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Abstract: A simple method is provided to construct a general class of individual

and simultaneous confidence intervals for the effects in orthogonal saturated designs.

These intervals use the data adaptively, maintain the confidence levels sharply at

1 − α at the least favorable parameter configuration, work effectively under effect

sparsity, and include the intervals by Wang and Voss (2001) as a special case.
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1. Introduction

Unreplicated factorial designs are extremely useful in industrial experimen-
tation to identify active effects at low costs. Often the number of observations
is just enough to estimate parameters for mean response, so one can obtain an
estimator for each effect but have no degrees of freedom to estimate the vari-
ance. For example, consider a single replicate or orthogonal fraction of a 2k

factorial design yielding observations Y1, . . . , Yn, assumed to be independently
normally distributed with variance σ2. The design is said to be saturated if the
factorial effect contrasts, µ1, . . . , µp say, are estimable and n = p + 1. We then
have n observations and want to make inferences on n− 1 parameters of interest
µ1, . . . , µp, with µ0 and σ2 as nuisance parameters. Henceforth we refer to the
factorial effect contrasts µi, 1 ≤ i ≤ p, simply as “effects”. Let Xi denote the
least squares estimator of µi. The design is said to be orthogonal if the estimators
X1, . . . ,Xp of the effects are uncorrelated. In most cases, unreplicated factorial
designs are orthogonal and saturated. Under normality the estimators Xi are
independent. Furthermore, Xi ∼ N(µi, a

2σ2) for known constant a. Without
loss of generality, we take a2 = 1. In a more general setting, let fi be the pdf
of a continuous, unimodal distribution which is symmetric about zero with finite
variance, 1 ≤ i ≤ p. Assume independent estimators X1, . . . ,Xp, where

Xi ∼ 1
σ

fi

(
xi − µi

σ

)
(1)
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for unknown µ1, . . . , µp and σ. The goal of this paper is to construct confidence
intervals for the effects, µ1, . . . , µp under the model (1). Lacking an indepen-
dent variance estimator, the analysis is based solely on X1, . . . ,Xp. This can be
done by assuming effect sparsity — namely, most of the effects µi are zero (or
negligible).

There are two primary concerns about the desired confidence intervals: (i)
control of the error rate, and (ii) effective use of the data. We say intervals
control the error rate at level 1−α if the minimum or infimum over all parameter
configurations of the coverage probability of the intervals is 1−α. Hochberg and
Tamhane (1987, p.3) call this strong control of error rates. Due to effect sparsity,
most of Xi’s have mean µi = 0. Effective use of the data means many of the
Xi’s which have mean zero go into the estimation of σ, though which ones and
how many to use are unknown. Intervals are called adaptive if they use the data
to determine which and how many Xi’s should be used to estimate σ. Such
adaptive intervals are typically narrower than those using a fixed number of Xi’s
to estimate σ, they are more efficient.

Many confidence intervals have been proposed in orthogonal saturated de-
signs. See Voss (1999), Voss and Wang (1999), Lenth (1989) Juan and Peña
(1992), Dong (1993) and Haaland and O’Connell (1995). The first two papers
propose intervals controlling the error rate but do not use the data adaptively,
while the others obtain intervals that use the data adaptively but do not show
that the error rate is controlled at level 1−α. For more results on this topic, see
the extensive reviews by Hamada and Balakrishnan (1998) and Kinateder, Voss
and Wang (2000). Wang and Voss (2001) derived intervals that control the error
rate and use the data adaptively by constructing an estimator of σ2 on each set
of a partition of the sample space. Constants are chosen so that the resultant
estimator is monotone increasing in each of the |Xi|’s. However, their method
depends heavily on the initial guess on the number of Xi’s used to estimate σ.
If one knows from past experience that it is very likely that either 8 or 12 out of
the total 15 effects are zero, for example, Wang and Voss’s (2001) interval cannot
utilize such information well.

