vi, θ2vi) by CovG = [σij ]. We report posterior
summaries for σij as inference for the variance components.

The posterior mean of dη, i.e., the difference in the initial drop in PSA
between the conventional AA and CH treatments, was -0.15. The corresponding
95% CI was (-0.32, 0.01), suggesting that the new CH treatment likely results
in a larger initial drop. The difference in the rate of the drop, i.e., φ1 − φ0, had
a posterior mean of -0.41 and a 95% CI of (-1.00, 0.17). The difference in the
increase in PSA, or dg, had a posterior mean of -0.01 and a 95% CI of (-0.03,
-0.0006). This significantly smaller rate of increase in PSA in the conventional
AA arm (although the difference is small) might be related to its smaller initial
drop.

For comparison, we report posterior inference with and without the proposed
adjustment in Table 3. We report inference on the rate of initial drop in PSA
as part of the treatment effect. This is an example of the inference that is not
affected by the proposed adjustment. On the other hand, we report inference
for all fixed effects that are paired with nonparametric random effects and for
the variance components. The posterior mean of the average increase in PSA
in each arm changed by approximately 10% between the proposed adjusted and
unadjusted inferences. The posterior precision approximately tripled. For the
average initial drop in PSA, the posterior mean changed by about 30% with
the precision being more than tripled in both treatment arms, as a result of the
adjusted inference. Even larger changes were seen in inference for the variance
components σij . For example, the posterior mean of the covariance between
the two random effects flipped sign under the proposed center-adjusted inference
compared to the unadjusted inference. The reported positive covariance estimate
was consistent with the scatterplot of the estimated random effects (θ̂1vi, θ̂2vi)
under a normality assumption (Figure 2).

Finally, we investigated sensitivity of the proposed method with respect to
M by considering alternatively a gamma prior for M , e.g., p(M) = G(0.8, 0.4)
(with mean = 2 and variance = 5). The results (not shown) followed the same
pattern as reported in Table 3.

6. Discussion

We have proposed a post-processing technique based on moment adjustment
for inference on the fixed effects that are paired with random effects and the vari-
ance components of the random effects in a Bayesian hierarchical model. A hier-
archically centered DP prior is assumed for the random effects distribution. The
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Table 3. Posterior summaries with and without the proposed adjustment for
rate of initial drop in PSA, increase in PSA per year, initial drop in PSA,
and variance components based on model (5.1) for the PSA data.

Parameter Adjustment Posterior Mean Posterior SD 95% CI
Rate of initial drop in PSA

Arm CH
φ0 Cent-Adj/Unadj 8.44 0.21 ( 8.04, 8.87)

Arm AA
φ1 Cent-Adj/Unadj 8.03 0.20 ( 7.63, 8.44)

Increase in PSA per year
Arm CH

µg1 Cent-Adj 0.63 0.08 ( 0.49, 0.78)
β1 Unadj 0.70 0.25 ( 0.24, 1.24)

Arm AA
µg1 + dg Cent-Adj 0.62 0.08 ( 0.47, 0.77)
β1 + dg Unadj 0.69 0.25 ( 0.21, 1.22)

Initial drop in PSA
Arm CH

µg2 Cent-Adj 3.32 0.14 ( 3.04, 3.59)
β2 Unadj 4.33 0.48 ( 3.37, 5.28)

Arm AA
µg2 + dη Cent-Adj 3.17 0.14 ( 2.89, 3.44)
β2 + dη Unadj 4.18 0.48 ( 3.23, 5.14)

Variance components
σ11 Cent-Adj 1.17 0.23 ( 0.78, 1.68)

Unadj 1.76 0.68 ( 0.89, 3.54)
σ22 Cent-Adj 4.76 0.51 ( 3.84, 5.84)

Unadj 7.82 2.05 ( 4.65, 12.56)
σ12 Cent-Adj 0.35 0.17 ( 0.01, 0.68)

Unadj -0.22 0.60 (-1.70, 1.14)

main results (Propositions 1 and 2) carry fully to any nonparametric Bayesian
hierarchical model where a DP prior model (1.1) or (2.3) is assumed. In fact,
this also applies to cases where the DP base measure is a parametric distribution
other than normal, as long as the following are computable: 1) µG?

and CovG?

are needed for the evaluation of the posterior mean and covariance matrix of µG

and the posterior mean of CovG; 2) Up to the fourth moments of G? is needed for
the evaluation of the posterior second moments of CovG. The only additional re-
quirements for the proposed method to be applicable are: 1) the posterior samples
of the parameters in the DP prior model (1.1) or (2.3) are available; 2) the mean
and/or covariance matrix of the random effects are of scientific interest. In cases
where only the predictive inference for the outcome variable is of interest, adjust-
ments for the fixed effects and variance components are not necessary. While the
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specific expressions for the proposed moment adjustments are lengthy, they are
closed-form and easy to evaluate. Most importantly, we provide an R function
(freely downloadable from http://odin.mdacc.tmc.edu/~yishengli/DPPP.R)
that allows easy implementation by the users.

