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Abstract: A spatial cumulative distribution function (SCDF) is a random function

that provides a statistical summary of a random process over a spatial domain

of interest. In this paper, we consider a spatio-temporal process and establish

statistical methodology to analyze changes in the SCDF over time. We develop

hypothesis testing to detect a difference in the spatial random processes at two

time points, and we construct a prediction interval to quantify such discrepancy

in the corresponding SCDFs. Using a spatial subsampling method, we show that

our inferences are valid asymptotically. As an illustration, we apply these inference

procedures to test and predict changes in the SCDF of an ecological index for foliage

condition of red maple trees in the state of Maine in the early 1990s.
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1. Introduction

Well designed, large-scale, long-term ecological resource monitoring pro-
grams allow study of the current status of and changes in the nation’s ecological
resources on a regional basis, and hence are of great importance. Indicators of
ecological resources over regions of interest are often selected and modeled as a
spatially distributed random process, known as a random field (r.f.) with con-
tinuous spatial index. A spatial cumulative distribution function (SCDF) is a
random function that provides a spatial statistical summary of a r.f. In the past,
statistical inference for the SCDF at a given time point has been developed to
determine the current condition of an ecological resource (e.g., Lahiri, Kaiser,
Cressie and Hsu (1999)). This paper extends these earlier results and develops
inference for comparing SCDFs over time in order to detect and quantify changes
in the ecological resources at different points in time. The proposed methodology
is illustrated with forest-health monitoring data collected from a spatial network
of monitoring sites in the state of Maine in the early 1990s.

We consider a r.f. with continuous spatial index, {Z(s) : s ∈ R}, where
Z(s) is a random variable at the spatial location s and R ⊂ IRd is a spatial
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domain of interest. Its SCDF is F∞(z;R) ≡ |R|−1
∫
R I(Z(s) ≤ z)ds, z ∈ IR,

where |R| ≡ ∫
R ds denotes the volume of R and I is the indicator function. Note

that F∞ is a random cumulative distribution function (CDF). Specifically, it is
a function of actual and potential observations, of which any realization is a
CDF that is right continuous and increases from 0 to 1. All spatial moments,
areal proportions, and spatial quantiles can be recovered from the SCDF. For
example, the regional mean of the r.f. Z(·), Z(R) ≡ |R|−1 ∫

R Z(s)ds, is equal
to

∫
zdF∞(z;R). The SCDF can be thought of as a basic (random) functional

whose properties can be used to indicate resource status.
A commonly used predictor of the SCDF is the empirical CDF (ECDF).

Based on a finite sample {Z(s1), . . . , Z(sN )}, observed at known spatial sam-
pling sites {s1, . . . , sN} ⊂ R, we define the equal-weight version of the ECDF as
FN (z;R) ≡ N−1 ∑N

i=1 I(Z(si) ≤ z), z ∈ IR. Figure 1 gives the ECDFs of foliage
condition indices sampled in the state of Maine in 1991, 1992 and 1993. Us-
ing an asymptotic framework and a subsampling method, Lahiri, Kaiser, Cressie
and Hsu (1999) predict the complete-data version SCDF with the ECDF, and
construct large-sample prediction bands for the SCDF that achieve the desired
confidence levels asymptotically. Lahiri (1999) gives further theoretical results
for the SCDF.
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Figure 1. Empirical cumulative distribution functions (ECDF) of the crown
defoliation index (CDI) values for 1991, 1992 and 1993.
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In this paper we use a similar asymptotic framework, which is a combina-
tion of “increasing domain asymptotics” and “infill asymptotics” (Cressie (1993,
pp.100-101)). We now describe the asymptotic framework in detail, using the
following notation throughout the rest of the paper. For the increasing domain
component of the asymptotic structure, let R0 denote an open connected sub-
set of (−1/2, 1/2]d that contains the origin 0. Then we obtain the sampling
region Rn by “inflating” the region R0 with Rn ≡ λnR0, where {λn} is a scal-
ing sequence of positive real numbers tending to infinity as n → ∞. For the
infill component of the asymptotic structure, we partition the sampling region
Rn into equal-volume cubes and denote them as Γ(j) ≡ (j + (0, 1]d)hn, where
j ∈ ZZd, ZZ denotes the set of integers, Γ(j) ∩ Rn �= ∅, and {hn} is a sequence
of positive real numbers decreasing to 0 as n → ∞. Let c denote an arbitrary
point in the interior of the unit cube (0, 1]d and assign chn, in the cube (0, hn]d,
to be the starting sampling site. Then, the sampling sites in Rn form a grid
{(j +c)hn ∈ Γ(j)∩Rn : j ∈ ZZd}; as n → ∞ the number of sampling sites in Rn,
denoted by Nn, satisfies the growth condition, Nn ∼ |R0|λd

n/hd
n (un ∼ vn means

un/vn → 1 as n → ∞). An illustration of the asymptotic structure and the
sampling design in IR2 is shown in Figure 2. Within the circled sampling regions
Rn−1 and Rn, the sampling sites form a square grid. Note that the sample size
increases from Nn−1 to Nn as a result of both a larger sampling region and a
finer grid of sampling sites.

(a) (b)

Figure 2. An illustration of the asymptotic structure and the sampling de-
sign: (a) sampling region Rn−1 and a square grid of sampling sites (shown
as •) with sample size Nn−1; (b) sampling region Rn and a square grid of
sampling sites (shown as •) with sample size Nn.
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Implicitly, the discussion above about the SCDF concerns a r.f. Z(·) at
a given point in time and is restricted to statistical inference for the current
status of the process. In order to detect any changes or trends in an ecological
resource over time, we consider different r.f.s at various time points, namely
{Zt(s) : s ∈ Rn}, where t belongs to an index set of time points and Rn ⊂ IRd.
Associated with the r.f. Zt(·) we have the SCDF

F∞,t(z) ≡ |Rn|−1
∫

Rn

I(Zt(s) ≤ z)ds, z ∈ IR. (1)

Given a finite sample {Zt(s1), . . . , Zt(sNn)} from the r.f. Zt(·), observed at fixed
(over time) sampling sites {s1, . . . , sNn}, the ECDF is

Fn,t(z) ≡ Nn
−1

Nn∑
i=1

I(Zt(si) ≤ z), z ∈ IR, t ∈ {1, . . . , T}, (2)

where T is the total number of time points under consideration. In this paper, we
extend the statistical methodology for inference on a single SCDF to inference
on two SCDFs (with T = 2), and we assume that the (joint) spatial random
process, {Z(s) ≡ (Z1(s), Z2(s))′ : s ∈ IRd}, is stationary. Hence the theoretical
CDF is location invariant and is denoted

Gt(z) ≡ P (Zt(0) ≤ z), z ∈ IR, t = 1, 2, (3)

where 0 is the origin of the spatial domain Rn. Henceforth, we call Gt the
invariant CDF of the r.f. Zt(·).

