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Abstract: Latent class analysis (LCA) is a powerful tool for detecting unobservable

subgroups within a population. When a large number of covariates (features) are

considered, an LCA faces great challenges in terms of both classification accuracy

and computational efficiency. In this paper, we propose a novel feature screening

procedure that eliminates most irrelevant features before an LCA is conducted.

The proposed method is built on an EM-based hybrid hard-soft thresholding up-

date (HHS-EM) of the latent class parameters, which naturally accounts for the joint

effects between features. We show that the HHS-EM enjoys the sure screening prop-

erty and leads to a refined LCA that is effective and consistent for high-dimensional

classification. The performance of the proposed method is illustrated by means of

simulation studies and a real–data example.

Key words and phrases: Feature screening, high-dimensional classification, latent

class analysis, misclassification error, sure joint screening.

1. Introduction

High-dimensional data sets containing unobservable subgroups are common

in fields such as the biomedical, social, behavioral, and economic sciences. Here,

researchers often wish to discover the latent subgroups (classes) within a pop-

ulation, and to classify new cases based on input data. In the literature, this

scientific task is typically conducted using a latent class analysis (LCA), which

attempts to reveal hidden data sub-groups using a finite mixture model with the

group membership influenced by the input features (e.g., Khalili (2010); Ghosh,

Herring and Siega-Riz (2011); Weller, Bowen and Faubert (2020)). To improve

the classification accuracy, researchers may consider a large number of covari-

ates (features) at the initial stage of modeling. For example, in community and

crime studies, sociologists are often interested in identifying the latent profiles of

a target population using criminal activities that may be linked to hundreds of

community indices, such as household income, school engagement, insurance cov-
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erage, food insufficiency, and so forth. However, when the number of features p is

large, an LCA faces simultaneous methodological and computational challenges,

owing to the curse of dimensionality.

To cope with the large p situation, it is often reasonable to assume that only a

handful of features are relevant to the analysis. Many feature selection and assess-

ment methods have been developed for LCAs based on this sparsity assumption.

For example, Houseman, Coull and Betensky (2006) proposed a feature-specific

penalized LCA for genomic data, and Wu (2013) proposed a sparse LCA for clus-

tering large-scale discrete data, Zhang and Ip (2014) proposed a feature assess-

ment method for LCAs based on their discriminative power. See Fop and Murphy

(2018) for a comprehensive review of feature selection in LCAs and model-based

clustering. However, although the aforementioned methods are helpful in choos-

ing relevant features, most of them lack solid theoretical support. Moreover, they

are mainly designed for situations in which p is moderate (fixed p design); thus,

they might not be suitable for a high-dimensional LCA with a large p, owing to

the computational burden and algorithm instability.

To ease the implementation difficulties for a high-dimensional LCA, a nat-

ural strategy is to remove most irrelevant features before conducting the LCA.

Such a strategy is referred to as feature screening. Reducing the dimensional-

ity drastically reduces the associated analytical difficulties. For example, Fan

and Lv (2008) proposed the sure independent screening (SIS) procedure and its

iterated version (ISIS) for linear models, and Wang (2009) used a forward re-

gression to sequentially screen features. Fan and Song (2010) extended the SIS

(ISIS) procedure to generalized linear models using the maximum marginal like-

lihood estimation (MMLE). Xu and Chen (2014) proposed a sparsity-restricted

screening procedure for generalized linear models. Cui, Li and Zhong (2015)

advocated a mean-variance (MV) screening procedure for ultrahigh-dimensional

discriminant analyses, Li et al. (2020) proposed a distributed screening frame-

work for the divide-and-conquer setup, and Xie et al. (2020) and Tang et al.

(2021) developed category-adaptive and quantile correlation-based variable se-

lection methods, respectively. Refer to Liu, Zhong and Li (2015) for an overview

of feature screening.

