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Abstract: Many scientific investigations generate both longitudinal data and sur-

vival data. Methods for the combined analysis of both kinds of data have been

developed in recent years, with the main emphasis being on modeling and estima-

tion. In cancer research it is common for there to be long term survivors or cured

patients and methods have been developed to analyze such data. In this article, we

review both joint models for the analysis of longitudinal and survival data and cure

models. We then present a joint longitudinal-survival-cure model to analyze data

from a study of prostate cancer patients treated with radiation therapy. In this

model each patient is assumed to be either cured or susceptible to clinical recur-

rence. The cured fraction is modeled as a logistic function of baseline covariates.

The longitudinal PSA data is modeled as a non-linear hierarchical mixed model,

with different models for the cured and susceptible groups. The clinical recurrences

are modeled as a time-dependent proportional hazards model for those in the sus-

ceptible group. The baseline variables are covariates in both the failure time and

longitudinal models. We use both a Monte Carlo EM algorithm and Markov chain

Monte Carlo techniques to fit the model. The results from the two estimation

methods are compared. We focus on both selected parameters of the model and

derived interpretable quantities.

Key words and phrases: Cure models, joint longitudinal-survival models, prostate

cancer.

1. Introduction

There are many circumstances in which both a repeatedly-measured bio-
marker outcome and the elapsed time to an event are collected on each individ-
ual in a medical study. These observed biomarker series are frequently important
health indicators that represent the progression of a disease. Such data will typi-
cally have additional features and complications associated with them, including
the presence of treatment group indicators and baseline covariates, measurement
error in the biomarkers, and right censoring of the event time with the possibility
of dependent censoring. The goals for studies with data of these types can be
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quite variable. The goal might be assessing how the biomarker changes with time
and how this is influenced by the baseline covariates; it might be determining
how the risk of the event is influenced by the biomarker and the covariates; it
could be determining whether the biomarker can be used as a surrogate endpoint
or as an auxiliary variable in a clinical trial, or whether it could be used to make
individual predictions of future event times for patients who are censored.

One such example is prostate cancer studies. Prostate cancer is a disease
which occurs primarily in older men. Prostate-Specific Antigen (PSA), a protein
produced only by the cells of the prostate gland, is a well known biomarker for
prostate cancer. Common treatments for the patients with local prostate cancer
include radiation therapy and surgery. After treatment, clinical recurrence of
disease may occur after a period of time. The pattern of PSA after radiation
therapy is well recognized as an important aspect of disease progression. Clin-
icians monitor the outcome of the treatments by measuring PSA regularly. In
patients who undergo radiation therapy, a sharp rise in PSA after the initial de-
cline is an indicator of treatment failure, and clinical recurrence (reappearance of
tumor, either local recurrence or distant metastasis) is expected to follow. Thus
the longitudinal PSA could be useful for predicting cancer recurrence for patients
after radiation therapy. The latest value of PSA and the slope of its increase can
be very informative about the progression of disease and the hazard of a clinical
recurrence. If the pattern of PSA is suggestive of an increased risk of clinical
recurrence, the patients may be put on salvage hormonal therapy to slow down
progression of the disease.

The specific data we consider in this article are from the University of Michi-
gan. The patients had carcinoma of the prostate and were treated with radiation
therapy between 1985 and 1997. The endpoint of interest is clinical recurrence
(local recurrence or distant metastasis). The history of the PSA marker pro-
cess can be predictive of the residual time to cancer recurrence for a censored
subject. Regarding the censored observations as missing data, it maybe possi-
ble to recover information from the censoring by modeling both the longitudinal
biomarker information and the survival time. Figure 1 are plots of post-treatment
PSA measurements for 30 randomly selected patients with clinical recurrence, 30
randomly selected censored patients, and all 23 patients who did not have a clin-
ical event but received salvage hormonal therapy. We can see a clear pattern of
decline in PSA after therapy, followed potentially at a later time by an increase.
The PSA profiles are different among the three groups. We see a clear trend of
PSA increase at the later follow-up time after the initial decline for failed pa-
tients, while we see much flatter curves for censored patients. For patients who
received hormonal therapy as a salvage therapy, we also see a rising trend of the
PSA measurements. The reason is that many patients received the hormonal
therapy due to elevated PSA values.
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For data such as these, modeling the event time process using biomarker
observations as time-dependent covariates in a proportional hazards model has
its difficulties. In order to use partial likelihood to estimate the effect of covariates
on the hazard rate, we must know the values of the time varying biomarker for
all subjects in the risk set at any failure time point, with the risk set being
defined as the set of all patients who are still under study at a time just prior
to that failure time point (Fleming and Harrington (1991)). However, in many
clinical studies, subjects fail on a continuous basis while the marker is usually
measured only at discrete time points, and thus no measurements for the marker
exist for members in the risk set when a failure occurs between scheduled follow-
up visits. A popular approach to addressing this problem is to pull forward
the nearest preceding value of the marker and treat it as if it were the current
value of the marker at the failure time, and then use partial likelihood to obtain
estimates of the hazard and marker relationship. An adaption of this approach
discussed by Gail (1981) is to use the preceding marker value as an estimate
of the current value if it was observed within d time units prior to the failure,
or else to exclude the subject from the risk set for that event. One problem
with both of these approaches is that neither accounts for measurement error in
the marker value, which can cause the estimated relative risk parameter in the
time-dependent Cox model to be biased toward the null, and the extent of this
bias is directly proportional to the amount of measurement error in the observed
marker (Prentice (1982)).

An alternative approach to estimation of parameters in a hazard model is to
jointly model both the marker process and the survival data. To do this, random
effect models (Laird and Ware (1982)) are often used to model the marker process
and the individual random effects are included in the survival model. Two major
approaches to estimation are used in the joint modeling literature: a two-stage
approach (Tsiatis, DeGruttola and Wulfsohn (1995), Bycott and Taylor (1998),
Dafni and Tsiastis (1998)) and a likelihood based approach (Faucett and Thomas
(1996), Wulfsohn and Tsiatis (1997), Henderson, Diggle and Dobson (2000),
Wang and Taylor (2001) and Xu and Zeger (2001)). While many joint modeling
methods focus on estimation of the covariate effects in the survival model, other
aspects of the data can also be of interest, for example the relationship between
the biomarker and time or other covariates. The latter can be explored when
estimation is based on the likelihood from the joint model, with the parameters
in the marker process model being the ones of main interest.

For the prostate cancer application, we are interested in a number of different
aspects, including both how PSA changes over time and how this is influenced
by other covariates and how PSA influences the hazard of clinical recurrence. A
complication in prostate cancer applications is the fact that some of the patients
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may have their tumor completely killed by the treatment, and so will never
experience clinical recurrence. These patients are considered to be “cured”. We
incorporate this aspect of the study into our joint modeling by using mixture
cure models.