In this paper we provide a class of confidence intervals, both individual and
simultaneous, which control error rates and use data adaptively for the analysis of
orthogonal saturated designs. These intervals overcome the problem mentioned
above, Wang and Voss’s intervals are included as a special case, and they can be
constructed easily. Individual and simultaneous confidence intervals are derived
in Sections 2 and 3, respectively. Individual confidence intervals are illustrated
in Section 4. Finally, competing methods are compared with respect to power in
Section 5.
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2. Individual Confidence Intervals

In this section, we discuss how to construct the individual confidence interval
for each effect µi, without loss of generality µp. Intuitively, one should estimate µp

by Xp and estimate σ by combining X1 through Xp−1. Denote the vector of effects
by µ = (µ1, . . . , µp), with µ0 = (0, . . . , 0) representing the null case. A function
G(x1, . . . , xp−1) is symmetric about zero if G(x1, . . . , xp−1) = G(|x1|, . . . , |xp−1|).
Theorem 1. Suppose F (xp) and G(x1, . . . , xp−1) are nonnegative functions sat-
isfying
(i) G(x1, . . . ,xp−1) is symmetric about zero, G(x1, . . . , xp−1)=G(|x1|, . . . , |xp−1|),

and nondecreasing in |xi| for each 1 ≤ i ≤ p−1 when the variables xj (j �= i)
are held fixed;

(ii) F (axp)/G(ax1, . . . , axp−1) = F (xp)/G(x1, . . . , xp−1), for any a > 0.
Then for any positive constant d, Pµ,σ(F (Xp − µp)/G(X1, . . . ,Xp−1) ≥ d) de-
pends on its parameters through µ1/σ, . . . , µp−1/σ, and is non-increasing in each
|µi/σ| when the others are fixed. Therefore Pµo,σ(F (Xp − µp)/G(X1, . . ., Xp−1) ≥
d) = supµ,σ Pµ,σ(F (Xp − µp)/G(X1, . . . ,Xp−1) ≥ d) = α say, so that

{
µp :

F (Xp − µp)
G(X1, . . . ,Xp−1)

≤ d
}

(2)

is a confidence set for µp with confidence coefficient 1 − α.

Proof. It is clear that the distribution of

Q =
F (Xp − µp)

G(|X1|, . . . , |Xp−1|) =
F ((Xp − µp)/σ)

G(|X1|/σ, . . . , |Xp−1|/σ)

depends on the parameters through |µ1/σ|, . . . , |µp−1/σ| because of (ii) and con-
ditions on the fi. Since X1, . . . ,Xp are independent, Q is non-increasing as a
function of |xi| for each i < p, and each |Xi|/σ (i < p) is stochastically nonde-
creasing in |µi/σ|, the distribution of Q is stochastically non-increasing in each
|µi/σ|.
Theorem 2. Suppose F (xp) and Gj(x1, . . . , xp−1) for 1 ≤ j ≤ p− 1 are nonneg-
ative functions. Let

G = min1≤j≤p−1Gj . (3)

If each pair (F,Gj) satisfies conditions (i) and (ii) in Theorem 1, so does the
pair (F,G). Therefore, a confidence set for µp with confidence coefficient 1 − α

is given by (2).

Proof. Since G is the minimum function and each Gj is nondecreasing in |xi|,
G is nondecreasing in |xi| as well. It is clear that F and G satisfy the rest of
conditions in Theorem 1, and we establish the claim.
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Typically each Gj is an estimator of σ or σ2 using a fixed number of Xi’s—it
is not an adaptive one. The minimum function compares all Gj ’s and chooses
the smallest, which most likely only involves those Xi’s with mean 0. Therefore
G uses the data adaptively, as shown in the following examples. Let |X|(i) be
the ith order statistic of |X1|, . . . , |Xp−1|.
Example 1. Let

SSj =
j∑

h=1

|X|2(h) (4)

denote the sum of squares of the j smallest of these order statistics, with observed
value ssj =