The statistical inference for detecting change of the SCDF over time is based
on two procedures. The first is a formal test of the null hypothesis Ho : G1 = G2

versus the alternative hypothesis Ha : G1 �= G2, where Gt is the invariant CDF.
We use the difference between the two ECDFs, Fn,1(z) − Fn,2(z), z ∈ IR, for
our test statistic. We derive the large-sample distribution of the normalized test
statistic

ξn(z) ≡ λd/2
n (Fn,1(z) − Fn,2(z)), z ∈ IR, (4)

and propose a test criterion that asymptotically guarantees a desired significance
level.

The second procedure quantifies change by a weighted integrated squared
difference (WISD) between the two SCDFs, defined as

X∞ ≡
∫

IR
(F∞,1(z) − F∞,2(z))2 w(z)dz, (5)

where w(·) is a fixed weight function. The predictor for the WISD is the weighted
integrated squared distance between the ECDFs, Xn ≡ ∫

IR (Fn,1(z) − Fn,2(z))2 ×
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w(z)dz. After deriving the large-sample distribution of the normalized and cen-
tered predictor, bn(Xn−X∞), where the normalizing constant bn is to be specified,
we construct a prediction interval for X∞ that asymptotically achieves a desired
prediction probability.

Under the mixed asymptotic framework and some fairly general assumptions,
we establish weak convergence of the test statistic and the predictor Xn. However,
the limiting distributions involve unknown quantities and need to be estimated
in order to carry out the test and to compute prediction intervals. For this
purpose, we extend the subsampling method developed by Lahiri (1999) to the
vector r.f. Z(·). The basic idea is to create several smaller subsampling regions
within the sampling region Rn and then to recreate “samples” and “populations”
at the level of the subsamples, so that a subsampling estimate for the sampling
distributions of the quantities of interest can be obtained.

The smaller subregions in the sampling region Rn are of the form, iβn +
(−1/2, 1/2]dλl, where i ∈ ZZd and l ≡ ln is a sequence of positive integers such
that l → ∞ as n → ∞. The constant λl determines the size of the subregion, and
the constant βn, 0 < βn ≤ λl, controls the amount of overlap of the subregions.
Note that when βn = λl, the subregions are disjoint. Inside each subregion, we
inscribe a subsampling region iβn +λlR0. As i varies, a collection of subsampling
regions is generated that are contained in Rn and are the same shape as Rn.
These are denoted R∗1, . . . , R∗Kn , where Kn is the total number of subregions
created. Within each subsampling region, we recreate the effect of “sample” and
“population” by imposing a coarser grid Pl with spacing hl (i.e., Pl ≡ ZZdhl), and
a finer grid Pn with spacing hn (i.e., Pn ≡ ZZdhn) of sampling sites. Recall that
hn is the infill rate of the original sampling grid, which tends to zero. Suppose
that {hl} is a sequence of positive real numbers tending to 0 as n → ∞. For
simplicity we assume that hl/hn is an integer and hence that Pl is nested in Pn.
Figure 3 illustrates the idea of the subsampling design in IR2 on a square grid of
sampling sites within the circled sampling region Rn.

Now, a subsampling version of the ECDF Fn,t in the subsampling region R∗i
is

F ∗i
n,t(z) ≡ |R∗i ∩ Pl|−1

∑
s∈R∗i∩Pl

I(Zt(s) ≤ z), z ∈ IR, (6)

and a subsampling version of the SCDF F∞,t in R∗i is

F ∗i
∞,t(z) ≡ |R∗i ∩ Pn|−1

∑
s∈R∗i∩Pn

I(Zt(s) ≤ z), z ∈ IR, (7)

where i = 1, . . . ,Kn. Let Tn ≡ Tn(Fn,1, F∞,1, Fn,2, F∞,2) denote a quantity
involving Fn,t and F∞,t, t = 1, 2. Then the sampling distribution of Tn, namely
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Hn(z) ≡ P (Tn ≤ z), z ∈ IR, can be estimated by the empirical distribution of
the subsampling versions, T ∗i

l ≡ Tl(F ∗i
n,1, F

∗i∞,1, F
∗i
n,2, F

∗i∞,2), i = 1, . . . ,Kn:

Ĥn(z) ≡ K−1
n

Kn∑
i=1

I(T ∗i
l ≤ z), z ∈ IR. (8)

One of the main contributions of this paper is to develop valid inferences for
Tn(Fn,1, F∞,1, Fn,2, F∞,2) based on subsampling versions as defined in (6) and
(7). This extends the work of Lahiri et al. (1999) to the important problem of
multiple time points.

Figure 3. An illustration of the subsampling method: (a) all subsampling
regions inscribed in Rn; (b) a coarser grid of subsampling sites (shown as •)
in one subsampling region; (c) a finer grid of subsampling sites (shown as •)
in the same subsampling region.

The rest of the paper is organized as follows. In Section 2, we develop
an asymptotic test procedure for testing the null hypothesis Ho : G1 = G2

against the alternative hypothesis Ho : G1 �= G2, based on the process defined in
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(4). In Section 3, we construct an asymptotic prediction interval for the WISD
X∞ defined by (5), based on Xn. As an illustration, the inference procedures
developed in Sections 2 and 3 are applied to a forest-health-monitoring data set
in Section 4. Conclusions are given in Section 5, and the proofs of the theorems
are in Section 6.

2. Detection of Changes over Time

The SCDF is a basic (random) functional whose properties can be used to
indicate the status of ecological resources. Moreover, comparisons of SCDFs at
different points in time over the same region can be used to indicate resource im-
provement or resource decline over time. Under a spatial stationarity assumption
of Zt(·), we have E(F∞,t(z)) = Gt(z), where Gt is the invariant CDF of Zt(·).
Then, for two time points, a comparison of two SCDFs could be considered as a
test statistic for testing Ho : G1 = G2 versus Ha : G1 �= G2.