The objectives of the article is to review joint models and cure models, and
then present Bayesian analysis and compare inferences to those obtained from the
likelihood analysis of the same data (Law, Taylor and Sandler (2002)). The rest
of this article is organized as follows. We give a literature review of joint models
in Section 2 and of cure models in Section 3. In Section 4, we describe a joint
cure model. In Section 5, we describe MLE and Bayesian estimation schemes.
In Section 6, we demonstrate the methodology and compare the two methods
using data from a prostate cancer study. Finally, we conclude the article with a
discussion section.

2. Joint Models for Longitudinal and Survival Data

Joint models are a class of models to describe the joint behavior of a bio-
marker process and an associated survival process, where the biomarker process
is observed at a series of times and the survival process gives rise to censored
event times. The model building usually starts from separate models for each
component and then links the models together. One way to do this is by building
some characteristics of the longitudinal biomarker model into the survival model.
Two estimation methods are popular in the literature: a two stage approach and
a likelihood based approach.

2.1. Two-stage approach to estimation in a time-dependent propor-
tional hazard model

The aim of the two-stage approach is estimation of the regression coefficient
in a time-dependent Cox model while addressing the limitations in our knowledge
of the true trajectory of a marker. In the first stage, a model, usually data driven,
is assumed for the progression of the time-varying marker. Using this model,
estimates of the missing marker values at each event time point are imputed for
all subjects in the risk set, and this process is repeated across all risk sets. In the
second stage, these imputes are treated as the true values of the biomarker at
the time of each failure for purposes of fitting a time-dependent Cox proportional
hazards model.

Tsiatis et al. (1995) used this method for the analysis of data from a placebo-
controlled trial of ZDV in an AIDS study. They assumed a random intercept and
slope model for the true log CD4 value in the placebo group with simple error
structure. Conditional on the marker history, they used the conditional mean of
the multivariate normal to impute the missing marker values, and showed why it
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is appropriate to use this conditional mean in a Cox model. Dafni and Tsiastis
(1998) considered the situation of k different treatments, assuming a different
random intercept and random slope model for each treatment group. Bycott
and Taylor (1998) used a Brownian motion error term to capture the biological
variation and heterogeneity in the pattern of CD4 trajectories seen in individuals
over time.

Although the two-stage approach reduces the bias of the parameter estimate
in the Cox model, there are several drawbacks (Wulfsohn and Tsiatis (1997)).
The two-stage approach does not use any survival information in modeling the
marker process, this could result in bias and loss of efficiency (Faucett and
Thomas (1996)). The estimated marker values from stage one are regarded as
fixed in stage two, thus the approach does not propagate uncertainty from stage
one to stage two.

2.2. Likelihood based approach

An alternative, more unified approach is to base estimation and inference
on the likelihood from a joint model of both the longitudinal biomarker data
and survival data. We can expect more precise and accurate estimates of the
strength of the relationship between the marker and the risk of failure from such
an approach. Besides making more efficient use of the data for estimation of the
parameters in the Cox model, the joint model allows estimation of many different
aspects. The method simultaneously estimates the parameters that describe the
marker process, as well as those that describe the risk of failure as a function of
the marker process.

Let Y ∗
i (t) denote the hypothetical true value of the biomarker process at

time t for subject i and Yi(t) the corresponding observed biomarker process at
time t. Let Ȳ ∗

i (t) denote the history up to time t, {Y ∗
i (s), s ≤ t} and Ȳi(t) =

{Yi(s); s ≤ t} be the corresponding observed marker values up to time t. Let mi

be the number of longitudinal observations for subject i and tij, j = 1, · · · ,mi,
be the corresponding time points when these observations Yij are made. We
denote Yi = (Yi1, · · · , Yimi) as the vector of observed longitudinal observations.
Let Ti be the observed time, which is the minimum of the event time T 0

i and the
censoring time Ci. The censoring indicator δi equals 1 if the event is observed
and 0 otherwise. Let Zi denote other time-independent covariates.

Faucett and Thomas (1996) and Wulfsohn and Tsiatis (1997) considered the
following model

Yi(t) = Y ∗
i (t) + e(t), Y ∗

i (t) = θ0i + θ1it (1)

with e(t) ∼ N(0, σ2
e ) and cov(e(s), e(t)) = 0, s �= t, and

θi |Zi ∼ N(θ,Σ), (2)
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where θi = (θ0i, θ1i)′, θ = (θ0, θ1)′, and

Σ =

(
σθ0θ0 σθ0θ1

σθ1θ0 σθ1θ1

)
.

Here θ = (θ0, θ1)′ can depend on covariates Zi. A proportional hazards model
was assumed for the survival data,

λ(t |θi, Ȳi
∗(t), Zi) = λ0(t) exp[ γY ∗

i (t) + βZi ] = λ0(t) exp[ γ(θ0i + θ1it) + βZi ].
(3)

Hence the hazard depends on the marker through its current true value. Of
course it is possible to make the hazard depend on the history of the true marker
trajectory of that individual using other functional forms such as the rate of
change or total area under the curve (Henderson, Diggle and Dobson (2000)).
Also we note that for the PSA profiles, a nonlinear random effect model will be
needed instead of (1) since the typical trajectory as seen in Figure 1 is clearly
nonlinear.
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Figure 1. Observed post-treatment PSA measurements.

(a) 30 events. (b) 30 censored patients with no hormonal therapy.
(c) 23 hormonal therapy patients.
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Under the models (1), (2) and (3), the complete data likelihood is

n∏
i=1

{[mi∏
j=1

g(Yij |θi, σ
2
e , Zi)

]
h(θi |θ,Σ) f(ti, δi |θ, λ0, γ,β, Zi)

}
, (4)

where g(Yij |θi, σ
2
e , Zi) is the density of Yij at time tij, h(θi |θ,Σ) is the density

of the random effect θi which is also normal with mean θ and Σ, and finally
f(ti, δi |θ, λ0, γ,β, Zi) is the density from the survival part of the model and can
be written as{
λ0(ti) exp[γ(θ0i + θ1iti)+βZi]

}δi
exp

{
−
∫ ti

0
λ0(u) exp[γ(θ0i + θ1iu)+βZi]du

}
.

Since we do not observe the random effect θi, inference is based on the observed
data likelihood

n∏
i=1

{ ∫ [mi∏
j=1

g(Yij |θi, σ
2
e , Zi)

]
h(θi |θ,Σ)f(ti, δi |θ, λ0, γ,β, Zi)dθi

}
. (5)

The following assumptions are typically used (Faucett, Schenker and Taylor
(2002) and Faucett, Schenker and Elashoff (1998)) to justify the validity of the
likelihood approach. Let Ȳ ∗

i,F ≡ Ȳ ∗
i (Ti) = {Y ∗

i (s), s ≤ Ti} be the full history of
true value of the biomarker process up to observed time Ti and Ȳi,F ≡ Ȳi(Ti) =
{Yi(s), s ≤ Ti} be the corresponding full history of the observed marker informa-
tion, and let Ȳi,mis denote the values in Ȳi,F that are not included in the observed
Yi due to only periodic follow-up.