We have demonstrated through simulations in DP GLMMs that the pro-
posed center-adjusted inference is effective in correcting inference for the fixed
effects and variance components. We also showed through a data example that
the effect of a treatment on patient outcomes (such as the initial drop after
treatment initiation and the yearly increase in the PSA level in prostate cancer
patients) could be considerably misreported (such as overestimated and poorly
inferred) without appropriate adjustments. A practically important feature of
the proposed procedure is that the method requires little new model structure
and can be implemented at essentially no additional computational cost. The
implementation of the method requires essentially only post-processing of the
posterior samples of the model parameters.

In applying the proposed inference in DP GLMMs, we also find that the
USP leads to in general more robust performance, while the IW prior may result
in poor inference for the variance components of the random effects, an issue
becoming even more prominent when the data to be analyzed are binary.
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Appendix

A.1. Proof of Lemma 1.

Let (X ,A) be the space and σ-field of subsets on which the probability
measure α is defined. By Theorem 2 of Ferguson (1973), a Dirichlet process
DP (M,α) can be alternatively constructed as P (A) =

∑∞
j=1 PjδVj (A), for any

A ∈ A, where Pj are correlated random variables defined in Ferguson (1973)
satisfying Pj ≥ 0 and

∑∞
j=1 Pj = 1, a.s., Vj are i.i.d. random variables with

values in X with probability measure α, and {Pj} and {Vj} are independent.
Here δx(A) = 1, if x ∈ A; and δx(A) = 0 otherwise. Then we have∫

Z1dP

∫
Z2dP

∫
Z3dP =

∑
i

∑
j

∑
k

Z1(Vi)Z2(Vj)Z3(Vk)PiPjPk (A.1)

http://odin.mdacc.tmc.edu/~yishengli/DPPP.R
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since all three series are absolutely convergent with probability one (see the proof
of Theorem 3, Ferguson (1973)). The infinite summation (A.1) is bounded by∑

i

∑
j

∑
k

| Z1(Vi)Z2(Vj)Z3(Vk) | PiPjPk. (A.2)

If (A.2) is an integrable random variable, then the expectation of (A.1) can be
taken inside the summation sign. Let

S(1, 1, 3) =
∑
i6=k

E[Z1(Vi)Z2(Vi)]E[Z3(Vk)]E(PiPiPk),

S(1, 2, 3) =
∑

i6=j 6=k

E[Z1(Vi)]E[Z2(Vj)]E[Z3(Vk)]E(PiPjPk),

S(1, 1, 1) =
∑

i

E[Z1(Vi)Z2(Vi)Z3(Vi)]E(PiPiPi), etc. Then

E

∫
Z1dP

∫
Z2dP

∫
Z3dP

=
∑

i

∑
j

∑
k

E[Z1(Vi)Z2(Vj)Z3(Vk)]E(PiPjPk)

= S(1, 2, 3) + S(1, 1, 3) + S(1, 2, 1) + S(1, 2, 2) + S(1, 1, 1)

= µ1µ2µ3 + (σ12µ3 + σ13µ2 + σ23µ1)

∑
i6=k

E(P 2
i Pk) +

∑
i

EP 3
i


+σ123

∑
i

EP 3
i .

A similar equation shows that (A.2) is integrable. The distribution of the Pi

depends on M , but not α, based on its definition (Ferguson (1973)). Hence,
analogous to the proof of Theorem 4 of Ferguson (1973), we choose X to be the
real line, α to give 2/3 probability to -1 and 1/3 probability to 2, and Z1(x) =
Z2(x) = Z3(x) ≡ x. Thus µ1 = µ2 = µ3 = 0 and σ123 = 2. Hence

∑
i

EP 3
i =

1
2
E

(∫
xdP (x)

)3

=
1
2
E(3P (2) − 1)3 =

2
(M + 1)(M + 2)

,

since P (2) ∼ Beta(M/3, 2M/3). A similar calculation gives us
∑

i6=k E(P 2
i Pk) =

M/[(M + 1)(M + 2)], by assuming α to give 1/2 probability to each of -1 and 1,
and Z1(x) = Z2(x) ≡ x and Z3 ≡ 1. The equality (3.1) is thus proved.