However, despite the rich body of literature on feature screening, existing

methods are based mainly on a direct measurement of the correlation between

the response and the data features. Thus, they may not be directly applicable

to an LCA, where the response is implicitly linked to the features by unobserved

class labels. We propose a new feature screening approach for high-dimensional

LCAs. The proposed method is built on a hybrid hard-soft EM thresholding
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procedure (HHS-EM) that attempts to find an approximate estimate of the LCA

coefficients with a user-specified sparsity κ. By setting κ � p, the obtained

estimate readily serves as an LCA feature screener. The HHS-EM procedure

efficiently improves the mixture likelihood, naturally accounting for the joint

effects between features. Using the hybrid hard-soft thresholding, we are able to

reach a good balance between sparsity and convexity in the numerical updates,

such that the procedure is less sensitive to the choice of initial values and the

overall algorithmic stability is enhanced. We show the proposed procedure enjoys

the sure screening property and leads to a refined LCA within the given sparsity

constraint. The refined LCA preforms an effective classification for both training

and test data, as if the true model were known in advance. We use extensive

numerical examples to demonstrate the promising performance of the HHS-EM

procedure.

The proposed HHS-EM screening procedure is inspired from solving a hybrid

L0-L1 constrained optimization, the idea of which shares some similarity with

the trimmed Lasso discussed in (Bertsimas, Copenhaver and Mazumder (2017)).

Although both methods are built on a hybrid penalization technique, they are

designed under different model setups, serve different research purposes, and are

studied from different angles. Specifically, the trimmed Lasso was proposed as a

robust estimation method for the least squares problem. The work of (Bertsimas,

Copenhaver and Mazumder (2017)) on the trimmed Lasso focuses on finding its

robustness interpretation and showing its connection to other penalized methods.

Their work was conducted mainly from an optimization perspective, and did

not study any statistical properties. Here, we propose the HHS-EM procedure

for feature screening in a high-dimensional LCA, where accurate selection by

penalized methods is often difficult to achieve (Fan and Lv (2008)). Although

the proposed procedure is inspired by an optimization problem, our primary

interest lies in the screening accuracy and misclassification errors, rather than

the optimization itself.

The rest of this paper is organized as follows. Section 2 reviews the LCA and

introduces the HHS-EM procedure. We investigate the theoretical properties of

the proposed procedure in Section 3. To justify the HHS-EM numerically, we

present our simulation results in Section 4 and a real–data example in Section

5. Section 6 concludes the paper. All figures, tables, and proofs are presented in

the online Supplementary Material.
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2. HHS-EM Feature Screening

2.1. Model setup and notation

We consider the following latent class model with Q classes:

yi|ωi,µ,Σ
ind∼

Q∑
m=1

ωimN (µm,Σm) for i = 1, . . . , n,

where yi = (yi1, . . . , yie)
> is an e × 1 vector of continuous responses for the

ith subject, and µm = (µm1, . . . , µme)
> and Σm represent the mean vector and

covariance matrix, respectively, corresponding to the mth class. Here, ωi =

(ωi1, . . . , ωiQ)> is a Q × 1 vector of binary latent allocation variables, where

ωim = 1 if the ith subject belongs to class m, and zero otherwise, for m =

1, . . . , Q. We require
∑Q

m=1 ωim = 1. Furthermore, we use N (·, ·) to denote the

normal distribution, and define µ = {µ1, . . . ,µQ}, Σ = {Σ1, . . . ,ΣQ}.
Prior works (e.g., Ghosh, Herring and Siega-Riz (2011)) often assume that

the latent class indicator variable vector ωi follows a multinomial distribution

MN (1,πi), where πi = (πi1, . . . , πiQ)>, and the class probabilities πim = Pr(ωim =

1) satisfy πim > 0 and
∑Q

m=1 πim = 1. In an LCA, the response yi is implicitly

linked to a set of p covariates (features) xi = (xi1, . . . , xip)
>, which affects the

corresponding class probability πim with the following presumed form:

πim =
exp(x>i βm)∑Q
k=1 exp(x>i βk)

, (2.1)

where βm is a p × 1 vector of LCA coefficients corresponding to class m, for

m = 1, . . . , Q. When all βm are zero, none of the features are relevant to the

analysis, and the above latent class model reduces to a finite Gaussian mixture

model (Khalili and Chen (2007)). Following common practice, we set βQ = 0 and

assume Q is known. In applications, Q is often specified using prior information

and a pre-analysis of the data. Throughout this paper, we assume that the

number of features p grows exponentially with the sample size n, that is, log(p) =

O(nτ ), for some constant 0 ≤ τ < 1, but that only a small number of features

have important effects on the latent classes. This amounts to assuming that the

coefficient βm has a sparse structure with many zero entries. Note that in model

(2.1), βm may vary across classes. Consequently, the probability of an object

belonging to different latent classes may be related to different sets of relevant

features.