∑j
h=1 |x|2(h) for 1 ≤ j ≤ p − 1. Define

F (xp) = x2
p, Gj(x1, . . . , xp−1) =

ssj

Kj
, (5)

where Kj’s are nonnegative constants. Then the functions F , Gj and GSN =
min1≤j≤p−1Gj satisfy the conditions in Theorem 2. The confidence set for µp in
(2) reduces to a confidence interval of the form:

Xp ±
√

dGSN (X1, . . . ,Xp−1). (6)

This interval should be used if Xi’s are i.i.d. standard normal.
Each Gj in (5) is exchangeable in the components xi. Suppose in addition

the same functions Gj are used to obtain the confidence interval for each effect
µi. These conditions are sufficient for the p confidence intervals for µ1, . . . , µp to
be consistent in the following sense — if |xi| > |xj | and the confidence interval
for µi contains zero, then the confidence interval for µj contains zero.

The larger Kj is in (5), the larger chance GSN has to be Gj , which should
be used when there are exactly j negligible effects. This provides a guide to
choosing the Kj’s based on any existing knowledge concerning the likely number
of negligible effects. If one wants to be able to use each Gj , i.e., if P (GSN = Gj)
is to be positive for each j, then necessarily Kj+1 ≥ Kj(1 + 1/j). Let Dj =
{(x1, . . . , xp−1) : Gj < Gi ∀ i �= j} for 1 ≤ j < p. Then GSN = Gj on Dj .

Wang and Voss (2001) provide an adaptive estimator GWV for σ2 where

GWV (x1, . . . , xp−1) =
ssm

1 + (m − ν)cν
, (7)

m =

{
p − 1, if |x|2(i+1) < cissi, ∀ i = ν, . . . , p − 2
min{i : i ≥ ν, |x|2(i+1) ≥ cissi}, otherwise,

for ci = cν/[1 + (i− ν)cν ] and for ν a positive integer and cν a positive constant.
Here it is anticipated that at least ν effects are negligible. Roughly speaking,
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Wang and Voss (2001) compare SSj only with SSj−1 and SSj+1 at best. In
contrast, SSj is compared with all SSi’s in this paper. Let Aν = {(x1, . . . , xp−1) :
|x|2(ν+1) ≥ cνssν}, Aj = {(x1, . . . , xp−1) : |x|2(i+1) < cissi} for ν < j < p − 1, and
Ap−1 = {(x1, . . . , xp−1) : |x|2(i+1) < cissi}. The Aj ’s, ν ≤ j ≤ p − 1, form a
partition of Rp−1 and GWV = ssj/[(1 + (j − ν)cν)] on Aj . The methods of this
paper include those of Wang and Voss (2001) as a special case, as established by
the following result.

Theorem 3. If we define Kj = 0 for 1 ≤ j < ν and Kj = (1 + (j − ν)cν) for
ν ≤ j ≤ p − 1, then Aj is contained in D̄j , the closure of Dj , for ν ≤ j ≤ p − 1,
and GSN = GWV .

Proof. Note that Dj is empty if j < ν. It is clear that D̄j = {(x1, . . . , xp−1) :
Gj ≤ Gi∀i �= j}. For ν ≤ j < p − 2, fix (x1, . . . , xp−1) ∈ Aj . For i > j, Gi =
(ssj +

∑i
h=j+1 |x|2(h))/(1 + (i − ν)cν) ≥ (ssj + (i − j)|x|2(j+1))/(1 + (i − ν)cν) ≥

(ssj(1 + (i − j)cj))/(1 + (i − ν)cν) = Gj ; For i ≤ j, Gi = (ssi−1 + |x|2(i))/(1+
(i − ν)cν) ≤ (ssi−1 + ci−1ssi−1)/(1 + (i − ν)cν) = Gi−1, and then Gj ≤ Gj−1 ≤
. . . ≤ Gi. Therefore, Aj is a subset of D̄j . Similarly, one can show that Ap−1 is
a subset of D̄p−1. Since on each Aj , GSN = ssj/Kj = GWV and all Aj ’s form a
partition, we conclude that GSN = GWV .