1. The missing Ȳi,mis of the longitudinal marker observations are ignorable (Ru-
bin (1976)).

2. All censoring of survival time is noninformative given true marker history up
to observed time Ti and baseline covariates. Specifically, we assume that the
censoring time Ci and the event time T 0

i are independent given Ȳi,F , Zi and
Ȳ ∗

i,F .
3. Ci is independent of Ȳi,mis and Ȳ ∗

i,F , given Yi and Zi.
4. The parameters of the censoring distribution [Ci | Ȳi,F , Ȳ ∗

i,F , Zi ] are distinct
from the parameters in the joint distribution [T 0

i , Ȳi,F , Ȳ ∗
i,F |Zi ].

For this joint model, Faucett and Thomas (1996) used Gibbs sampling for
estimation. They further assumed that the baseline hazard λ0(t) was a step
function. Although Gibbs sampling is computationally intensive, it provides a
feasible approach to fit this large model without making simplifying assumptions
and it is flexible enough to accommodate a variety of other expanded models.
For example, assuming a more sophisticated form of the dependence between the
hazard and marker process will not substantially increase the computation load.
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Through a simulation study comparing joint analysis with an analysis that fits
each sub-model separately using standard methods, Faucett and Thomas (1996)
demonstrated that the joint analysis produced estimates that were less biased
and more efficient.

Wulfsohn and Tsiatis (1997) used the EM algorithm for estimation. Closed-
form maximum likelihood estimates exist for all parameters except γ, for which
they used a one-step Newton-Raphson. In the E step, the main computation
was in finding the conditional expectation of some functional of θi, namely,
E[h(θi) | ti, δi, Yi, θ̂, Σ̂, σ̂2

e , λ̂0(t), γ̂]. This expectation was evaluated using the nu-
merical integration technique of Gauss-Hermite quadrature. Law et al. (2002)
who combined a joint model with a cure model for analysis of prostate cancer
data, used a Monte Carlo method to evaluate expectations in their EM algo-
rithm. This estimation method is an extension of the method developed by Sy
and Taylor (2000) in the estimation of a cure model. It can also be viewed as an
extension of the method by Wulfsohn and Tsiatis (1997) for a joint model of the
failure time process and the longitudinal data.

Xu and Zeger (2001) extended the model given by (1), (2) and (3) by as-
suming a more general latent stochastic Gaussian process instead of the random
effects model in (1) and (2). This latent process is also a covariate in the failure
time model. To handle non-Gaussian longitudinal data such as binary outcomes,
a link function is used to relate the mean of observed marker process to the la-
tent process. Wang and Taylor (2001) used an Integrated Ornstein-Uhlenbeck
process for the true underlying biomarker process Y ∗

i (t). Henderson et al. (2000)
postulated a latent bivariate Gaussian process η(t) = {η1(t), η2(t)}, with η1(t)
and η2(t) linked to the marker and event processes respectively. Association be-
tween the marker process and the event process was then described through the
cross-correlation between η1(t) and η2(t). Faucett et al. (1998) developed a joint
model for a binary longitudinal covariate and censored survival data, where a
Markov model was assumed for the covariate process.

Tsiatis and Davidian (2000) focussed on estimation of the parameters in the
hazard model. They relaxed the normality assumption (2) for the random effects.
Under the random effects model (1) and proportional hazards model (3), they
used the conditional score approach to get estimating equations free of nuisance
parameters. Solutions to these conditional score equations are consistent and
asymptotically normal under some regularity conditions. Song, Davidian and
Tsiatis (2001) extended this approach to multiple, possibly correlated markers.

Hogan and Laird (1997a/b) gave an excellent review of the methods for
joint analysis of longitudinal data and survival data. They considered many of
the above models from the perspective of repeated measures data with missing,
possibly non-ignorable, observations. Models are classified as selection or pattern
mixture models (Little (1993)). The formulation of the joint model in (1), (2) and
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(3) can be viewed as a selection model where we first model the (hypothetical)
complete data and then model the missing-data (survival) process conditional on
the complete data. In pattern-mixture models, the samples are stratified by the
pattern of missing data (i.e., by the time of drop-out/censoring) and then different
models are assumed for the longitudinal data according to these patterns.

2.3. Degradation models

Whitmore, Crowder and Lawless (1998) proposed an degradation process-
based approach which views the time-dependent covariates as sample paths of a
diffusion process such as a Weiner process with constant drift, and then failure
is determined by a threshold level (e.g., the first passage-time of the observed
biomarker process) of the diffusion process. Properties of diffusion processes were
utilized for inference and prediction. However, they only considered the situation
where there is one measurement of the marker process and they did not discuss
the incorporation of covariates. Lee, DeGruttola and Schoenfeld (2000) extended
their methodology to biomedical applications and considered a generalized linear
regression model to include baseline conditions and covariates. This model does
not require the proportional hazards assumption, which could be viewed as an
advantage. Other references in this area include Doksum and Normand (1995)
and Berman (1990). An implicit assumption in degradation models is that there
is a monotone progression of the biomarker. Due to the non-monotonic nature
of the PSA trajectory after radiation treatment, it would be difficult to apply
degradation models to our data.

3. Cure Model

A cure model is applicable when there are ’immunes’ or ’long-term survivors’
present in survival data. As a result, cured subjects are censored since cure can
never be observed. On the other hand, susceptible subjects would eventually
develop the endpoint if followed for long enough. Examples exist in clinical
studies for many types of cancer for which a significant proportion of patients
are cured. Interest in such studies can be on the effect of time independent
covariates on the cure rate as well as on the time to event. In this section, we
review the approaches of modeling cure in survival analysis without longitudinal
data. How to incorporate longitudinal data when there are cured patients is
discussed in Sections 4, 5 and 6. Two different approaches to cure rate models
in survival analysis are prevalent in the literature.