1218 YISHENG LI, PETER MÜLLER AND XIHONG LIN

A.2. Proof of Lemma 2

Define S(i, j, k, `) like S(i, j, k) in the proof of Lemma 1. By similar argument
to that in the proof of Lemma 1, we have

E

∫
Z1dP

∫
Z2dP

∫
Z3dP

∫
Z4dP

=
∑

i

∑
j

∑
k

∑
l

E[Z1(Vi)Z2(Vj)Z3(Vk)Z4(Vl)]E(PiPjPkPl)

= S(1, 2, 3, 4)+S(1, 1, 3, 4)+S(1, 2, 1, 4)+S(1, 2, 3, 1)+S(1, 2, 2, 4)

+S(1, 2, 3, 2)+S(1, 2, 3, 3)+S(1, 1, 3, 3)+S(1, 2, 1, 2)+S(1, 2, 2, 1)

+S(1, 1, 1, 4)+S(1, 1, 3, 1)+S(1, 2, 1, 1)+S(1, 2, 2, 2)+S(1, 1, 1, 1)

= µ1µ2µ3µ4 + R1

∑
i 6=k,k 6=l,l 6=i

E(P 2
i PkPl) + (R1 + R3)

∑
i6=k

E(P 2
i P 2

k )

+(2R1 + R2)
∑
i 6=l

E(P 3
i Pl) + (σ1234 + R1 + R2)

∑
i

EP 4
i

= µ1µ2µ3µ4

+R1

 ∑
i6=k,k 6=l,l 6=i

E(P 2
i PkPl) +

∑
i6=k

E(P 2
i P 2

k ) + 2
∑
i6=l

E(P 3
i Pl) +

∑
i

EP 4
i


+R2

∑
i

EP 4
i +

∑
i 6=l

E(P 3
i Pl)

 + R3

∑
i6=k

E(P 2
i P 2

k ) + σ1234

∑
i

EP 4
i . (A.3)

Assuming α to give 1/2 probability to each of -1 and 1, and Z1(x) = Z2(x)
= Z3(x) = Z4(x) ≡ x, the left hand side (LHS) of (A.3) is

E

(∫
xdP (x)

)4

= E{P (1) − P (−1)}4 = E{2P (1) − 1}4

= 24EP (1)4 − 4 ∗ 23EP (1)3 + 6 ∗ 22EP (1)2 − 4 ∗ 2EP (1) + 1.

Since P (1) ∼ Beta(M/2,M/2), we have

EP (1)4 =
M/2(M/2 + 1)(M/2 + 2)(M/2 + 3)

M(M + 1)(M + 2)(M + 3)
=

(M + 2)(M + 6)
24(M + 1)(M + 3)

,

EP (1)3 =
M/2(M/2 + 1)(M/2 + 2)

M(M + 1)(M + 2)
=

(M + 4)
23(M + 1)

,

EP (1)2 =
M + 2

22(M + 1)
, EP (1) =

1
2
.

The above is based on the moment formula for the beta distribution. Hence, the
LHS of (A.3) is 3/[(M + 1)(M + 3)]. On the other hand, the RHS of (A.3) is
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3
∑

i 6=k E(P 2
i P 2

k ) +
∑

i EP 4
i . Thus, we have

3
∑
i6=k

E(P 2
i P 2

k ) +
∑

i

EP 4
i =

3
(M + 1)(M + 3)

. (A.4)

Similarly, if we assume Z1(x) = Z2(x) = Z3(x) = Z4(x) ≡ x, α to assign 2/3
probability to -1 and 1/3 probability to 2, (A.3) implies

2
∑
i6=k

E(P 2
i P 2

k ) +
∑

i

EP 4
i =

2
(M + 1)(M + 2)

, (A.5)

since P (2) ∼ Beta(M/3, 2M/3). Equations (A.4) and (A.5) imply∑
i6=k

E(P 2
i P 2

k ) =
M

(M + 1)(M + 2)(M + 3)
, (A.6)