Since the spatial sampling sites in ecological monitoring programs are often-
times fixed, it is reasonable to assume that the finite samples, {Z1(s1), . . . ,
Z1(sNn)} and {Z2(s1), . . . , Z2(sNn)}, are observed at the same set of sampling
sites {s1, . . . , sNn}. Recall that the test statistic is based on the normalized
ECDF difference, ξn(z) ≡ λ

d/2
n (Fn,1(z) − Fn,2(z)), defined in (4). The subsam-

pling version of ξn is ξ∗il (z) ≡ λ
d/2
l

(
(F ∗i

n,1(z) − F ∗i
n,2(z)

)
, z ∈ IR, i = 1, . . . ,Kn,

where recall that F ∗i
n,t is the subsampling version of Fn,t, λl is the growth rate of

the subsampling regions, l is a sequence of positive integers such that λl → ∞,
l → ∞ as n → ∞, and Kn is the total number of subsampling regions in Rn.

To establish the limit distribution of ξn(·) and the validity of subsampling
under the null hypothesis, we use a ρ-mixing condition to specify the depen-
dence structure of the r.f. Z(·). Let L′

2(S) denote the collection of all random
variables with zero mean and finite second moments that are measurable with
respect to the σ-field generated by {Z(s) : s ∈ S}, S ⊂ IRd. For S1, S2 ⊂ IRd,
let ρ1(S1, S2) ≡ sup{|E(ζη)|/

(
(E(ζ2))1/2(E(η2))1/2

)
: ζ ∈ L′

2(S1), η ∈ L′
2(S2)}.

Then the ρ-mixing coefficient of the r.f. Z(·) is (Doukhan (1994), Section 1.1)
ρ(k;m) ≡ sup{ρ1(S1, S2) : |S1| ≤ m, |S2| ≤ m, δ(S1, S2) ≥ k}, where δ(S1, S2) ≡
inf{|x − s| : x ∈ S1, s ∈ S2}, and | · | is the 	1-norm. We assume the follow-
ing.
(A.1) There exist positive real numbers C, τ, θ with τ > 3d, θd < τ such that

ρ(k;m) ≤ Ck−τmθ.
(A.2) The r.f. Z(·) is stationary and the invariant CDF G1 and G2 are continuous.
(A.3) For any sequence of positive real numbers {an} tending to 0 as n → ∞,

let R0 satisfy the condition that the number of cubes of the lattice anZZd

that intersect both R0 and its complement Rc
0 is of the order (a−1

n )d−1 as
n → ∞.
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Assumption (A.1) requires the r.f. Z(·) to be short-range dependent. Intu-
itively, this requires the variables Z(s) and Z(x) to be approximately indepen-
dent when the distance between s and x is large. The actual rate of decay is
chosen for the convenience of theoretical justification and has been previously
used in similar problems (see, e.g., Doukhan (1994); Lahiri (1999)). Assumption
(A.2) is a smoothness condition on the invariant CDFs. Note that we do not
require G1 and G2 to have any specific parametric forms. Finally, assumption
(A.3) requires that the number of the sampling sites on the boundary of Rn is
negligible compared to the totality of all sampling sites in Rn, ensuring that the
edge-effect is negligible in the limit. This condition is satisfied by most sampling
regions of practical interest.

The first main result of this section is a functional central limit theorem
(FCLT) for the difference process ξn in (4), considered as a random element of
the space of all real-valued functions on [−∞,∞] that are right continuous with
left-hand limits, denoted by D[−∞,∞] and equipped with the Skorohod metric.

Theorem 2.1. Under the mixed asymptotic framework described in Section 1,
suppose that (A.1)−(A.3) and Ho : G1 = G2 hold. Then, as n → ∞, ξn

D→
W, where W(·) is a zero-mean Gaussian process with covariance function
σ(z1, z2) ≡ |R0|−1

∫
IRd [G11(z1, z2; s)−G12(z1, z2; s) − G12(z2, z1; −s) + G22(z1,

z2; s)]ds, Gij(z1, z2; s) ≡ P (Zi(0) ≤ z1, Zj(s) ≤ z2) denotes the joint bivariate
distributions of Z(·), i, j ∈ {1, 2}, z1, z2 ∈ IR, and s ∈ IRd. Moreover, W(·) has
continuous sample paths a.s. and W(−∞) = W(∞) = 0 a.s.

Now, for a Borel-measurable function g : IR → IR, we define the weighted
	p-norm of g by

‖g‖p ≡
{

(
∫
IR |g(z)|pu(z)dz)1/p ; p ∈ [1,∞),

sup{|g(z)|u(z) : z ∈ IR} ; p = ∞,

where u(·) is a nonnegative weight function. We use this form of the norm to
quantify the magnitude of ξn. By the Continuous Mapping Theorem (see, e.g.,
Theorem 4.2.12 in Pollard (1984)), the null asymptotic distribution of ‖ξn‖p can
be determined as an immediate consequence of Theorem 2.1, as follows.

Corollary 2.1. Under the same conditions as in Theorem 2.1, as n → ∞, ‖ξn‖p
D→ ‖W‖p, p ∈ [1,∞].

Let H(·; p) denote the CDF of ‖W‖p. Let Hn(·; p) denote the CDF of
‖ξn‖p, and let the subsampling estimator of Hn(·; p) be denoted as Ĥn(z; p) ≡
K−1

n

∑Kn
i=1 I(‖ξ∗il ‖p ≤ z), z ∈ IR.

Theorem 2.2. Suppose the conditions in Theorem 2.1 hold. Furthermore, as-
sume the subsampling design given in Section 1, and suppose that H(·; p) is con-
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tinuous and that λl/λn → 0 as n → ∞. Then, for any p ∈ [1,∞] as n → ∞,
supz∈IR|Ĥn(z; p) − Hn(z; p)| P→ 0.

Let qα(p) denote the α-th quantile of ‖W‖p, qα(p) ≡ inf{z : H(z; p) ≥ α},
where 0 < α < 1. Because of Corollary 2.1. and P (‖W‖p > q1−α(p)) = α, the
test that rejects the null hypothesis Ho if ‖ξn‖p > q1−α(p) has an asymptotic
significance level of α. However, the quantiles of ‖W‖p depend on the joint
bivariate distribution functions and are not known in practice. Let q̂α(p) denote
the α-th quantile of Ĥn(z; p), q̂α(p) ≡ inf{z : Ĥn(z; p) ≥ α}, which is the [Knα]-th
order statistic of ‖ξ∗1l ‖p, . . . , ‖ξ∗Kn

l ‖p. Then the approximate level-α hypothesis
test, based on the subsampling method, is to reject the null hypothesis Ho if
‖ξn‖p > q̂1−α(p). By Theorem 2.2, under Ho, P (‖ξn‖p > q̂1−α(p)) → α as
n → ∞. Hence, this test has an asymptotic significance level of α.