Let s∗m = {j : βmj 6= 0 for j = 1, . . . , p} be the index set of the relevant
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features associated with class m, where βmj is the jth component of βm, and let

sc∗m = {1, . . . , p}\s∗m be the index set of the irrelevant features related to class

m, for m = 1, . . . , Q − 1. Denote s∗ = {s∗1, . . . , s∗Q−1}, β = {β1, . . . ,βQ−1},
Θ = {β,µ,Σ}, X = (x1, . . . ,xn)>, and Y = (y1, . . . ,yn). Suppose that the

cardinality of the true model s∗ is ‖s∗‖0 =
∑Q−1

m=1 ‖s∗m‖0 = q < κ, for some

known κ.

The log-likelihood function of Θ for the observed data Y is given by

`n(Θ) =

n∑
i=1

log

{
Q∑

m=1

πimφ(yi;µm,Σm)

}
, (2.2)

where φ(·;µm,Σm) denotes the Gaussian density with mean vector µm and co-

variance matrix Σm. The aforementioned latent class model commonly suffers

from the identifiability problem. That is, without further restrictions on the class

parameters µm and Σm, the above latent class model with different class param-

eters may lead to the same model. To address this problem, we adopt the widely

used approach of imposing restrictions on the class means. Thus, we assume

µ11 < µ21 < · · · < µQ1. For further information on the identifiability problem,

see Frühwirth-Schnatter (2006).

The goal of this study is to screen out most of the irrelevant features asso-

ciated with the zero-effect LCA coefficients from model (2.1) by analyzing the

observed data (Y ,X).

2.2. Feature screening in an LCA

Our idea stems from the sparsity constraint optimization, which has attracted

considerable attention in recent years (Xu and Chen (2014), Yang et al. (2016),

Qu, Hao and Sun (2021)). With an L0 penalty specifying the number of features

allowed in the model, this method attempts to roughly estimate a few of the most

significant coefficients from the full model, while setting all other coefficients to

zero. Because the estimation is carried out on the full model, the resulting sparse

estimator readily serves as a feature screener, naturally taking the joint effects

among features into account.

Despite the success of the L0-based approaches, few studies have examined

LCAs with a focus on clustering. In contrast to a regular regression model, the

response in model (2.1) is implicitly linked to features via unobservable class la-

bels, where relevant features may vary across different classes. This complication

makes the L0-based approaches less effective in practice, owing to the algorithm

instability. One natural strategy is to use a modified L0 penalty that helps to
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improve the stability, while maintaining high screening accuracy.

As such, we consider the following penalized likelihood problem for model

(2.1):

`n;λ(Θ) = `n(Θ)− nλ
Q−1∑
m=1
‖βm‖1

subject to ‖β‖0 ≤ κ,
(2.3)

where λ > 0 is a regularization parameter and κ is the user-specified model

sparsity. Problem (2.3) can be viewed as a hybrid L0-L1 regularized estimation.

With λ = 0, it reduces to the L0-sparse estimation, and with κ ≥ (Q − 1)p, it

reduces to a Lasso-type estimation (Tibshirani (1996)). The benefit of using this

hybrid penalty is clear: it attempts to combine the strength of L0 and L1 penalties

to achieve more effective screening in an LCA. With the L0 penalty, users can

precisely control the model sparsity using κ. When κ is properly chosen, the

resulting sparse estimator suggests no more than κ coefficients that receive the

most support from the likelihood and, thus, it readily serves for feature screening.