In Wang and Voss’s (2001) interval, one can only choose one constant cν , and
the constant d is determined by the confidence level—the method provides little
flexibility. For example, if p = 15 and we believe that either 8 or 12 effects are
negligible but are not sure which is the case, we can choose ν = 8 and a large c8

(or a large K8), so GWV has a big chance to be SS8/K8. However, c12 (or K12)
is determined by c8 (or K8) and cannot be large enough for GWV to have a big
chance to be SS12/K12, which it should, and so the resultant confidence interval
tends to be wider. For the current interval, since K8 and K12 are functionally
unrelated, one can choose K8 and K12 to balance between the chances of GSN

being SS8/K8 or SS12/K12 as one sees fit.
In fact, the current interval can handle even more complicated cases and can

also be considered as a Bayesian approach in which one has a prior distribution
π on the true number N of zero effects. More precisely, let πj = P (N = j) for
1 ≤ j ≤ p− 1. Determine the Kj ’s by solving Pµo

(Dj) = πj, 1 ≤ j ≤ p− 1. This
is not easily done, however.

Alternatively, here is a frequentist approach for selecting the Kj ’s. Anticipate
that ν of effects are negligible−typically, ν is at least (p+1)/2 — and let Kj = 0
for j < ν. One can then determine Kj for j ≥ ν by solving Eµo

Gj = σ2. Thus,
each Gj for j ≥ ν is an unbiased estimator of σ2 under the null case. Variations
on this approach are considered in the power study in Section 4.
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Example 2. Define F (xp) = |xp|, Gj(x1, . . . , xp−1) = |x|(j)/Kj , where Kj ’s
are nonnegative constants. Then the functions F , Gj and GU = min1≤j≤p−1 Gj

satisfy the conditions in Theorem 2. The confidence set in (2) reduces to a
confidence interval of the form Xp ± dGU (X1, . . . ,Xp−1). This interval should
be used if Xi’s are from uniform distributions on intervals [µi − σ, µi + σ]. If
a specific combination of ν of the µi’s were known to be zero, the MLE for σ

would be the maximum of the corresponding ν absolute effect estimates. This
motivates the choice of GU , not knowing which or how many effects are zero.

Example 3. Define F (xp) = |xp|, Gj(x1, . . . , xp−1) =
∑j

h=1 |x|(h)/Kj , where
Kj’s are nonnegative constants. Then the functions F , Gj and GDE =min1≤j≤p−1

Gj satisfy the conditions in Theorem 2. The confidence set in (2) reduces to a
confidence interval of the form Xp±dGDE(X1, . . . ,Xp−1). This interval should be
used if Xi’s are from double exponential distributions, fi(x) = (1/2)e−|x|. This
choice of GDE is reasonable because, if a specific combination of ν of the µi’s
were known to be zero, the MLE for σ would be the mean of the corresponding
ν absolute effect estimates.

3. Simultaneous Confidence Intervals

To construct simultaneous confidence intervals for {µ1, . . . , µp}, we follow
the method of Voss and Wang (1999), omitting the proof.

Let x̂i = (x1, . . . , xi−1, xi+1, . . . , xp), for 1 ≤ i ≤ p. Note that (x1, . . . , xp−1)
= x̂p and G(X1, . . . ,Xp−1) = G(X̂p).

Theorem 4. Suppose F (xi) and Gj(x̂i) for 1 ≤ j ≤ p − 1 are nonnegative
functions. Each pair (F,Gj) satisfies conditions (i) and (ii) in Theorem 1. Define
G as in (3), Vi = F (Xi − µi)/G(X̂ i) for 1 ≤ i ≤ p, and let W = max1≤i≤p Vi.
Then Pµo, σ(W ≥ d′) = supµ, σ Pµ, σ(W ≥ d′) = α say, where d′ is a constant, and

{
µi :

F (Xi − µi)
G(X̂ i)

≤ d′
}
, (8)

1 ≤ i ≤ p, are simultaneous confidence sets for µ1, . . . , µp with simultaneous
confidence coefficient 1 − α.