3.1. Mixture cure models

A mixture model formulation is an attractive approach to analyzing such
data, in that it contains two parts which can be interpreted separately. Berk-
son and Gage (1952) introduced this model by adding structure to the standard
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survival model. The model can be formulated as follows. Assume that a certain
fraction p of the population are susceptibles and the remaining are not, then the
survival function S(t) for the population is given by S(t) = pS1(t)+(1−p), where
S1(t) is the latent survival function for the non-cured group. Common paramet-
ric choices for S1(t) are exponential and Weibull distributions. Nonparametric
choices for S1(t) have also been considered. The effects of time independent co-
variates on both the incidence probability p and the survival distribution S1(t)
for the susceptible group can be modeled. Specifically, let (ti, δi, Zi) be the ob-
servations, where Zi is a vector of time independent covariates, ti the observed
or censored time, and δi the censoring indicator. Let Di indicate cure status for
each subject with Di = 1 for a non-cured subject and Di = 2 for cured. Note
that for a failed patient (δi = 1), we know Di = 1. Yet for a censored patient
(δi = 0), we do not observed Di. The incidence model is typically given by

p(Zi) = P (Di = 1 |b, Zi) =
eb′Zi

1 + eb′Zi
, (6)

where b is a vector of parameters. Among individuals for whom Di = 1, the time
to event is assumed to follow a parametric distribution. Farewell (1977, 1982)
assumed a Weibull distribution

S1(ti|Di = 1, Zi) = exp[−λtαi ], (7)

where α is a shape parameter and λ is related to Zi by λ = exp(γ ′Zi).
Different formulations can also be used in the above setting, especially in the

survival model (7) for the susceptible group. Yamaguchi (1992) applied a cure
model with a logistic mixture probability model and an accelerated failure time
model with generalized gamma distribution. Maller and Zhou (1997) studied
the cure model extensively, specifically nonparametric failure time models for
one sample and parametric failure time regression models. Recent work has
focused on nonparametric failure time models. Taylor (1995) assumed a model
with a logistic mixture probability and a completely unspecified failure time
process, estimated by a Kaplan Meier type estimator. Kuk and Chen (1992), Sy
and Taylor (2000) and Peng and Dear (2000), considered a semi-parametric Cox
proportional hazards model for the failure time process. Kuk and Chen (1992)
used a Monte Carlo approximation of the marginal likelihood to estimate the
regression parameters and the EM algorithm to estimate the baseline hazard.
Sy and Taylor (2000) and Peng and Dear (2000), obtained the MLEs of the
parameters using the EM algorithm. Li and Taylor (2002) considered a semi-
parametric accelerated failure time model for the failure time process. A recent
publication (Law et al. (2002)) has extended the cure model to incorporate a
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longitudinal covariate. This model will be described more fully in Section 4,
where it is applied to data from prostate cancer.

One problem associated with the cure model is identifiability (Farewell (1986)
and Li, Taylor and Sy (2001)). This arises due to the lack of information at the
end of the follow-up period, since a significant proportion of subjects are censored
before the end of the follow-up period. As a result, we can have difficulties in
distinguishing models with high incidence of susceptibles and long tails of the
failure time process from low incidence of susceptibles and short tails of the failure
time process. Li et al. (2001) showed that the mixture cure model with a general
model for the failure time process is identifiable if a parametric model such as (6)
for incidence is assumed. They also considered other important special cases of
the mixture cure models and non-mixture cure models, establishing conditions for
identifiability. The incorporation of longitudinal data into the cure model is one
way to help reduce the uncertainty about the tail of the failure time distribution
for susceptibles (Law et al. (2002)). In our prostate cancer data, the use of
longitudinal PSA values could be quite informative about the tail of the failure
time distribution; because of its strong association with clinical recurrence, thus
helping to reduce concerns about the lack of identifiability of the model. While
the parameters in p and S1(t) have nice interpretations, in some applications it
may be the marginal survival distribution S(t) and its dependence on Z which
is of most interest. This marginal survival distribution is also interpretable and
easily obtained from the estimates of p and S1(t).

3.2. Non-mixture cure models

It is easy to see that in the presence of covariates, the mixture cure model S(t)
does not have a proportional hazards structure if S1(t) is taken to be proportional
hazards. In order to keep the proportional hazards structure, non-mixture cure
models have been proposed (Yakovlev and Tsodikov (1996), Tsodikov (1998)
and Chen, Ibrahim and Sinha (1999)). In these models, the probability of cure
is incorporated into the proportional hazards model by assuming a bounded
cumulative hazard H(t) as t → ∞ with H(t) ≤ θ, limt→∞ H(t) = θ. One way
to enforce this is to write H(t) = θF (t), where F (t) is the distribution function
of a nonnegative random variable. Then the survival distribution S(t) for the
population can be written as

S(t) = e−θF (t). (8)

We can see from (8) that the cure rate is limt→∞ S(t) = e−θ. Chen et al. (1999)
showed that if S(t) is taken to have a proportional hazards structure, then the
conditional survival function S1(t) for the susceptible group no longer has a
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proportional hazards structure. Hence in the non-mixture model, the survival
distribution S(t) for the entire population is modeled as a proportional hazard
model, whereas in the mixture cure models, the non-cured group is often modeled
as a proportional hazard model.

Covariates can be incorporated into the non-mixture cure model through
θ. One example is to use θ(Zi) = exp(β′Zi). Tsodikov (1998) treated F (t) as
nuisance and used marginal likelihood to estimate the cure rate θ(Zi). Chen et
al. (1999) specified a parametric form for F (t) and used a Bayesian approach.
In a recent article, Brown and Ibrahim (2004) have extended this non-mixture
cure model to include a longitudinal covariate.

4. A Joint Longitudinal-Survival-Cure Model

In the joint-cure model, joint modeling of the disease progression marker and
the failure time process is done in a cure model setting. The model we describe
in this paper is motivated by a study of prostate cancer patients undergoing ra-
diation therapy at the University of Michigan. We develop a statistical approach
to analyzing the data from this study. The endpoint of interest is clinical recur-
rence. We assume that a fraction of the patients are cured by the treatment and
are immune from recurrence. The model in this study involves the joint mod-
eling of the failure time process and the longitudinal marker data, when there
is a fraction of patients who are immune from the endpoint. The model has
the ability to address the following types of questions. Which of the patients
are being cured by the treatment? How does the probability of cure depend on
the different baseline characteristics of the patients? What is the pattern of the
post-treatment PSA profile for the cured and the susceptible patients? How does
the pattern depend on the baseline characteristics of the patients? How does
the relative risk of recurrence for the susceptible patients depend on the baseline
characteristics of the patients, as well as the post-treatment PSA profiles?

4.1. Description of data

The data consist of 458 patients who had carcinoma of the prostate and
were treated with radiation therapy between 1985 and 1997. Patients who had
radiation therapy immediately following prostatectomy are excluded in the study.
All patients were non-metastatic and node negative at the time of irradiation.
Patients who received planned hormone therapy prior to or along with irradiation
were excluded.

The endpoint of interest is clinical recurrence (local recurrence or distant
metastasis). Patients who were free of clinical recurrence are considered to be
censored at the last date of contact or at the time of death. Patients who started
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salvage hormonal therapy are censored at the time of their salvage therapy. Of
the 458 patients, 92 had either local recurrence (50) or distant metastasis (42).
Among the 366 censored patients, 50 were dead, 23 had started hormonal therapy
and 293 were censored at their latest follow-up time. The median follow-up time
was 45 months (the range was from 1.2 month to 118 months). The median time
to event was 25 months (the range was from 2.4 months to 72 months). There
are 66 patients censored at follow-up time larger than 72 months, suggesting the
presence of a cured group.