With the L1 penalty, we enhance the problem convexity, and thus improve the

overall algorithmic stability in the updating process.

From a computational perspective, the optimization problem (2.3) can be

represented as the following proposition.

Proposition 1. The optimization problem (2.3) and the optimization problem

max
Θ,z

{
`n(Θ)− nλ

Q−1∑
m=1
‖βm‖1 − nη

Q−1∑
m=1
〈zm, |βm|〉

}

s.t.
Q−1∑
m=1

p∑
j=1

zmj = p(Q− 1)− κ, zm = (zm1, . . . , zmp)
> ∈ {0, 1}p

(2.4)

have the same optimal objective value and the same set of optimal solutions Θ̂

when η > (maxj ‖xj‖2)/n, where z = {z1, . . . , zQ−1}.

Proposition 1 indicates that a solution to the optimization problem (2.3) can

be obtained by solving (2.4) as a surrogation. Thus, the L0-L1 hybrid estima-

tor may give fewer penalties on the LCA coefficients associated with important

features for the desired level of sparsity.

Following common practice for LCAs, an EM algorithm can be developed

to evaluate the maximum likelihood estimates of the model parameters. To this

end, it follows from Khalili and Chen (2007) that the complete data log-likelihood

function of Θ for Y and ω = {ω1, . . . ,ωn} can be written as
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`cn(Θ) =

n∑
i=1

Q∑
m=1

ωim[log πim + log{φ(yi;µm,Σm)}].

Thus, the corresponding penalized complete data log-likelihood function has the

form

˜̀
n;λ(Θ) = `cn(Θ)− nλ

Q−1∑
m=1

‖βm‖1,

subject to ‖β‖0 ≤ κ. Similarly to Khalili and Chen (2007), the EM algorithm for

evaluating the MLE of Θ is implemented as follows. At the tth iteration with a

current value Θ(t) of Θ, we iteratively update the following two steps:

E-step. Compute the conditional expectation Qn;λ(Θ; Θ(t)) = E{˜̀n;λ(Θ)|Y ,
X,Θ(t)}, which is given by

Qn;λ(Θ; Θ(t)) =

n∑
i=1

Q∑
m=1

δ
(t)
im log πim +

n∑
i=1

Q∑
m=1

δ
(t)
im log φ(yi;µm,Σm)

−nλ
Q−1∑
m=1

‖βm‖1,

subject to ‖β‖0 ≤ κ, where the expectation E{·} is taken with respect to

the conditional distribution of ω given Y , X, and Θ(t), and the weights

δ
(t)
im =

π
(t)
imφ(yi;µ

(t)
m ,Σ

(t)
m )∑Q

d=1 π
(t)
id φ(yi;µ

(t)
d ,Σ

(t)
d )

are the conditional expectations of the latent variables ωim.

M-step. Determine Θ(t+1) by maximizing Qn;λ(Θ; Θ(t)) with respect to Θ, sub-

ject to ‖β‖0 ≤ κ, where Qn;λ(·) can be re-expressed as

Qn;λ(Θ; Θ(t)) = `1(β; Θ(t)) + `2(ψ; Θ(t))− nλ
Q−1∑
m=1

‖βm‖1, (2.5)

where

`1(β; Θ(t)) =

n∑
i=1

[
Q−1∑
m=1

δ
(t)
imx

>
i βm − log

{
1 +

Q−1∑
m=1

exp(x>i βm)

}]
,

`2(ψ; Θ(t)) =

n∑
i=1

Q∑
m=1

δ
(t)
im log φ(yi;µm,Σm),
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where ψ = {µ,Σ}. It is almost impossible to directly implement the above

presented M-step by maximizing Qn;λ(Θ; Θ(t)) with respect to Θ under

the constrained condition ‖β‖0 ≤ κ, owing to the nonconvex optimization

problem involved. As an alternative to this EM algorithm, we develop a

hybrid method for evaluating the MLEs of Θ by combining the EM iterative

procedure and the alternating direction method of multipliers (ADMM)

algorithm to optimize (2.3). The ADMM algorithm can be regarded as a

variant of the augmented Lagrangian method. The latter is similar to the

regularity method in that it transforms a constrained optimization problem

into a series of unconstrained optimization problems, and adds a penalty

term to the objective function considered. It has been applied to solve

various nonconvex optimization problems with objective functions that are

potentially nonsmooth and have some hard constraints. For example, see

Boyd et al. (2011), Wang and Yuan (2012), and Wang, Yin and Zeng (2019).