3. Prediction of Changes over Time

In Section 2 we developed a test to detect changes in the SCDFs for a given
region at two different time points. In this section, we develop a statistical
method to quantify changes by a weighted integrated squared difference (WISD)
between the two SCDFs, as defined in (5). The WISD is an unknown random
quantity whose realizations measure the discrepancy between sample paths of
the two SCDFs. Further, for fixed z1, z2 ∈ IR, if the weight function w(·) is
the indicator function on (z1, z2), then the WISD is a measure of the SCDF
discrepancy for z values ranging between z1 and z2. Hence the WISD can be
used to assess the differences of the SCDFs for z in different regions of IR, for
instance when z takes values that are below or above certain cut-off levels.

Based on the finite samples {Z1(s1), . . . , Z1(sNn)} and {Z2(s1), . . . , Z2(sNn)},
collected at sampling sites {s1, . . . , sNn}, a reasonable predictor for X∞ is the
finite-sample version Xn. Recall from the asymptotic structure and the sampling
design that the center of the sampling grid is chn, where c ∈ (0, 1]d. As it
turns out, in the non-centered design as in Lahiri et al. (1999), an appropriate
normalizing constant for the predictor Xn is

bn ≡
{

λ
d/2
n h−1

n ; G1 �= G2,

λd
nh−1

n ; G1 = G2.
(9)

That is, the limiting distribution of Xn when the two invariant CDFs coincide is
different from that of Xn when the two invariant CDFs differ. We have a statisti-
cal test for the null hypothesis Ho : G1 = G2. If the data provide strong evidence
that there are differences in the SCDFs over time, we can use the asymptotic
distribution of Xn for G1 �= G2 to quantify these differences. Hence, we have a
procedure that first detects, and then quantifies the changes over time. On the
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other hand, if the data do not show strong evidence against the null hypothesis,
it is still of interest to predict X∞.

In this section, we establish the limit distribution of the centered and scaled
WISD:

Yn≡bn(Xn−X∞)=
∫

IR
bn

[
(Fn,1(z)−Fn,2(z))2−(F∞,1(z)−F∞,2(z))2

]
w(z)dz,

(10)

where the normalizing constant bn is defined in (9). Using the subsampling
described in Section 1, we define the subsampling versions of Xn and X∞ as
X ∗i

n ≡ ∫
IR(F ∗i

n,1(z) − F ∗i
n,2(z))2w(z)dz and X ∗i∞ ≡ ∫

IR(F ∗i∞,1(z) − F ∗i∞,2(z))2w(z)dz,
where F ∗i

n,t and F ∗i∞,t are defined in (6) and (7), i = 1, . . . ,Kn. Then we establish
the asymptotic distribution for the subsampling versions of Yn, namely Y∗i

l ≡
bl(X ∗i

n − X ∗i∞), i = 1, . . . ,Kn, where the normalizing constant for Y∗i
l is bl ≡

λ
d/2
l h−1

l if G1 �= G2, and bl ≡ λd
l h

−1
l if G1 = G2.

Let ZZ+ denote the set of all nonnegative integers. For a vector x =
(x1, . . . , xd)′ ∈ IRd, d ≥ 1, let |x| ≡ ∑d

i=1 |xi| and ‖x‖ ≡ ∑d
i=1 x2

i denote the
	1- and 	2-norms of x. For α = (α1, . . . , αd)′ ∈ (ZZ+)d, write xα ≡ ∏d

i=1 xαi
i ,

α! ≡ ∏d
i=1 αi!, and let Dα denote the differential operator Dα1

1 . . . Dαd
d on IRd,

where Dαl
l ≡ ∂αl/∂xαl

l for 1 ≤ l ≤ d. The following assumptions are made.
(B.1) For given z1, z2 ∈ IR, i, j ∈ {1, 2},

(i) Gij(z1, z2; ·) has bounded, Lebesgue-integrable partial derivatives of
order 2 on IRd;

(ii) for |α| = 2,there exist nonnegative integrable functions Hα,ij(z1, z2; ·)
such that for all x, s ∈ IRd with ‖x‖ ≤ 1, |DαGij(z1, z2; s + x)−
DαGij(z1, z2; s)| ≤ ‖x‖ηHα,ij(z1, z2; s) for some η > 0.

(B.2) There exist constants C > 0, 1/2 < γ ≤ 1, such that
∑

|α|=2 |DαGtt(z1, z2

; s)| ≤ C|Gt(z2)−Gt(z1)|γ , where Gtt(z1, z2; s) ≡ P (z1 < Zt(0) ≤ z2, z1 <

Zt(s) ≤ z2) for all z1, z2 ∈ IR, s ∈ IRd, t = 1, 2.
(B.3) (h2(2γ+1)

n λd
n)−1 + (hnλn/ log λn)−1 → 0 as n → ∞, γ as in (B.2).

(B.4)
∫
IR |G1(z)−G2(z)|ς(z, z)1/2w(z)dz < ∞ and

∫
IR [σ(z, z)ς(z, z)]1/2 w(z)dz<

∞, where σ(·, ·) is defined in Theorem 2.1 and ς(z1, z2)≡|R0|−1 ∑
|α|=2

a(α)(α!)−1
∫
IRd [DαG11(z1, z2; s)−DαG12(z1, z2; s)−DαG12(z2, z1; s)+

DαG22(z1, z2; s)]ds, with z1, z2 ∈ IR, and a(α) ≡ ∫
(0,1]d

∫
(0,1]d [(x−s)α−

(x−c)α−(c−s)α]dsdx.
The assumptions in (B.1) are smoothness conditions for the joint bivariate

distributions, viewed as functions of s at fixed z1 and z2. They are almost minimal
for proving FCLTs. Assumption (B.2) is needed in proving the tightness of a
process as a random element of the space D[−∞,∞] and is a type of Lipschitz
condition. Assumption (B.3) specifies the relationship between the growth rate



ASYMPTOTIC INFERENCE FOR CDFS OVER TIME 853

λn and the infill rate hn in the asymptotic framework. Finally, assumption (B.4)
is a condition needed to ensure weak convergence after the integration in (10).