∑
i

EP 4
i =

6
(M + 1)(M + 2)(M + 3)

. (A.7)

Further assuming α to give 2/3 probability to -1 and 1/3 probability to 2, Z1(x) =
Z2(x) = Z3(x) ≡ x, and Z4(x) ≡ 1, an analogous calculation using (A.3) as above
yields ∑

i 6=l

E(P 3
i Pl) =

2M

(M + 1)(M + 2)(M + 3)
. (A.8)

Again, assuming α to give 1/2 probability to each of -1 and 1, Z1(x) = Z2(x) ≡ x,
and Z3(x) = Z4(x) ≡ 1, we obtain∑

i6=k,i6=l,k 6=l

E(P 2
i PkPl) =

M2

(M + 1)(M + 2)(M + 3)
. (A.9)

(3.2) is obtained by plugging (A.6), (A.7), (A.8) and (A.9) into (A.3).

A.3. Notations used for defining L2 through L4, O2 and O3 in
Proposition 2(ii)

In L2:

µ
(L2)
1 = CovG?,i1j1 +µG?,i1µG?,j1 , µ

(L2)
2 =µG?,i2 , µ

(L2)
3 =µG?,j2 , σ

(L2)
23 =CovG?,i2j2 ,

σ
(L2)
12 =

∫
b
(i1)
m+1b

(j1)
m+1b

(i2)
m+1dG?(bm+1) − (CovG?,i1j1 + µG?,i1µG?,j1) × µG?,i2 ,

σ
(L2)
13 =

∫
b
(i1)
m+1b

(j1)
m+1b

(j2)
m+1dG?(bm+1) − (CovG?,i1j1 + µG?,i1µG?,j1) × µG?,j2 ,

σ
(L2)
123 =

∫ (
b
(i1)
m+1b

(j1)
m+1 − µ

(L2)
1

)(
b
(i2)
m+1 − µ

(L2)
2

)(
b
(j2)
m+1 − µ

(L2)
3

)
dG?(bm+1).
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In L3:

µ
(L3)
1 = CovG?,i2j2 +µG?,i2µG?,j2 , µ

(L3)
2 =µG?,i1 , µ

(L3)
3 =µG?,j1 , σ

(L3)
23 =CovG?,i1j1 ,

σ
(L3)
12 =

∫
b
(i2)
m+1b

(j2)
m+1b

(i1)
m+1dG?(bm+1) − (CovG?,i2j2 + µG?,i2µG?,j2) × µG?,i1 ,

σ
(L3)
13 =

∫
b
(i2)
m+1b

(j2)
m+1b

(j1)
m+1dG?(bm+1) − (CovG?,i2j2 + µG?,i2µG?,j2) × µG?,j1 ,

σ
(L3)
123 =

∫ (
b
(i2)
m+1b

(j2)
m+1 − µ

(L3)
1

)(
b
(i1)
m+1 − µ

(L3)
2

)(
b
(j1)
m+1 − µ

(L3)
3

)
dG?(bm+1).

In L4:

µ
(L4)
1 = µG?,i1 , µ

(L4)
2 =µG?,j1 , µ

(L4)
3 =µG?,i2 , µ

(L4)
4 =µG?,j2 ,

σ
(L4)
12 = CovG?,i1j1 , σ

(L4)
13 = CovG?,i1i2 , σ

(L4)
14 = CovG?,i1j2 ,

σ
(L4)
23 = CovG?,j1i2 , σ

(L4)
24 = CovG?,j1j2 , σ

(L4)
34 = CovG?,i2j2 ,

σ
(L4)
123 =

∫ (
b
(i1)
m+1 − µ

(L4)
1

)(
b
(j1)
m+1 − µ

(L4)
2

)(
b
(i2)
m+1 − µ

(L4)
3

)
dG?(bm+1),

σ
(L4)
124 =

∫ (
b
(i1)
m+1 − µ

(L4)
1

)(
b
(j1)
m+1 − µ

(L4)
2

)(
b
(j2)
m+1 − µ

(L4)
4

)
dG?(bm+1),

σ
(L4)
134 =

∫ (
b
(i1)
m+1 − µ

(L4)
1

)(
b
(i2)
m+1 − µ

(L4)
3

)(
b
(j2)
m+1 − µ

(L4)
4

)
dG?(bm+1),

σ
(L4)
234 =

∫ (
b
(j1)
m+1 − µ

(L4)
2

)(
b
(i2)
m+1 − µ

(L4)
3

)(
b
(j2)
m+1 − µ

(L4)
4

)
dG?(bm+1),

R
(L4)
1 =

∑
i<j,k<`,i 6=k,i 6=`,j 6=k,j 6=`

σ
(L4)
ij µ

(L4)
k µ

(L4)
` ,

R
(L4)
2 = σ

(L4)
123 µ

(L4)
4 + σ

(L4)
124 µ

(L4)
3 + σ

(L4)
134 µ

(L4)
2 + σ

(L4)
234 µ

(L4)
1 ,

R
(L4)
3 = σ

(L4)
12 σ

(L4)
34 + σ

(L4)
13 σ

(L4)
24 + σ

(L4)
14 σ

(L4)
23 ,

σ
(L4)
1234 =

∫ (
b
(i1)
m+1−µ

(L4)
1

)(
b
(j1)
m+1−µ

(L4)
2

)(
b
(i2)
m+1−µ

(L4)
3

)(
b
(j2)
m+1−µ

(L4)
4

)
dG?(bm+1).

In O2:

µ
(O2)
1 = CovG?,ij + µG?,iµG?,j , µ

(O2)
2 = µG?,i, µ

(O2)
3 = µG?,j , σ

(O2)
23 = CovG?,ij ,

σ
(O2)
12 = σ

(O2)
13 =

∫ [
b
(i)
m+1

]2
b
(j)
m+1dG?(bm+1) − (CovG?,ij + µG?,iµG?,j) × µG?,i,

σ
(O2)
13 =

∫
b
(i)
m+1

[
b
(j)
m+1

]2
dG?(bm+1) − (CovG?,ij + µG?,iµG?,j) × µG?,j ,

σ
(O2)
123 =

∫ (
b
(i)
m+1b

(j)
m+1 − µ

(O2)
1

)(
b
(i)
m+1 − µ

(O2)
2

)(
b
(j)
m+1 − µ

(O2)
3

)
dG?(bm+1).

In O3:

µ
(O3)
1 = µ

(O3)
2 = µG?,i, µ

(O3)
3 = µ

(O3)
4 = µG?,j ,
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σ
(O3)
12 = Var G?,i, σ

(O3)
34 = Var G?,j , σ

(O3)
13 = σ

(O3)
14 = σ

(O3)
23 = σ

(O3)
24 = CovG?,ij ,

σ
(O3)
123 = σ

(O3)
124 =

∫ (
b
(i)
m+1 − µ

(O3)
1

)2 (
b
(j)
m+1 − µ

(O3)
3

)
dG?(bm+1),

σ
(O3)
134 = σ

(O3)
234 =

∫ (
b
(i)
m+1 − µ

(O3)
1

)(
b
(j)
m+1 − µ

(O3)
3

)2
dG?(bm+1),

R
(O3)
1 =

∑
i<j,k<`,i 6=k,i6=`,j 6=k,j 6=`

σ
(O3)
ij µ

(O3)
k µ

(O3)
` ,

R
(O3)
2 = σ

(O3)
123 µ

(O3)
4 + σ

(O3)
124 µ

(O3)
3 + σ

(O3)
134 µ

(O3)
2 + σ

(O3)
234 µ

(O3)
1 ,

R
(O3)
3 = σ

(O3)
12 σ

(O3)
34 + σ

(O3)
13 σ

(O3)
24 + σ

(O3)
14 σ

(O3)
23 ,

σ
(O3)
1234 =

∫ (
b
(i)
m+1 − µ

(O3)
1

)2 (
b
(j)
m+1 − µ

(O3)
3

)2
dG?(bm+1).

A.4. Proof of Proposition 2(ii)

Assume [b̃ | G] ∼ G and [bm+1 | b, βb, D,M ] ∼ G?. Let b̃(i) and b
(i)
m+1

be the ith component of b̃ and bm+1, respectively. Define I1 = E(CovG,i1j1 ·
CovG,i2j2 | b, βb, D,M), I2 = E(CovG,i1j1 | b,βb, D,M), and I3 = E(CovG,i2j2 |
b, βb,D,M). Then Cov(CovG,i1j1 , CovG,i2j2 | y) = E(I1 | y) − E(I2 | y)E(I3 |
y). Based on Proposition 3 (i), I2 = (m + M)CovG?,i1j1/(m + M + 1), and
I3 = (m + M)CovG?,i2j2/(m + M + 1).