To use the ADMM to solve problem (2.4), we consider the following corre-

sponding augmented Lagrangian optimization problem:

max
ϕ
L(ϕ) = max

ϕ

{
`n(Θ)− nλ‖β‖1 − ξ>(β − θ)−

(
ρ

2

)
‖β − θ‖22

}
subject to ‖θ‖0 ≤ κ, (2.6)

where ϕ = {Θ,θ, ξ} = {β,µ,Σ,θ, ξ}, ξ is the Lagrange multiplier, and ρ is

some positive scaling parameter. If we set ξ = ρu, the ADMM for solving (2.6)

is implemented using the following gradient descent iteration procedure:
(β(t+1),ψ(t+1)) = argmax

β,ψ
L(β,ψ,θ(t),u(t)),

θ(t+1) = H(β(t+1) + u(t);κ),

u(t+1) = u(t) + β(t+1) − θ(t+1),

(2.7)

where ψ = {µ,Σ} and H(γ;κ) = γI(|γ| > rκ), in which rκ is the κth largest

component of |γ| and I(·) is an indictor function. In general, an iterative solution

to the optimization problem (2.6) may depend on a “hot” starting value, such as a

Lasso-type initial value. However, the Lasso-type initial value may be unstable in

many settings, such as complicated models and distributed learning. The ADMM

algorithm is less sensitive to the initial value and more stable than the gradient-

based hard iteration method in the sense that the initial value conditions for the

former are weaker than those for the latter (see the remarks after Theorem 1).

Thus, the aforementioned ADMM algorithm for solving the optimization problem
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(2.6) is an appealing method in big data analysis. In what follows, we discuss

the implementation of the above gradient descent iteration procedure.

To implement the first iteration in (2.7), we rewrite the optimization problem

(2.6) associated with β and ψ as

(β(t+1),ψ(t+1)) = argmax
β,ψ

{
Qn;λ(β,ψ;β(t),ψ(t))− ρ

2
‖β − θ(t) + u(t)‖22

}
, (2.8)

which indicates that there are no closed-form solutions for β(t+1) and ψ(t+1).

In this case, the gradient descent iteration method can be adopted to solve the

optimization problem (2.8). That is, at the tth iteration, given the current value

β(t) of β, we denote β(t,0) = β(t), and define β(t,h) as the hth updating value of

β to maximize F(β) = `1(β; Θ(t,h)) − nλ‖β‖1 − (ρ/2)‖β − θ(t) + u(t)‖22, where

Θ(t,h) = {β(t,h),ψ(t,h)}, in which ψ(t,h) is the hth updating value of ψ at the tth

iteration step. Considering the Taylor expansion of `1(β; Θ(t,h)) at β(t,h) leads to

β(t,h+1) = argmax
β

{
`1(β(t,h); Θ(t,h)) + ˙̀

1(β(t,h); Θ(t,h))>(β − β(t,h))

−
(
ν1

2

)
‖β − β(t,h)‖22 − nλ‖β‖1 −

(
ρ

2

)
‖β − θ(t) + u(t)‖22

}
= (1 + ρν−1

1 )−1Soft
(
β(t,h) + ν−1

1 { ˙̀
1(β(t,h); Θ(t,h)) + ρ(θ(t) − u(t))},

ν−1
1 nλ

)
, (2.9)

where ν1 is a stepsize guaranteeing F(β(t,h+1)) ≥ F(β(t,h)), and ˙̀
1(β; Θ) is the

gradient of `1(β; Θ) with respect to β . Soft(·) is the soft-thresholding operator,

that is, Soft(β, λ) = sign(β)(|β| − λ)+. When the above updating procedure

converges with the rule ‖β(t,h0+1) − β(t,h0)‖2 ≤ c (e.g., c = 0.001), for some

positive integer h0, we take β(t+1) = β(t,h0+1).