The first main result for this section establishes weak convergence of Yn as
follows.

Theorem 3.1. Assume the mixed asymptotic framework described in Section 1
and assume that (A.1)−(A.3), (B.1)−(B.4) hold. Then, as n → ∞,

Yn = bn(Xn −X∞) D→Y∞ ≡
{∫

IR 2(G1(z) − G2(z))V(z)w(z)dz ; G1 �= G2,∫
IR 2W(z)V(z)w(z)dz ; G1 = G2,

where bn is given in (9). Here (W(·),V(·))′ is a vector Gaussian process with
mean (0, 0)′. The covariance function for V(·) is ς defined in (B.4), that for
W(·) is σ defined in Theorem 2.1, and the cross-covariance function is

υ(z1, z2) ≡ |R0|−1
∑

|α|=1

a∗(α)(α!)−1
∫

IRd
DαG11(z1, z2; s) − DαG12(z1, z2; s)

− DαG12(z2, z1; s) + DαG22(z1, z2; s)ds, (11)

where a∗(α) ≡ ∫
(0,1]d(s − c)αds.

When the two invariant CDFs are not the same, the limiting random variable
Y∞ is a weighted product of the invariant CDF difference and the Gaussian
process V(·). Otherwise, Y∞ is a weighted product of the two Gaussian processes
W(·) and V(·). The normalizing constant bn is the same as that given by Lahiri
(1999) when G1 �= G2, but it is scaled up by a factor of λ

d/2
n when G1 = G2.

We denote the CDF of Y∞ by H, the CDF of Yn by Hn, and recall that the
subsampling estimator of Hn(·) is Ĥn(z) ≡ K−1

n

∑Kn
i=1 I(Y∗i

l ≤ z), z ∈ IR. Note
that the CDFs H(·), Hn(·) and Ĥn(·) depend on whether G1 = G2.

Theorem 3.2. Suppose that the conditions in Theorem 3.1 hold. Assume the
subsampling design given in Section 1, and suppose that H(·) is continuous, that
λl/λn → 0, hn/hl → 0 as n → ∞, and that (B.3) holds with λn replaced by λl.
Then, as n → ∞, supz∈IR|Ĥn(z) − Hn(z)| P→ 0.

Let πα denote the α-th quantile of the random variable Y∞. By Theorem
3.1, the prediction interval I1−α ≡ {X : πα/2 < bn(Xn − X) < π1−α/2} attains
a prediction probability of 1 − α, asymptotically. Because the asymptotic dis-
tributions depend on population parameters that are not known in practice, we
use the subsampling method to estimate πα/2 and π1−α/2. Under the conditions
of Theorem 3.2, the subsampling estimator Ĥn(·) of the sampling distribution
Hn(·) of Yn yields asymptotically valid prediction intervals for Y∞. Specifically,
let π̂α denote the α-th quantile of Ĥn(·), which is the [Knα]-th order statistic of
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Y∗1
l , . . . ,Y∗Kn

l . Then P (X : π̂α/2 < bn(Xn − X) < π̂1−α/2) → (1 − α) as n → ∞.
That is, the interval Î1−α ≡ (Xn − π̂1−α/2/bn,Xn − π̂α/2/bn) is an asymptotically
valid 100(1 − α)% prediction interval.

4. An Example

In the early 1990s, the United States Environmental Protection Agency and
the United States Forest Service conducted an annual forest-health monitoring
program in the New England states. A selected indicator of forest health is the
crown defoliation index (CDI) of red-maple trees − it has a range of [0, 100] and
is constructed from measures of visible injury to the tree crowns, adjusted by
the sizes of the trees. Estimation and prediction of the current status and the
changes over time of the CDI values can be used to assess the overall forest health
and to detect change.

Lahiri et al. (1999) analyze CDI values for red-maple trees in the state of
Maine at one time point (t = 1992) by constructing simultaneous prediction
intervals for the SCDF. The spatial domain of interest R ⊂ IR2 is the state of
Maine. The 77 sampling sites where actual observations were made form an
incomplete hexagonal grid as in Figure 4(a). The hexagonal sampling grid has
a spacing of 27 km, which we set equal to one unit = hn. The total size of the
grid is determined by the growth rate λn = 10hn = 10. At each sampling site,
measurements of visible injury were made on individual tree crowns, and then
a weighted average was taken over the number of trees within a given sampling
site. Hence, each datum of CDI characterizes the corresponding sampling site
as a spatial support unit, and can be modeled by a r.f. with continuous spatial
index (Lahiri et al. (1999)).

In order to apply the sampling and subsampling procedure described in Sec-
tion 1, the sampling grid is first completed with imputed observations (Figure
4(b)) as follows. Consider a sampling site s0 at the center of a complete hexag-
onal grid h(s0) ≡ {s1, . . . , s6} (Figure 4(b)), where there is no observed value
at s0; the “most similar” hexagon of s0, say the hexagon h(s∗0) ≡ {s∗1, . . . , s∗6}
centered at s∗0, is selected and the observed value at site s∗0 is used as the imputed
value for site s0. The “similarity” between h(s0) and h(s∗0) is measured by the
Euclidean distance between the observed CDI vectors (zt(s1), . . . , zt(s6))′ and
(zt(s∗1), . . . , zt(s∗6))′. This procedure is aimed at preserving the spatial structure
of the CDI process. After the imputation, no distinction is made between the
imputed values and the observed data in the analysis. Next, sampling sites in
the hexagonal grid (Figure 4(b)) are transformed to a square grid (Figure 4(c))
through a nonsingular linear transformation. Because of the one-to-one relation-
ship between the hexagonal and square grids of sampling sites, the analysis of
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the data on the square grid is equivalent to that on the hexagonal grid. More
details can be found in Lahiri et al. (1999).

(a) (b) (c)

Figure 4. Locations in Maine for sampled data (shown as ◦) and imputed
data (shown as ×): (a) the incomplete hexagonal grid; (b) the hexagonal
grid completed with imputed data locations; (c) the transformed square grid.

Now we apply the statistical methods developed in Section 2 and 3 to
compare foliage conditions in the state of Maine at three different time points
(t = 1991, 1992, 1993). We conduct hypothesis testing and construct prediction
intervals for the WISD of the CDI values of red-maple trees, using the complete
square grid of the actual and imputed data. Figure 5 shows smoothed CDI sur-
faces (using S-Plus functions persp and interp) over the square sampling grids,
based on the observed and imputed values, and Figure 1 superimposes the ECDF
curves from the three years. There seem to be no major differences in the CDI
values over these years.