The baseline covariates included in the model are the baseline PSA value, T
stage and Gleason score. T stage is a categorical variable with 3 levels: T1, T2
and T3-T4. Gleason score is treated as a continuous variable. The baseline PSA
(bPSA) values are transformed by log(1+bPSA). In the fitting of the models, the
continuous covariates are centered to improve convergence.

Post-treatment longitudinal PSA were measured about every 6 months. For
patients who had started the hormonal therapy, only PSA measured prior to the
hormonal therapy are used. For patients who developed clinical recurrence, the
PSA measurements after the endpoint are included, since we assume that the
event of recurrence does not change the trajectory of the PSA profile. A total of
4,226 post-treatment PSA values are included in the study, the median number of
PSA measurement for each patient is 9 (the range is from 1 to 26). The pattern
of the post-treatment PSA measurements is illustrated in Figure 1, which shows
data for patients with events, censored patients who did not receive hormonal
therapy, and censored patients who did receive hormonal therapy. The pattern
of PSA after radiation therapy is an important aspect of disease progression and
in many studies the endpoint is in fact based on a pattern of increasing PSA,
instead of being based on clinical disease recurrence. There has been considerable
debate over what constitutes a clinically meaningful rise in PSA, but unfortu-
nately, the relationship between the pattern of PSA and disease recurrence has
not been investigated in a precise quantitative way. Thus there is a need for de-
veloping models in which the pattern of PSA and the development of recurrence
are considered as separate, but linked, entities.

The determination of “cure” is difficult among prostate cancer patients due
to the slow progression of the disease. Since cure can never be observed, and
recurrence is thought to be possible as late as 10 years after treatment, it is hard
to determine if a patient is cured. The slow progression of the disease also means
that a lot of the non-cured patients are censored before they experience clinical
recurrence. Since the patterns of the post-treatment PSA are different in cured
and non-cured patients, we can make use of the PSA data to help distinguish
the cured and the non-cured among the censored patients. The post-treatment
PSA profiles also have important information on the relative risk of recurrence
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for those who are not cured, therefore modeling the failure time data and the
disease progression marker data jointly is appropriate and necessary. Another
complication in prostate cancer studies is informative censoring. As mentioned
above, a sharp rise in PSA usually precedes clinical recurrence. However, having
observed such a rise in the PSA levels, the clinician may initiate salvage hor-
monal therapy before the patient actually experiences a clinical recurrence. If
the censoring time was taken as the date of salvage therapy, then this could lead
to biased estimation of the survival distribution. The joint modeling approach
can potentially eliminate the bias from this type of censoring.

The model used in the current paper is the same as that described in Law et
al (2002), who developed a ML estimation procedure. Here we focus on different
aspects of the model and data analysis results, and compare the ML approach
and results with a Bayesian estimation technique.

4.2. Notation and model specification

Let Zi denote the q + 1 fixed baseline covariates for subject i including
the intercept. The mi post-treatment PSA measurements of an individual are
denoted by the vector Yi = (Yi1, · · · , Yimi), with the corresponding measurement
time vector ti = (ti1, · · · , timi). Let Ti be the observed follow-up time, and δi be
the corresponding censoring indicator. The cure group indicator is denoted by
Di. For a subject i in the susceptible group, Di is equal to 1; otherwise, it is
equal to 2.

Incidence model
The probability of an individual i to be in the susceptible group is given by

the logistic function:

P (Di = 1 |b, Zi) =
exp(b′Zi)

1 + exp(b′Zi)
. (9)

Longitudinal model
The post-treatment PSA data are modeled by a hierarchical nonlinear mixed

effects model. The response model of PSA is given by

log(Yij + 1) = log(Y ∗
ij + 1) + εij , j = 1, · · · ,mi, (10)

where Y ∗
ij is the “true” PSA process at time tij , εij is the measurement error at

time tij , and the εij are i.i.d. N(0, σ2
e ). The transformation for the PSA values is

done to adjust for the skewness of the distribution and to minimize the influence
of extremely low PSA values.
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The true PSA marker process is modeled by a nonlinear exponential decay-
exponential growth model (Kaplan, Cox and Bagshaw (1991), Zagars and Pollack
(1993) and Cox, Kaplan and Bagshaw (1993)):

Y ∗
i (t) = ri1e

−ri2t + ri3e
ri4t, (11)

where ri1, ri2, ri3 and ri4 are the unobserved random effects for subject i (ri1, ri2,
ri3 and ri4 > 0). The term (ri1 + ri3) is the intercept of the post-treatment
PSA profile, ri2 is the rate of decline of the PSA following treatment, while
ri4 is the rate of rise following the initial decline. Although this model was
empirically derived, it does have some nice biological interpretations, in particular
the exponential growth part eri4t reflects the fact that in a recurring tumor,
PSA is thought to be proportional to the volume of the tumor and tumors grow
approximately exponentially.

Depending on the patient’s cure status Di, we use different mixed effect
models for the true underlying marker profile. For the random effects of a subject
i in the susceptible group, we assume

[Ri |Di = 1, Zi ] ∼ N(Z1
i µ1,Σ1), (12)

where Ri denotes the log random effects (log ri1, log ri2, log ri3, log ri4), and Z1
i µ1

is the mean vectors of the random effects in the susceptible group, Z1
i = (I4⊗Zi)T ,

and Σ1 is the corresponding covariance matrix.
For the random effects of a subject i in the cured group, we assume that the

rate of rise denoted by ri4 is zero:{
[Ri(−4) |Di = 2, Zi ] ∼ N(Z2

i µ2,Σ2),

[ ri4 |Di = 2 ] ≡ 0,
(13)

where Ri(−4) ≡ (log ri1, log ri2, log ri3), Z2
i µ2 is the mean vectors of these random

effects in the cure group, Z2
i = (I3⊗Zi)T , and Σ2 is the corresponding covariance

matrix.

Conditional failure time model
A time-dependent Cox proportional hazards regression model is used to

model the time to endpoint for the subjects in the susceptible group. Con-
ditional on the unobserved random effects, the relative hazard function of the
event time t is given by

λ(t |Di = 1, Ri, Zi) = λ0(t|η) exp[ γ log(Y ∗
i (t) + 1) + β′Z∗

i ], (14)

where λ0(t|η) is the unspecified baseline hazard function at time t and Z∗
i is a

vector of q baseline covariates without intercept.
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Note that the parameter vector β represents the direct effect of the baseline
covariates on the relative hazard. The baseline covariates also have an indirect
effect on the relative risk through the PSA marker process (represented by γ).
Equation (14) can be generalized to include other aspects of the PSA marker
process, for example, the initial rate of decline given by ri2, or the subsequent
rate of rise given by ri4.