Similarly, at the tth iteration, given the current value ψ(t) = ψ(t,0) of ψ, the

(h+ 1)th updating value ψ(t,h+1) of ψ can be obtained as

ψ(t,h+1) = argmax
ψ

`2(ψ; Θ(t,h)), (2.10)

which leads to µ
(t,h+1)
m = (n

(t,h)
m )−1

∑n
i=1 δ

(t,h)
im yi and Σ

(t,h+1)
m = (n

(t,h)
m )−1

∑n
i=1

δ
(t,h)
im (yi−µ

(t,h+1)
m )(yi−µ

(t,h+1)
m )>, where n

(t,h)
m =

∑n
i=1 δ

(t,h)
im . The preceding two-

step iteration procedure for the optimization problem (2.8) yields the following

proposition.
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Proposition 2. Let Θ(t,1),Θ(t,2) . . . be an updating sequence of Θ obtained from

(2.9) and (2.10) for the above two-step algorithm, where Θ(t,h) = {β(t,h),ψ(t,h)},
for h = 1, 2, . . . Denote ς = Emax{(I − 11>/Q) ⊗X>X/4}, where Emax(A) is

the maximum eigenvalue of the matrix A, ⊗ denotes the Kronecker product, 1 is

a (Q− 1)× 1 vector with components equal to one, and I is an identity matrix.

If ν1 ≥ ς, we have

L(Θ(t,h+1),θ(t),u(t)) ≥ L(Θ(t,h),θ(t),u(t)), (2.11)

which shows that the above algorithm ensures that L(Θ,θ(t),u(t)) is an increas-

ing function in Θ, and L(Θ,θ(t),u(t)) can attain its maximum at Θ(t+1) =

{β(t+1),ψ(t+1)} under some proper regularity conditions.

We now discuss how to select the stepsize ν1, regularization parameter λ,

and scaling parameter ρ given in (2.9). Many empirical studies have shown that

a smaller value of ν1 often leads to a faster convergence of the above algorithm.

Proposition 2 indicates that only if ν1 is larger than ς is the objective function

L(Θ(t),θ(t),u(t)) guaranteed to increase at each iteration. In practice, one can

first use a tentatively small ν1, and then check condition (2.11). If (2.11) is

not satisfied, we take ν1 as twice its current value. Similarly, a small ρ helps

to improve the penalized log-likelihood and boost the algorithm convergence. In

practice, we begin with a small ρ, and gradually increase its value by ρ = (1+ε)ρ,

for some ε > 0. As indicated in Figure 1, this adaptive choice of ρ often leads to a

faster convergence than using fixed ρ updating. Our empirical experience shows

that this adaptive strategy works with an insensitive choice of ε. In our numerical

studies, we simply set ε = 0.1, which seems to work well for the cases we consider.

For the regularization parameter λ, a proper value can accelerate the convergence

of the algorithm and lead to a robust estimation of Θ. In general, we can choose

λ using the generalized cross-validation method. For the sparsity parameter κ,

an appropriate value may depend on the specific data structures and the nature

of the model sparsity. Following Xu and Chen (2014), we use the screening bound

κ = 3−1 log(n)n1/3. In our simulation studies, we show the performance of the

HHS-EM algorithm is robust to a wide range of κ. This facilitates using the

HHS-EM algorithm by avoiding an elaborative specification of κ. The proposed

HHS-EM algorithm is summarized in Algorithm 1.
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Algorithm 1 HHS-EM for high-dimensional LCA.

Step 1. Set the initial value ϕ(0) = (β(0),θ(0),µ(0),Σ(0), ξ(0)), and let t = 0.

Step 2. Take β(t,0) = β(t), set h = 0, and implement the following steps:
(2a) E-step: Compute Qn(Θ(t,h); Θ(t,h));

(2b) M-step: Update β(t,h+1) and ψ(t,h+1) using (2.9) and (2.10), respectively;
(2c) Repeat steps (2a) and (2b) T1 times.