(a) (b) (c)

Figure 5. Smoothed surfaces of the crown defoliation index (CDI) values
over the square grid of sampling sites in different years: (a) 1991; (b) 1992;
(c) 1993.

For the subsampling design, the subsampling grid is defined to have spacing
hl and the size of each subsampling region is determined by λl. Each of the
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resulting Kn subsampling regions has (λl/hn)2 points for use in computing F ∗i∞,t

in (7), and (λl/hl)2 points for use in computing F ∗i
n,t in (6). Let Li denote the

set of indices for the (λl/hl)2 sampling sites and Ni denote the set of indices
for the (λl/hn)2 sampling sites, each in the i-th subsampling region R∗i, i =
1, . . . ,Kn. Then the subsampling versions of the ECDF Fn,t and the SCDF F∞,t

are F ∗i
n,t(z) ≡ |Li|−1 ∑

j∈Li
I(Zt(sj) ≤ z) and F ∗i∞,t(z) ≡ |Ni|−1 ∑

j∈Ni
I(Zt(sj) ≤

z), z ∈ IR, as in (6) and (7). Here we consider all possible combinations of λl

and hl. Because of the sampling configuration, as shown in Figure 4, the only
choices that would result in Kn > 2 subsamples are λl = 4 or 6, and hl = 2 or
3. Hence we present the results for three cases: λl = 4, hl = 2; λl = 6, hl = 2;
and λl = 6, hl = 3. Moreover, to account for multiple comparisons, we use a
Bonferroni correction. That is, we perform the test for all pairs at 1/3 of the
given significance level to ensure an overall level that is ≤ α.

Based on the method described in Section 2, we conduct a simultaneous test
of Ho : G1 = G2 versus Ha : G1 �= G2, for possible pairs of the three years,
at significance level α = 0.1. The normalizing constant in ξn is λn = 10, hence
ξn = 10(Fn,1 − Fn,2). We use the 	2- and 	∞-norms and equal weights for the
test statistic ‖ξn‖p, that is, p = 2 or ∞, and u(z) = 1 for all z ∈ IR. The scaling
constant λl is found in ξ∗il = λl(F ∗i

n,1 − F ∗i
n,2), i = 1, . . . ,Kn. We use λl = 4 or 6,

resulting in Kn = 56 or 21. For an overall significance level α, by the Bonferroni
correction, the critical value for each pairwise comparison is the quantile at the
1−α/3 level and is estimated by q̂1−α/3(p), the [Kn(1−α/3)]-th order statistic of
‖ξ∗il ‖p. Table 1 shows the observed test statistics, ‖ξn‖p, and the critical values,
q̂1−α/3(p), for rejection. For both p = 2 and ∞, and both λl = 4 and 6, none
of the observed values exceed the corresponding critical value. Hence we fail
to reject the null hypothesis and conclude that there is no strong evidence that
foliage conditions have changed from 1991 to 1993.

Table 1. Results of the hypothesis test Ho : G1 = G2, at significance level
α = 0.1.

λl years ‖ξn‖2 q̂0.97(2) ‖ξn‖∞ q̂0.97(∞)
4 ’91 vs ’92 0.16 0.60 0.13 0.38

’91 vs ’93 0.41 0.97 0.26 0.56
’92 vs ’93 0.38 1.10 0.19 0.56

6 ’91 vs ’92 0.16 0.38 0.13 0.22
’91 vs ’93 0.41 0.78 0.26 0.47
’92 vs ’93 0.38 0.77 0.19 0.39

We construct 90% prediction intervals for the WISD X∞, comparing the
foliage conditions in the years 1991-1993, pairwise. The normalizing constant in
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Yn is bn = λn/hn = 10 if G1 �= G2, and bn = λ2
n/hn = 100 if G1 = G2. The

scaling constant in Y∗i
l is bl = λl/hl if G1 �= G2, and bl = λ2

l /hl if G1 = G2.
Because there is no strong evidence that the invariant CDFs have changed over
time, we might predict as if G1 = G2 applies here. Hence Yn = 100(Xn − X∞)
and Y∗i

l = (λ2
l /hl)(X ∗i

n −X ∗i∞), i = 1, . . . ,Kn. Two types of weight functions are
considered: one with equal weights w(z) = 1 for all z, and the other with a point
mass at z0. In the latter case, the WISD is the squared difference of the two
SCDFs evaluated at the cut-off level z0. Following Lahiri et al. (1999), a CDI
value below 12.5 indicates good tree health and one above 12.5 indicates poor
tree health. Note that the results in Section 3 hold for a point-mass weight, as
a direct consequence of the weak convergence of the integrand in (10) evaluated
at z0. We use π̂α, the [Knα]-th order statistic among Y∗i

l s, to estimate the α-th
quantile of Y∞. Again we use λl = 4 or 6, giving Kn = 56 or 21. In addition,
we set hl = 2 for λl = 4 and hl = 2 or 3 for λl = 6. Table 2 summarizes the 90%
simultaneous prediction interval Î0.9 of the WISD X∞.

From the statistical comparisons between the SCDFs given in Table 2, we
conclude that there are no significant changes in red-maple forest health in Maine
from 1991 to 1993. This coincides with our informal assessment from observing
the surface plots in Figure 5 and the ECDF plots in Figure 1.

Table 2. 90% prediction intervals for X∞, the weighted integrated square
distance (WISD), with equal weights w(z) = 1 for all z, and with point-mass
weight w(z) = I(z = 12.5).

λl hl years w(z) = 1; ∀z w(z) = I(z = 12.5)
4 2 ’91 vs ’92 [0, 0.023) [0, 0.0051)

’91 vs ’93 [0, 0.180) [0, 0.0018)
’92 vs ’93 [0, 0.170) [0, 0.0043)

6 2 ’91 vs ’92 [0, 0.014) [0, 0.0051)
’91 vs ’93 [0, 0.190) [0, 0.0018)
’92 vs ’93 [0, 0.180) [0, 0.0028)

6 3 ’91 vs ’92 [0, 0.007) [0, 0.0047)
’91 vs ’93 [0, 0.170) [0, 0.0029)
’92 vs ’93 [0, 0.150) [0, 0.0023)

5. Conclusions

We have developed inference procedures to detect and quantify changes in the
SCDFs at two different points in time, for a given spatial domain of interest, using
a fairly flexible asymptotic structure and a methodology based on subsampling.
Consequently, we have moved beyond exploratory data analysis of finite samples,
such as can be found in Majure, Cook, Cressie, Kaiser, Lahiri and Symanzik
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(1995), to making probability statements about the changes in the underlying
spatial random processes.