The simultaneous confidence sets (8) reduce to confidence intervals if the
underlying distribution fi is any of the examples in the previous section. Fur-
thermore, if the same exchangeable functions Gj are used for each effect µi,
then the simultaneous confidence intervals are consistent, as were the individual
confidence intervals.
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4. An Example

We illustrate the proposed methodology using a 24 experiment from Davies
(1954), which served as “Example IV” in the papers of Box and Meyer (1986) and
Lenth (1989). The four factors are acid strength (S), acid amount (A), time (M)
and temperature (T), and the response measured is the yield of isatin. Table 1
contains the design, data and some statistics, with the estimates and squared
estimates sorted by magnitude.

Table 1. A 24 experiment: Example IV of Box and Meyer (1986).

S A M T Yield Effect Estimate (Estimate)2 ssj

-1 -1 -1 -1 0.08 S*M -0.00125 0.00000156
1 -1 -1 -1 0.04 S*A*T -0.00625 0.00003906
-1 1 -1 -1 0.53 S*A*M*T 0.01875 0.00035156
1 1 -1 -1 0.43 M -0.02125 0.00045156
-1 -1 1 -1 0.31 A*T -0.02625 0.00068906
1 -1 1 -1 0.09 S*A 0.03375 0.00113906
-1 1 1 -1 0.12 A*M -0.06625 0.00438906
1 1 1 -1 0.36 A -0.07625 0.00581406 ss8 = 0.0128750
-1 -1 -1 1 0.79 S*M*T -0.10125 0.01025156
1 -1 -1 1 0.68 A*M*T 0.12375 0.01531406
-1 1 -1 1 0.73 S*A*M 0.14875 0.02212656
1 1 -1 1 0.08 S*T -0.16125 0.02600156 ss12 = 0.0865687
-1 -1 1 1 0.77 S -0.19125 0.03657656
1 -1 1 1 0.38 M*T -0.25125 0.06312656
-1 1 1 1 0.49 T 0.27375 0.07493906
1 1 1 1 0.23

Apply the methodology of Example 1, using K8 = 1.8495, K12 = 6.9898
and Kj = 0 otherwise. (The values of Kν for ν = 8, 12 were obtained as the
average value of ssν in (4) computed for 100,000 pseudo-random samples of size
14.) For the three effects with largest estimates, GSN =min{ss8/K8, ss12/K12}=
min{0.0128750/1.8495, 0.0865687/6.9898} ≈ min{0.006961, 0.01239}=0.006961.
For individual 95% confidence intervals, the critical value d in equation (6)
is the 95th percentile of the null distribution of F (X15)/GSN (X1, . . . ,X14) =
X2

15/min{SS8/1.8495, SS12/6.9898}, and we obtained the estimate d = 6.1639
based on 99,999 pseudo-random samples. The minimum significant difference for
the confidence interval in equation (6) becomes

√
dGSN =

√
(6.1639)(0.006961)

≈ 0.2071. Thus, the main effect of T is significantly positive and the M*T inter-
action effect is significantly negative, but the main effect of S is not significant.
Because the method is consistent, no other effects will be significantly nonzero.
Note that if more effects were to be considered, the values of ss8 and ss12 would
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be larger, as they would be computed from the other 14 estimates−namely, ex-
cluding the estimate of the effect for which the confidence interval is being con-
structed.

For sake of comparison, also apply Lenth’s (1989) method to these data. His
method yields the same initial and adaptive estimate of the standard deviation
of the estimators — σ̂ = (1.5)(0.07625) ≈ 0.1144. The minimum significant
difference for each 95% confidence interval is then 2.12053σ̂ ≈ 0.2425. Here
the critical value 2.12053 is an estimate of the upper 95th percentile of the null
distribution of |xp|/σ̂ based on 99,999 pseudo-random samples generated under
the null distribution. The same two effects are significantly nonzero.