To calculate I1, we write I1 = J1 − J2 − J3 + J4, where

J1 = E

[∫
b̃(i1)b̃(j1)dG(b̃)

∫
b̃(i2)b̃(j2)dG(b̃) | b, β, D,M

]
,

J2 = E

[∫
b̃(i1)b̃(j1)dG(b̃)

∫
b̃(i2)dG(b̃)

∫
b̃(j2)dG(b̃) | b, β, D,M

]
,

J3 = E

[∫
b̃(i2)b̃(j2)dG(b̃)

∫
b̃(i1)dG(b̃)

∫
b̃(j1)dG(b̃) | b, β, D,M

]
, and

J4 = E

[∫
b̃(i1)dG(b̃)

∫
b̃(j1)dG(b̃)

∫
b̃(i2)dG(b̃)

∫
b̃(j2)dG(b̃) | b, β,D,M

]
.

By Theorem 4 of Ferguson (1973),

J1 =
Cov

(
b
(i1)
m+1b

(j1)
m+1, b

(i2)
m+1b

(j2)
m+1 | G?

)
m + M + 1

+
∫

b
(i1)
m+1b

(j1)
m+1dG?(bm+1)

∫
b
(i2)
m+1b

(j2)
m+1dG?(bm+1)

=
E

[
b
(i1)
m+1b

(j1)
m+1b

(i2)
m+1b

(j2)
m+1 | G?

]
m + M + 1
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+
m + M

m + M + 1
E

[
b
(i1)
m+1b

(j1)
m+1 | G?

]
E

[
b
(i2)
m+1b

(j2)
m+1 | G?

]
.

To calculate J2, we apply Lemma 1 for Z1 = b̃(i1)b̃(j1), Z2 = b̃(i2), and
Z3 = b̃(j2). Following the notations in Lemma 1, we have

µ1 = CovG?,i1j1 + µG?,i1µG?,j1 , µ2 = µG?,i2 , µ3 = µG?,j2 , σ23 = CovG?,i2j2 ,

σ12 =
∫

(b(i1)
m+1b

(j1)
m+1 − µ1)(b

(i2)
m+1 − µG?,i2)dG?(bm+1)

=
∫

b
(i1)
m+1b

(j1)
m+1b

(i2)
m+1dG?(bm+1) − (CovG?,i1j1 + µG?,i1µG?,j1) × µG?,i2 ,

σ13 =
∫

b
(i1)
m+1b

(j1)
m+1b

(j2)
m+1dG?(bm+1) − (CovG?,i1j1 + µG?,i1µG?,j1) × µG?,j2 , and

σ123 =
∫ (

b
(i1)
m+1b

(j1)
m+1 − µ1

)(
b
(i2)
m+1 − µ2

)(
b
(j2)
m+1 − µ3

)
dG?(bm+1).

Plugging the above expressions into (3.1), we obtain J2. J3 can be similarly
computed.

To calculate J4, we apply Lemma 2 for Z1 = b̃(i1), Z2 = b̃(j1), Z3 = b̃(i2), and
Z4 = b̃(j2). Following the notations in Lemma 2, we then have

µ1 = µG?,i1 , µ2 = µG?,j1 , µ3 = µG?,i2 , µ4 = µG?,j2 ,

σ12 = CovG?,i1j1 , σ13 = CovG?,i1i2 , σ14 = CovG?,i1j2 ,

σ23 = CovG?,j1i2 , σ24 = CovG?,j1j2 , σ34 = CovG?,i2j2 ,

σ123 =
∫ (

b
(i1)
m+1 − µ1

)(
b
(j1)
m+1 − µ2

)(
b
(i2)
m+1 − µ3

)
dG?(bm+1),

similarly for σ124, σ134, and σ234, and

σ1234 =
∫ (

b
(i1)
m+1 − µ1

)(
b
(j1)
m+1 − µ2

)(
b
(i2)
m+1 − µ3

)(
b
(j2)
m+1 − µ4

)
dG?(bm+1).

Plugging the above expressions into (3.2), we obtain J4. Thus I1 is computed,
and so is Cov(CovG,i1j1 , CovG,i2j2 | y).

Var (CovG,ij | y) can be obtained by replacing i1 and i2 by i, and j1 and j2

by j in (3.3). The proof is thus completed.
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