5. Estimation Methods

Two estimation methods, maximum likelihood and Bayesian, are described
below. The maximum likelihood method was described in Law et al. (2002). We
briefly describe it here giving some additional details which were not previously
presented. The Bayesian approach was developed as an alternative with which
to contrast the ML results. We note that since there are different longitudinal
models in the cured and non-cured group, the use of a two-stage estimation
method is not feasible.

5.1. EM algorithm

Let Ω = (b, σe,µ1,µ2,Σ1,Σ2, γ,β, λ0) denote the parameters of the model,
with D and R regarded as latent variables. Let Xi,obs = (Zi, Yi, ti, δi) denote
the observed data, and Xi = (Zi, Yi, ti, δi,Di,Ri) denote the complete data.
Maximum likelihood estimation is performed to obtain the parameter estimates.
Briefly, an EM algorithm is used to implement the maximum likelihood estima-
tion. In the E-step, the cure group indicator (Di) of the censored subjects and the
random effects (Ri) are treated as missing data. The evaluation of the expected
complete data log-likelihood requires Monte Carlo integration. This is performed
using importance sampling. In the M-step the complete data log-likelihood par-
titions into five separate parts, each of which is maximized by Newton Raphson.
Standard errors are based on the inverse observed information matrix, with the
baseline hazard function treated as a vector of parameters at each distinct event
time. Convergence of the parameters and the log-likelihood estimates is moni-
tored graphically. The final estimate for each of the parameters is the average
of the estimates from the last ten EM iterations. Computations are performed
using MATLAB.

Predicting the cure status of a censored patients is interesting to both physi-
cians and patients. The formula to estimate the probability that a censored
subject is in the susceptible group is given by

P (Di = 1 |Xi,obs, Ω̂) =
∫ {P̂i Ŝi ĝi ĥ1i} dRi∫ {P̂i Ŝi ĝi ĥ1i} dRi +

∫ {(1 − P̂i )ĝi ĥ2i} dRi

, (15)
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where P̂i = P (Di = 1 | b̂, Zi) is the incidence probability from (9) evaluated
at b̂, Ŝi = S(ti |Ri, β̂, γ̂, Zi) is the conditional survival probability from (14)
evaluated at (β̂, γ̂), ĝi = g(log(Yi + 1) |Ri, σ̂e, Zi) is the normal density for
transformed longitudinal data from (10), and ĥ1i = h(Ri |Di = 1, µ̂1, Zi) and
ĥ2i = h(Ri |Di = 2, µ̂2, Zi) are densities for random effects conditioning on
their incidence group from (12) and (13). Detailed derivation is given in Law et
al. (2002).

5.2. Markov chain Monte Carlo

We also fit the model using a MCMC technique. Further, due to the fact
that a normal person’s PSA level actually slowly increases with age, instead of
(13), we assume that for a subject in the cure group,

log ri4 |Di = 2 ∼ N(−6, σ44), (16)

where −6 is chosen from the fact that PSA level doubles on average in about 20
years for a healthy male. Hence the covariance matrix Σ∗

2 of Ri for the cured
group is block-diagonal with two blocks, Σ2 and σ44. We assume a normal model
for log ri4 to allow for variations of the growth in the cured group. An additional
slight modification of the model is that we use a parametric baseline hazard
function in (14) for the susceptible group. Specifically, we assume the hazard
from a Weibull distribution, that is, λ0(t) = αλtα−1. We make this change
because a parametric form for λ0(t) is more convenient to handle in an MCMC
approach than an unspecified form. Furthermore, it is scientifically reasonable
that λ0(t) should be a smooth function.

Data-driven vague normal priors are taken for b, γ and β with the prior
mean derived from estimates from separate analysis. Specifically, we treat all
censored patients with censoring time > 60 months and last longitudinal PSA
< 4 as cured. Then we fit a logistic model to all patients in order to get the mean
of the normal prior for b, we set prior variance of each component of b as 16,
approximate 100 times the variance estimate from this simple method. Similarly,
we obtain prior means of γ and β by fitting a Cox proportional hazard model
to ‘susceptible’ patients from the above simplified rule and using the nearest
preceding value of the PSA as the current value. The prior variances are obtained
by inflating the variance estimate from the simpler method approximately 100
times. Vague conjugate priors are used for other parameters. Multivariate normal
distributions are used as prior distributions for each row of µ1 and µ2, and
these prior distributions are assumed to be independent. That is, the prior
distributions for µ1 and µ2 are products of multivariate normal distributions.
The prior of σ2

e has an inverse Gamma distribution and priors for Σ1 and Σ2

have inverse Wishart distributions. An inverse Gamma distribution is used as the
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prior for σ44, the variance of log ri4 for a subject i in the cure group. For the scale
parameter λ of the baseline hazard, the prior is taken from a gamma distribution.
For the shape parameter α of λ0(t), for computational ease we assume that it
has a discrete distribution with support points on the set 0.5, 0.55, 0.6, . . . , 2.5.
The prior is then taken to be uniform on these points.

The posterior distributions for all the parameters can be obtained from the
product of full complete data likelihood and prior distributions. The full complete
data likelihood is

L =
n∏

i=1

{
g
(
log(Yi + 1) |Di = 1,Ri, σ

2
e

)
f(t |Ri,β, γ, α, λ, Zi)

I(δi=1)

S(t |Ri,β, γ, α, λ, Zi)
I(δi=0)h(Ri|Z1

i µ1,Σ1)P (Di = 1 |b, Zi)
}I(Di=1)

·
{
g
(
log(Yi + 1) |Di = 2,Ri, σ

2
e

)
h(Ri(−4)|Z2

i µ2,Σ2)h(Ri4 | − 6, σ2
44)

P (Di = 2 |b, Zi)
}I(Di=2)

,

where f(t | ·) = λ(t | ·)S(t | ·) is the density function of the conditional failure time
model for subjects in the susceptible group.

Adaptive Rejection Sampling (Gilks and Wild (1992)) is used for b, γ and
β since the posteriors are log-concave. Adaptive Rejection Metropolis Sampling
(Gilks, Best and Tan (1995)) is used for random effects Ri since their poste-
rior distributions are approximately log-concave. Explicit forms exist for other
parameters since conjugate priors are used.

We use multiple sequences (Gelman and Rubin (1992)) to check for conver-
gence of the Gibbs sampler. Overdispersed starting values are used in 25 different
chains. We eliminate a total of 3,000 iterations as burn-in and then generate an
additional 10,000 samples for summarization. Computations are performed using
C++. For each censored patient, we estimate the conditional recurrence proba-
bility P (Di |Xi,obs) from the draws of Di, that is, the average of the number of
1’s among all drawn Di’s. Note that this conditional probability P (Di |Xi,obs) is
different from (15) since we do not fix the parameters at their estimated values.