Step 3. Set β(t+1) = β(t,T1) and ψ(t+1) = ψ(t,T1), and update θ(t+1) and u(t+1) using
(2.7).

Step 4. If `n;λ(θ(t+1),ψ(t+1)) < `n;λ(θ(t),ψ(t)), set ρ(t+1) = (1 + ε)ρ(t).

Step 5. Repeat steps 2–4 until the algorithm converges, and set ŝm = {j : θ̂mj 6= 0},
for m = 1, . . . , Q.

2.3. Post-screening classification

Using the HHS-EM algorithm, one can effectively screen out most irrelevant

features for a high-dimensional LCA. With the retained features and their esti-

mated LCA coefficients from Algorithm 1, we can then uncover the hidden class

membership ωi in the training data using a Bayesian classification rule. Specifi-

cally, let Θ̂ = (β̂, µ̂, Σ̂) be the estimate of Θ from the HHS-EM procedure. Given

the training data set {yi,xi}ni=1 and Θ̂, it follows from Bayesian formula that

the posterior probability of the event ωim = 1 can be estimated as

P̂r(ωim = 1|xi,yi) =
π̂imφ(yi; µ̂m, Σ̂m)∑Q
h=1 π̂ihφ(yi; µ̂h, Σ̂h)

,

where

π̂im =
exp(x>i β̂m)∑Q
k=1 exp(x>i β̂k)

. (2.12)

Accordingly, we assign the ith unit in the training data to class M , based on the

following classification rule:

G1;Θ̂(xi,yi) = M with M = argmax
m∈{1,...,Q}

Ĥm(xi,yi), (2.13)

where Ĥm = B̂m(xi,yi) − B̂Q(xi,yi) and B̂m(xi,yi) = −(yi − µ̂m)>Σ̂
−1
m (yi −

µ̂m)− log |Σ̂m|+ 2x>i β̂m.

With the HHS-EM-based LCA, one can also conveniently classify a new case

using the information on x only. Similarly to (2.12), we can estimate the posterior

probability of the class membership as
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P̂r(ωm = 1|x) =
exp(x>β̂m)∑Q
k=1 exp(x>β̂k)

.

The corresponding classifier is given by

G2;Θ̂(x) = M with M = argmax
m∈{1,...,Q}

x>β̂m. (2.14)

3. Theoretical Properties

In this section, we provide theoretical support for the proposed screening

method. We first introduce some regularity conditions needed for our analysis.

For simplicity, we denote the gradient and the Hessian matrix of `1(β; Θ(t)) with

respect to β as

˙̀
1(β; Θ(t)) = (X>(δ

(t)
.1 − π.1),X>(δ

(t)
.2 − π.2), . . . ,X>(δ

(t)
.Q−1 − π.Q−1))>and

Ξ1(β; Θ(t)) =
∂2`1(β; Θ(t))

∂β∂β>
= −

n∑
i=1

(Λi − πi.π>i. )⊗ xix>i ,

respectively, and the Hessian matrix of `n(Θ) and the Fisher information matrix

as

Ξn(Θ) =
∂2`n(Θ)

∂Θ∂Θ>
and I(Θ) = E

{[
∂`n(Θ)

∂Θ

] [
∂`n(Θ)

∂Θ

]>}
,

respectively, where β = (β1, . . . ,βQ−1)>, δ
(t)
.m = (δ

(t)
1m, . . . , δ

(t)
nm)>, π.m = (π1m,

. . . , πnm)>, Λi = diag(πi1, . . . , πi,Q−1), and πi. = (πi1, . . . , πi,Q−1)>.

(C1) log(p) = O(nτ ), for some 0 ≤ τ < 1.

(C2) The number of classes Q = O(nζ), for some 0 < ζ < 1.

(C3) There exist some positive constants γ1, γ2, τ1, τ2, and α such that

min
j∈s∗
|β∗j | ≥ γ1n

−τ1 , q < κ ≤ γ2n
τ2 , λ = O(n−α),

τ1 + max (τ2, ζ) < α <
1− τ

2
.