A referee has suggested an investigation to account for the effect of impu-
tation on statistical inference. The method of imputation chosen is a type of
empirical Gibbs sampler, that is, the imputed values have a conditional mean
and a conditional variance that match empirically the local behavior of the spa-
tial process. Thus we believe that the effect of imputation will be small, although
a more complete investigation would require a simulation study.

Both the r.f. model and the subsampling method follow a nonparametric
approach. Several alternatives have been discussed in Lahiri et al. (1999). In
particular, Bühlmann and Künsch (1999) proposed a spatial block bootstrap.
Even though more computational time is generally required, the block boot-
strap seems to handle missing data with greater flexibility. Moreover, Handcock
(1999) constructed a parametric model to make inferences about the SCDF and
compared his results with those in Lahiri et al. (1999). Despite the flexibility
such parametric models possess, the underlying distributions need to be speci-
fied explicitly, in contrast to the distribution-free nature of the approach here.
Further comparative studies will be needed to help determine which method is
more suitable, and under what conditions.

6. Proofs

Proof of Theorem 2.1. Since the limiting result is under the null hypothesis
that G1 = G2, we omit the subscript and let G denote the invariant CDF for
both r.f.s Z1(·) and Z2(·). Let G−1(·) denote the inverse of G(·). Since G(·) is
continuous, by standard arguments (see, e.g., Pollard (1984, p.155)), it is enough
to show that the rescaled process ξ̃n(·) ≡ ξn(G−1(·)) converges in distribution to
W̃(·) ≡ W(G−1(·)) as random elements of D[0, 1], where D[0, 1] denotes the space
of all right-continuous functions on [0, 1] with left-hand limits equipped with the
Skorohod metric. We use Theorem 15.1 in Billingsley (1968) to prove the FCLT
of ξ̃n(·) by showing weak convergence of its finite-dimensional distributions and
then establishing the tightness of ξ̃n(·) and almost-sure continuous sample paths
of W̃(·). The weak convergence of finite-dimensional distributions follows by
Theorem 3.1 of Lahiri (1998) and the Cramér-Wold device. The arguments for
tightness are similar to those of Theorem 22.1 of Billingsley (1968). More details
are given in the proof of Theorem 3.1 of Zhu, Lahiri and Cressie (2000).

Proof of Theorem 2.2. The proof is similar to, but slightly more general
than the proof of Theorem A.2 in Lahiri et al. (1999), with a generalization from
dimension d = 2 to d ≥ 1. More details are given in the proof of Theorem 3.2 of
Zhu et al. (2000).
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Proof of Theorem 3.1. Let υn(z) ≡ bn[(Fn,1(z) − Fn,2(z))2 − (F∞,1(z)−
F∞,2(z))2], υ∞(z) ≡ 2(G1(z)−G2(z))V(z) if G1 �= G2, and υ∞(z) ≡ 2W(z)V(z) if
G1 = G2, where z ∈ IR. Then Yn =

∫
IR υn(z)w(z)dz and Y∞ =

∫
IR υ∞(z)w(z)dz,

where Yn and Y∞ are defined in (10) and Theorem 3.1. In addition, we sep-
arate each of the integrals of Yn and Y∞ into two parts. For M ∈ (0,∞],
let Yn =

∫
[−M,M ] υn(z)w(z)dz +

∫
[−M,M ]c υn(z)w(z)dz ≡ Yn,M + Y(M)

n . Simi-

larly, Y∞ =
∫
[−M,M ] υ∞(z)w(z)dz +

∫
[−M,M ]c υ∞(z)w(z)dz ≡ Y∞,M + Y(M)

∞ . Let

φn,t(z) ≡ λ
d/2
n h−1

n (Fn,t(z) − F∞,t(z)), z ∈ IR, t = 1, 2. Under (A.1)−(A.3) and

(B.1)−(B.3), φn,t
D→ Vt, as n → ∞, by Theorem 2.1 of Lahiri (1999).

In the case of G1 �= G2, bn = λ
d/2
n h−1

n . We first show the convergence of υn(·).
Rewrite υn(·) as υn(z) = −b−1

n (φn,1(z)−φn,2(z))2 +2(Fn,1(z)−Fn,2(z))(φn,1(z)−
φn,2(z)), z ∈ IR. By Lemma 4 of Zhu et al. (2000), a finite-dimensional weak-
convergence result holds for φn ≡ φn,1 − φn,2. Next, the tightness of φn(·) and
almost-sure continuous sample paths of V(·) hold, since they hold for both φn,1(·)
and φn,2(·). Hence, φn

D→ V. Now, by similar arguments as in the proof of
Theorem 2.1 in this paper, the FCLT holds for λ

d/2
n (Fn,t − Gt), t = 1, 2. Hence,

for a given z ∈ IR, E(Fn,t(z) − Gt(z))2 = O(λ−d
n ) and Fn,t(z) P→ Gt(z), as

n → ∞. Note that the second term in υn(·) dominates the first term. By
Slutsky’s Theorem, υn

D→ υ∞ = 2(G1 − G2)V.
Then we show convergence of

∫
IR υn(z)w(z)dz. We check the conditions

(C.1)−(C.3) in Lemma 5 of Zhu et al. (2000). Since υn
D→ υ∞ and by the

Continuous Mapping Theorem, Yn,M
D→ Y∞,M for all M > 0. By the FCLT

of υn and Lemma 3 of Zhu et al. (2000), E(υ∞(z)2) = 4(G1(z) − G2(z))2ς(z, z)
and E(υn(z)2) = E(υ∞(z)2)(1 + o(1)). Hence given an M > 0, by the Cauchy-

Schwarz Inequality, P (supn|Y(M)
n | > ε) ≤ ε−1

∫
|z|>M C

(
E(υ∞(z)2)

)1/2
w(z)dz,

where C is a positive constant. By (B.4), the upper bound tends to zero as
M → ∞. Similarly, as M → ∞, P (|Y(M)

∞ | > ε) → 0. Hence we can apply Lemma
5 of Zhu et al. (2000) and conclude that Yn

D→ Y∞ as n → ∞.
In case G1 = G2, bn = λd

nh−1
n . Again, we first show convergence of υn(·).