6. Data Analysis

6.1. Comparison of parameter estimates

Tables 1, 2 and 3 give the results of fit for some of the major regression param-
eters. For the most part, the parameter estimates between the EM and MCMC
methods are similar, but not identical. The SD’s from the MCMC method are
usually similar to the SE’s from the EM method, although for a few parameters
they are a bit smaller. In the incidence model shown in Table 1, all the base-
line covariates have significant effects on the probability of recurrence using the
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EM algorithm. Hence measures of increased tumor size and aggressiveness are
associated with decreased probability of cure. For the effect of Gleason score,
although it is not significant from the MCMC method, it has the same sign as
the estimate using the EM algorithm.

Table 1. Parameters in the incidence model: b.

EM MCMC
Parameter Estimates S.E. Est/S.E. Mean S.D. Mean/S.D.

intercept 1.06 0.48 2.24 1.15 0.43 2.70
T1 -1.79 0.62 -2.86 -1.29 0.54 -2.41
T2 -1.27 0.50 -2.52 -1.20 0.39 -3.07

log(1+bPSA) 1.19 0.20 5.82 0.85 0.18 4.57
Gleason 0.25 0.11 2.19 0.14 0.11 1.26

Table 2. Parameters in the failure time model: γ, β.

EM MCMC
Parameter Estimates S.E. Est/S.E. Mean S.D. Mean/S.D.

log(1+PSA) 1.07 0.09 12.54 0.70 0.06 11.67
T1 -1.82 0.49 -3.71 -2.27 0.55 -4.09
T2 -0.84 0.25 -3.30 -0.71 0.24 -2.92

log(1+bPSA) -0.55 0.14 -3.86 -0.07 0.14 -0.48
Gleason 0.27 0.09 2.89 0.35 0.09 3.99

Table 3. Random effects log(r4) in the longitudinal model for the susceptible group.

EM MCMC
Parameter Estimates S.E. Est/S.E. Mean S.D. Mean/S.D.

intercept -2.42 0.17 -14.24 -2.53 0.23 -10.98
T1 -1.00 0.26 -3.85 -0.93 0.18 -5.23
T2 -0.49 0.17 -2.88 -0.46 0.10 -4.72

log(1+bPSA) 0.04 0.09 0.44 0.15 0.07 2.07
Gleason 0.21 0.05 4.20 0.22 0.04 5.25

Both T stage and Gleason score are also significant in the conditional failure
time model, see Table 2. The current PSA value is highly significant in the
failure time model. We note that baseline PSA has a negative sign rather than
the expected positive sign. It is significant from the EM algorithm. This may be
due to the high correlation between between the baseline PSA and the current
PSA in the conditional failure time model. The current PSA value is highly
significant in the model, therefore the higher the current PSA value, the higher
the risk of recurrence. Furthermore, for a given current PSA value at a particular
time, someone with a low baseline PSA would have a faster average rise in PSA,
and thus could have a higher risk than someone who started with a high baseline
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value. The estimated effect of baseline PSA is nonsignificant and close to 0 using
the MCMC method. We can also see from the table that the magnitude of the
estimated effect of current PSA is smaller from MCMC than that from the EM
algorithm. The differences between the EM and MCMC results are consistent
with a high correlation between the baseline PSA and the current PSA.

The parameters estimates for µ1 and µ2, which describe the association
between the baseline covariates and the longitudinal pattern of PSA are given in
Law et al. (2002) for the EM method. The effects of covariates on the rate of
rise (ri4) is especially interesting in that it determines how badly a susceptible’s
PSA deteriorates. Table 3 shows that the rate of rise is associated with both
T stage and Gleason score, but not with baseline PSA from the EM algorithm,
while it is associated with all covariates from the MCMC results.

6.2. Comparison of marginal survival distributions

A second way to compare the results from the two estimation methods is
through other derived interpretable quantities. We examined the marginal sur-
vival distributions for fixed values of the covariates. For a patient with baseline
covariate values Zi, the marginal survival function S(t |Zi) can be written as

S(t |Zi) = P (Ti > t |Zi) = P (Di = 1 |Zi)×S(t |Di = 1, Zi)+1−P (Di = 1 |Zi).
(17)

In the EM algorithm, the estimated marginal survival function for a patient with
baseline covariate values Zi is then approximated by

Ŝ(t |Zi) ≈ P̂ (Di = 1 |Zi) × Ŝ(t |Di = 1, Zi) + 1 − P̂ (Di = 1 |Zi), (18)

where P̂ (Di = 1 |Zi) is calculated from (9) using MLE of b. To estimate
Ŝ(t |Di = 1, Zi) = exp[− ∫ t

0 λ̂(v|Di = 1,Ri, Zi) dv ] using (14), we need to obtain
the estimated PSA value at t. We use the mean estimate for Ri from (12) with
MLE µ̂1 from the EM, that is,

Ŷ ∗
i (t) = eE[Ri1] exp

{
−eE[Ri2]t

}
+ eE[Ri3] exp

{
eE[Ri4]t

}
.

In MCMC, we can also use (17) to estimate the marginal survival function.
We estimate P (Di = 1 |Zi) also from (9) using the posterior mean of b. But we
estimate the conditional survival function S(t |Di = 1, Zi) differently. We draw
K vectors of Ri from (12) with estimates of µ1 from MCMC output. After ob-
taining the estimate of Y ∗

i (t) from each draw of R(k)
i , we calculate an estimate of

S(k)(t |Di = 1, Zi) with the other parameters β, γ, λ and α fixed at the posterior
mean from MCMC output. Finally, we average over k and obtain the estimate
of S(t |Di = 1, Zi) as

S̃(t |Di = 1, Zi) =
1
K

K∑
1

S(k)(t |Di = 1, Zi).
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The estimated marginal survival function S̃(t |Zi) for a patient with baseline
covariate values Zi is approximated by

S̃(t |Zi) ≈ P̃ (Di = 1 |Zi) × S̃(t |Di = 1, Zi) + 1 − P̃ (Di = 1 |Zi). (19)

Figure 2 shows the substantial effect of the baseline covariates on the margin-
al survival probability from both the EM algorithm and MCMC. We do not plot
after 73 months since the last event happened at 72 months. Note that, from
Table 2, the baseline PSA has a negative effect in the hazard model, however
the overall effect is positive due to the substantial effect of baseline PSA in the
incidence and longitudinal model.

(a) T stage (T1, T2, T3/T4) at Gleason score = 6, baseline PSA = 14;
(b) Gleason score (3, 6, 9) at T2, baseline PSA = 14;
(c) baseline PSA(1, 14, 79) at T2, Gleason score =6;
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Figure 2. Marginal survival probability.

The marginal survival distribution is a quantity which could also be esti-
mated from a more standard approach, such as a proportional hazards model
with time-independent baseline covariates. In principle, the joint cure model
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approach is preferred, because it uses the information in the longitudinal PSA
data, which would lead to higher efficiency and a reduction in the bias due to
dependent censoring.