5. Power Study

In this section, three variations on the method of this paper are compared for
power with competing adaptive and non-adaptive methods from the literature.
Power was estimated by simulation for p = 15 estimators, as one would have for
example in the analysis of a regular orthogonal 215−11

III fraction. Included were 42
parameter configurations, including from one to seven non-zero effects each of the
same size, with effect sizes from one to six standard deviations of the estimators.
For each of these 42 parameter configurations, 100,000 samples of size 15 were
generated. For each sample, each of 11 methods was used to construct an indi-
vidual 95% confidence interval for the nonzero effect µp. The power estimate for
each method and parameter configuration is the fraction of confidence intervals
excluding zero. The methods compared will now be described.

Consider first the variations on the method of this paper. The basic method
is outlined in Example 1 and requires only the specification of the constants Kj of
equation (5). The variation labeled WV2:u2 uses values of K8 and K12 chosen so
that SS8/K8 and SS12/K12 are each unbiased for the estimator variance σ2 under
the null distribution, with Kj = 0 otherwise. Thus, the denominator adaptively
chooses between the use of the 8 or 12 smallest sums of squares. The variation
labeled WV2:u7 is similar but uses values of Kj chosen so that SSj/Kj is unbiased
for σ2 for each j ≥ 8 under the null distribution, with Kj = 0 for j < 8.
The method labeled WV2:b7 is a variation on WV2:u7, multiplying the terms
SS8/K8, . . . , SS14/K14 of WV2:u7 by the factors 1.0, 1.1, . . . , 1.6, respectively, to
bias the method in favor of using denominator SSj/Kj for smaller j.

WV1 denotes the method of Wang and Voss (2001), which is a restricted
case of the method of this paper given in (7).

V:8, V:12 and V:14 denote the non-adaptive method of Voss (1999). Specif-
ically, V:ν is the method of Example 1, with Kν = ν for j = ν and kj = 0
otherwise in equation (5). For V:14, the confidence interval in equation (6) is
precisely the standard t-interval with 14 degrees of freedom.
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“Lenth” denotes the popular method of Lenth (1989), for which σ is ini-
tially estimated by σ̂0 = 1.5 × median {|xi|} using all 15 absolute estimates,
then one obtains and uses the adaptive pseudo standard error σ̂ = 1.5× median
{|xi| : |xi| ≤ 2.5σ̂0}. The confidence interval for µp is xp ± cασ̂, where the
critical value cα is obtained by simulation under the null distribution. “Lenth:I”
denotes a variation on this in which σ̂ is computed from x1, . . . , xp−1, so Xp and
σ̂ are independent.

“Dong” denotes the method of Dong (1993). Dong uses the same initial
estimate of σ as does Lenth, but then an adaptive estimate of σ2 is computed
as σ̂2 = SSν/ν, where ν = |{xi : |xi| ≤ 2.5σ̂0}|. Again, the critical value is
computed by simulation under the null distribution. “Dong:I” denotes a variation
on this in which σ̂2 is computed from x1, . . . , xp−1, so Xp and σ̂ are independent.

The results of the power study are summarized in Table 2. Marginal mean
power is given for each effect size averaging over the number of active (i.e.,
nonzero) effects, and for each number of active effects averaging over effect sizes.
The overall mean power averages over all 42 parameter configurations. The
methods are sorted by their values of maximum percentage power loss, computed
as follows. For each of the 42 parameter configurations, the percentage power
loss of a given method was computed from its power and the power of the best
method as ((“best power” − “power”)/“best power”). For each method, the
maximum of the corresponding 42 values is reported. Thus, the WV2:u2 method
is minimax of the 11 methods considered−namely, it minimizes the maximum
loss of power over the 42 parameter configurations, suffering only a 10.3% power
loss at worst.