Rewrite υn(·) as υn(z) = −hn(φn,1(z)−φn,2(z))2+2λd/2
n (Fn,1(z)−Fn,2(z))(φn,1(z)

−φn,2(z)), z ∈ IR. We have shown that φn = φn,1 − φn,2
D→ V as n → ∞.

Recall from Theorem 2.1, when G1 = G2, ξn = λ
d/2
n (Fn,1 − Fn,2)

D→ W as
n → ∞. By similar arguments as in Lemma 4 of Zhu et al. (2000), the finite-
dimensional distributions of the vector process (ξn, φn)′ converges weakly to those
of the Gaussian process (W,V)′, where W(·) and V(·) have cross-covariance func-
tion υ(·, ·) defined in (11). Now define the metric d2 on the product space
D[−∞,∞] × D[−∞,∞] by d2((f1, g1)′, (f2, g2)′) ≡ max{d1(f1, f2), d1(g1, g2)},
where (f1, g1)′, (f2, g2)′ ∈ D[−∞,∞] × D[−∞,∞]. Since both ξn(·) and φn(·)
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are tight, (ξn(·), φn(·))′ is also tight. This, together with the convergence of
the finite-dimensional distributions of (ξn, φn)′, implies that (ξn, φn)′ D→ (W,V)′.
Hence, by the Continuous Mapping Theorem, ξnφn

D→ WV as n → ∞. Since the
process (φn,1(z) − φn,2(z))2 is tight and hn → 0, we have υn

D→ 2WV.
The proof of convergence of

∫
IR υn(z)w(z)dz is similar to that in the

case G1 �= G2. Since υn
D→ υ∞, ξn

D→ W, φn
D→ V, and W(·) and V(·)

are Gaussian processes, by the Cauchy-Schwarz Inequality P (supn|Y(M)
n | > ε) ≤

ε−1
∫
|z|>M C∗(ς(z, z)σ(z, z))1/2w(z)dz, for some positive constant C∗. By (B.4),

the upper bound tends to zero as M → ∞. Hence we can apply Lemma 5 of Zhu
et al. (2000) and conclude that Yn

D→ Y∞ as n → ∞.

Proof of Theorem 3.2.
Let X∞(R∗i) denote X∞ restricted to the region R∗i, and let H̃n(z) =

K−1
n

∑Kn
i=1 I(bl(X ∗i

n − X∞(R∗i)) ≤ z), z ∈ IR. Following the same arguments
as in the proof of Theorem 2.2, we obtain for all z ∈ IR, E(H̃n(z)−Hn(z))2 → 0
as n → ∞.

Fix ε > 0. By the continuity of H(·), there exists an η > 0 such that
supz∈IR|H(z+η)−H(z−η)| ≤ ε. Now let Dn ≡ K−1

n

∑Kn
i=1 I(bl|X ∗i∞−X∞(R∗i)| >

η). Then for z ∈ IR, P (|Ĥn(z) − H̃n(z)| > 4ε) ≤ P (|H̃n(z + η) − H̃n(z − η)| >

3ε) + P (Dn > ε) ≤ C[ε−2E(H̃n(z + η)−Hn(z + η))2 + ε−2E(H̃n(z − η)−Hn(z −
η))2] + ε−1P (bl|X ∗1∞ − X∞(R∗1)| > η), for some constant C. Note that the first
two terms on the right-hand side tend to 0. Let b∗l ≡ λ

d/2
l h−1

n if G1 �= G2, and
b∗l ≡ λd

l h
−1
n if G1 = G2. Because (B.3) holds with λl, Theorem 3.1 holds with

λn replaced by λl. Hence b∗l (X ∗1∞ − X∞(R∗1))
D→ Y∞. Since bl = b∗l (hn/hl) and

hn/hl → 0, we have bl(X ∗1∞ −X∞(R∗1))
P→ 0 as n → ∞. Hence, the last term on

the right-hand side tends to 0, and consequently, Ĥn(z) − Hn(z) P→ 0 as n → ∞
for all z ∈ IR. Because Y∞ has a continuous CDF H(·) on IR and, by Theorem
3.1, Hn(·) converges to it, Theorem 3.2 holds.
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Bühlmann, P. and Künsch, H. R. (1999). Comment on “Prediction of spatial cumulative dis-

tribution functions using subsampling” by Lahiri et al. J. Amer. Statist. Assoc. 94,

97-99.

Cressie, N. (1993). Statistics for Spatial Data, Revised Edition. Wiley, New York.

Doukhan, P. (1994). Mixing: Properties and Examples. Springer, New York.

Handcock, M. S. (1999). Comment on “Prediction of spatial cumulative distribution functions

using subsampling” by Lahiri et al. J. Amer. Statist. Assoc. 94, 100-102.

Lahiri, S. N. (1998). Central limit theorems for weighted sums under some spatial sampling

schemes. Preprint, Department of Statistics, Iowa State University.

Lahiri, S. N. (1999). Asymptotic distribution of the empirical spatial cumulative distribution

function predictor and prediction bands based on a subsampling method. Probab. Theory

Related Fields 114, 55-84.

Lahiri, S. N., Kaiser, M. S. and Cressie, N. and Hsu, N. J. (1999). Prediction of spatial

cumulative distribution functions using subsampling. J. Amer. Statist. Assoc. 94, 86-

110.

Majure, J. J., Cook, D. and Cressie, N., Kaiser, M. S., Lahiri, S. N. and Symanzik, J. (1995).

Spatial CDF estimation and visualization with applications to forest health monitoring.

Comput. Sci. Statist. 27, 93-101.

Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

Zhu, J., Lahiri, S. N. and Cressie, N. (2000). Asymptotic inference for spatial CDFs over time.

Technical Report 666, Department of Statistics, The Ohio State University.

Department of Statistics, University of Wisconsin − Madison, 1210 West Dayton Street, Madi-

son, WI 53706-1685.

E-mail: jzhu@stat.wisc.edu.

Department of Statistics, Iowa State University, Ames, IA 50011-1210, U.S.A.

E-mail: snlahiri@iastate.edu

Department of Statistics, The Ohio State University, Columbus, OH 43210-1247, U.S.A.

E-mail: ncressie@stat.ohio-state.edu

(Received June 2000; accepted January 2002)