6.3. Comparison of estimated recurrence probabilities

With the MLE Ω̂ of the parameters in Ω from the EM algorithm, the condi-
tional recurrence probability for a censored subject, p(Di = 1 |Xi,obs, Ω̂), can be
estimated using (15). In the MCMC method, however, we look at the conditional
recurrence probability P (Di |Xi,obs) without conditioning on the parameters in
Ω. Calculation of P (Di |Xi,obs) is straightforward since we have draws of Di

conditional on observed data Xi,obs from the MCMC output, and P (Di |Xi,obs)
is the proportion of 1’s among the draws of Di.

Figure 3 gives the plots of the estimated conditional recurrence probability
with the censored time and baseline PSA for the censored subjects from both
the EM algorithm and MCMC. We can see that the conditional recurrence prob-
ability generally increases with baseline PSA. Patients who were censored at a
later time tend to have a lower conditional recurrence probability. Note that
estimates of the recurrence probabilities P (Di |Xi,obs) from the MCMC output
allocate more patients in the middle region between zero and one than estimates
of P (Di |Xi,obs, Ω̂) from the EM algorithm.

(a) censored time (with spline), (b) baseline PSA (with spline).
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Figure 3. Plots of the estimated conditional recurrence probability.
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6.4. Comparison of individual profiles

Figure 4 shows the estimated profiles of PSA from the EM algorithm for
selected censored subjects. There are two estimated PSA profiles conditional on
the subject being in the cure group or the susceptible group. The final estimates
of the conditional recurrence probability are also given for the subjects. The plots
(a) and (b) show that the susceptible group PSA profile fits better than the cure
group PSA profile. The estimated recurrence probabilities for these individuals
are 1. The estimated probabilities are lower for the two subjects of plots (c) and
(d), and the plots show good fit of both the susceptible group profile and the cure
group profile. The subject in (c) is probably from the cure group. The susceptible
group PSA profile fits reasonably well, because the exponential growth part of
the model does allow for a slow rate of increase of PSA. However, such a small
rate of increase is not typical of others in the susceptible group and hence the
probability of this subject being in the susceptible group is very low. The subject
in (d) has only a few PSA measurements, making it difficult to classify him into
the cure/susceptible group based on the observed PSA data. Thus the estimated
recurrence probability of 0.58 is derived mainly from the baseline covariates.
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Figure 4. Individual estimated PSA profiles for selected censored subjects
− from the EM algorithm†.
† The solid line is the PSA profile conditional on the subject being in the suscep-
tible group, and the dotted line is the profile conditional on the cure group. The
observed PSA value are denoted by •.
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Figure 5 plots the estimated PSA profiles derived from the MCMC method
for the same set of patients as those in Figure 4. We can see a very similar fit to
the longitudinal data. The estimated recurrence probabilities for the patients in
(c) and (d) are slightly different from the two methods.
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Figure 5. Individual estimated PSA profiles for selected censored subjects
− from the MCMC†.
† The solid line is the PSA profile conditional on the subject being in the suscep-

tible group, and the dotted line is the profile conditional on the cure group. The

observed PSA value are denoted by •. Same set of patients as in Figure 4 are used.

In general, we find that both methods of estimation work well for this data
set. The size and the direction of the parameter estimates in different components
of the model are consistent with expectation. Results from both methods are
usually close. The estimated longitudinal PSA profiles fit well to the observed
PSA measurements. The difference in the results from the two methods may
result from using different forms of the baseline hazard function and different
probability assumptions for the rate of rise for cured patients. Another difference
is that the MCMC approach requires specification of a prior distribution. While
we have not performed a full sensitivity analysis, we have considered more diffuse
priors for regression parameters b, γ and β and found this has little effect on
the final results of estimates. Increasing the range of the support points for α
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of the baseline hazard λ0(t) does not seem to be necessary since the posterior
probability of α lying outside [1.3, 2] is almost null. The results of the MCMC
method can depend on the assumption concerning ri4 given in (16). By setting
the mean of ri4 closer to 0 and using a prior with less variation, we find that the
parameter estimates of the MCMC method become closer to the estimates of the
EM algorithm. However, the marginal survival distribution estimated by (19) is
very robust to different distributional assumptions of ri4.

7.Discussion

In this paper, a joint-cure model is developed, in which the longitudinal dis-
ease progression marker and the failure time process are modeled jointly, when a
fraction of subjects are immune from the endpoint. We have performed simula-
tion studies to evaluate the performance of the EM algorithm to fit this model,
the results are described elsewhere (Law et al. 2002). The simulation studies
show that in the presence of the disease progression marker, including such lon-
gitudinal information in the cure model improves the classification of censored
subjects into the correct group. The cure model without the longitudinal com-
ponent gives estimated conditional recurrence probabilities less concentrated at
zero or one.

Within the three components in the joint-cure model, other model speci-
fications can be assumed. For instance, in the current model, we include the
current PSA value only in the conditional failure time model. Other aspects of
the longitudinal profile can be considered, for example, the rate of decline of the
post-treatment PSA following radiation therapy, or the rate of rise of the PSA
after the initial decline. Also we can include other baseline covariates such as
age and total dose of radiation in the incidence model.

Whether a maximum likelihood or a Bayesian method is preferred is largely
a matter of personal choice and computational convenience. Both methods can
be generalized easily to include additional covariates and the computational bur-
den will not increase much when we incorporate such expanded models. The
MCMC method has the advantage that we have draws available for all parame-
ters including the latent variables Di and Ri. These draws can be utilized when
we consider certain applications of the model. For example, we are currently
considering using the model for medical monitoring and updating of individual
predictions for censored patients when we have additional follow-up data or data
for new patients. For this application the MCMC method provides a more nat-
ural framework for making individual predictions than is provided by the EM
algorithm.

Regarding the longitudinal data model, the exponential decay-exponential
growth model is appropriate for the prostate cancer data set that we analyze.
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However, the statistical approach developed in this paper can be generalized to
other studies with context-specific models used for each of the three component
models.

A usual characteristic of a cure model is a marginal survival distribution
which levels off at long times. In Figure 2 the follow-up times are not long
enough to clearly see a plateau. The slow progressive nature of prostate cancer
also means that recurrences are possible many years after the initial treatment.
Thus despite the strong scientific rationale for a cure component, it may be
possible to fit these data without using a cure model. From a pragmatic point of
view the addition of the cure model component could just be viewed as a means of
formulating a richer and more flexible class of models. From this viewpoint, the
specific parameters of the cure model are of less interest, whereas quantities such
as the marginal survival distribution are inherently interpretable irrespective of
the choice of model.

A natural question which arises when there are several models available
to fit a data set is model selection. Within a Bayesian framework, possible
approaches include BIC and Bayes factors and prediction based criteria, such as
the Conditional Predictive Ordinate (CPO) (Geisser (1993) and Gelfand, Day
and Chang (1992)). We are currently investigating the use of these measures to
choose between non-nested models in the context of joint longitudinal, survival
and cure models.
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