Some further observations can be made from Table 2. The first six methods
listed are all competitive in terms of average power. Not surprisingly, the non-
adaptive methods V:12 and V:14 are best (or essentially best) for three and one
active effects, respectively, but the methods break down for more active effects.
The non-adaptive method V:8 does surprisingly well even when the number of
active effects is small. It is interesting that WV2:u2 mixes V:8 and V:12 so as
to maintain the good overall mean power of V:8 but with improved maximum
percentage power loss.

While the reported simulation results are condensed, the complete results
provide further insight. The top four methods with respect to maximum per-
centage power loss−WV2:u2, WV2:b7, V:8, and WV2:u7−maintain good power
across parameter configurations. The Lenth and Lenth:I methods are comparable
to one another and perform very well when there are at least four active effects
of size three or more. Surprisingly, the WV1 method breaks down when there
are seven active effects of size at least three, though it does very well anytime the
number of active effects is at most five (covering most cases of typical interest) or



736 WEIZHEN WANG AND DANIEL T. VOSS

the effect size is at most two. The Dong and Dong:I methods apparently suffer
some from the inclusion of too many terms in the denominator, though they do
very well when there are up to three large effects.

A few summarizing comments are now in order. We have attempted to
compare the methods fairly, in the sense that each of the methods have a natural
common breakdown point of eight or more large active effects, (except V:12
and V:14 which break down sooner). Of the adaptive methods considered, the
WV1 and WV2:ν methods are known to control error rates over all parameter
configurations, whereas it remain an open problem to show that the methods of
Lenth (1989) and Dong (1993) enjoy the same property. In view of this, and
since the WV2:u2 method has competitive overall mean power and is minimax
in the sense discussed, it is reasonable to advocate use of the WV2:u2 method
or similar methods.

Table 2. Power comparison of 11 adaptive and non-adaptive methods.

Max % Mean Power

Method Power Effect Size Number of Active Effects

Loss Overall 1 2 3 4 5 6 1 2 3 4 5 6 7

WV2:u2 0.103 0.553 0.11 0.25 0.47 0.69 0.85 0.94 0.71 0.68 0.64 0.58 0.52 0.44 0.31

WV2:b7 0.124 0.556 0.11 0.25 0.47 0.70 0.86 0.95 0.70 0.67 0.64 0.69 0.53 0.45 0.32

V:8 0.132 0.556 0.11 0.25 0.47 0.70 0.86 0.95 0.69 0.67 0.63 0.59 0.53 0.45 0.33

WV2:u7 0.149 0.550 0.11 0.26 0.47 0.69 0.85 0.93 0.71 0.68 0.64 0.59 0.52 0.43 0.30

Lenth 0.186 0.552 0.11 0.25 0.47 0.70 0.85 0.93 0.69 0.67 0.64 0.60 0.54 0.44 0.28

LenthI 0.191 0.559 0.11 0.24 0.47 0.71 0.88 0.95 0.68 0.66 0.64 0.60 0.55 0.47 0.33

DongI 0.575 0.525 0.11 0.25 0.45 0.65 0.80 0.89 0.71 0.68 0.64 0.59 0.50 0.36 0.19

Dong 0.624 0.510 0.12 0.25 0.44 0.63 0.77 0.86 0.72 0.68 0.64 0.57 0.47 0.33 0.17

WV1 0.685 0.527 0.12 0.26 0.46 0.66 0.79 0.87 0.71 0.68 0.65 0.60 0.52 0.39 0.14

V:14 0.988 0.343 0.12 0.24 0.36 0.42 0.45 0.47 0.73 0.63 0.46 0.29 0.16 0.09 0.05

V:12 0.998 0.410 0.12 0.26 0.42 0.53 0.57 0.58 0.72 0.69 0.64 0.47 0.22 0.09 0.04

The Lenth:I and Dong:I variations of the respective methods of Lenth (1989)
and Dong (1993) were considered for the following reason. They are based on
a pivotal quantity for which the numerator and denominator are independent.
This property makes the problem of establishing strong control of error rates
more tractable, though this remains an open problem for these methods. In view
of this, it is interesting to note that the operating characteristics of both methods
are little affected by this variation.
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