(C4) There exists some positive constant c0 such that maxi,j |xij | ≤ c0.

(C5) There exists some positive constant c1 > 0 such that, for a sufficiently large

n, Ξn(Θ) is non-positive definite on a given domain DΘ and

−[`n(Θ∗ + ∆)− `n(Θ∗)− ˙̀
n(Θ∗)>∆] ≥ c1n‖∆s∗‖22, (3.1)
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for any ∆ 6= 0 satisfying ‖∆s∗c‖1 ≤ 3‖∆s∗‖1 and Θs∗ = {βs∗ ,ψ}.

(C6) There exist some positive constants cµ and cΣ such that ‖µ∗m‖∞ ≤ cµ and

c−1
Σ ≤ Emin(Σ∗m) ≤ Emax(Σ∗m) ≤ cΣ, for all m = 1, . . . , Q.

Condition (C1) indicates that the number of covariates can be exponentially

high compared with the sample size n. Condition (C2) allows the number of

classes for the response to diverge as n increases. Condition (C3) includes a few

requirements for establishing the sure screening property of the HHS-EM algo-

rithm. It implies that the minimum signal is bounded away from zero. Condition

(C4) is widely used in the high-dimensional data analysis literature (e.g., Xu and

Chen (2014)), and holds naturally with the rescaling operation. Condition (C5)

states that when n is sufficiently large, the observed information matrix Ξn(Θ) is

non-positive definite on a given domain DΘ, which is weaker than the condition

given in Jordan and Xu (1995). Furthermore, the restriction puts a limitation

on the set of ∆, for which (3.1) is required, so that it is weaker than imposing

nonzero eigenvalues. The condition matches the restricted eigenvalue condition

given in Bickel, Ritov and Tsybakov (2009). Using the assumption of Wang et al.

(2015) for the high–dimensional mixture model that Emin(I(Θ∗)) > 0 under con-

dition (C2) and ‖∆s∗c‖1 ≤ 3‖∆s∗‖1, we can obtain that the left-hand side of (3.1)

is bounded below by n‖∆s∗‖22{Emin(I(Θ∗)) + op(1)} using a similar process to

that of Bickel, Ritov and Tsybakov (2009). Thus, assumption (C5) of restricted

eigenvalues for the latent class model is reasonable. Condition (C6) assumes that

the parameters in the mixture model are in a bounded compact space. The same

condition appears in Jiang, Wang and Leng (2015) and Huang, Peng and Zhang

(2017).

Theorem 1. (Sure screening). Under conditions (C1)–(C6), if the initial values

satisfy ρ(0)‖β∗−θ(0)+u(0)‖∞ ≤ nλ/4, with ‖u(0)‖1 = o(n−τ1), there exist optimal

solutions Θ̂ = {β̂, ψ̂} and θ̂ in (2.7) satisfying

‖Θ̂−Θ∗‖1 = op(n
−τ1) and ‖θ̂ − β∗‖1 = op(n

−τ1).

Moreover, let ŝm = {j : θ̂mj 6= 0} and ŝ = {ŝ1, . . . , ŝQ−1}. Then, we have

Pr(s∗ ⊂ ŝ)→ 1 as n→∞,

where s∗ ⊂ ŝ denotes s∗1 ⊂ ŝ1, . . . , s
∗
Q−1 ⊂ ŝQ−1.

Theorem 1 shows that, with a good initial value, the proposed HHS-EM

procedure leads to a consistent estimate for the LCA parameters under the high-

dimensional setup. The procedure enjoys the sure screening property; that is,



1332 DONG ET AL.

with probability tending to one, all relevant features are retained after screening.

Note that, because λ = O(n−α), for some α ∈ (0, 1), nλ/4 is in the same order of

n1−α. By choosing a sufficiently small ρ(0), the requirement of the initial values

in Theorem 1 can be easily satisfied, even when θ(0) is not very close to β∗. Thus,

we can simply set θ(0) = 0 when using Algorithm 1 in practice. Note that, in L0-

based methods, a root-n consistent initial estimation is usually needed to ensure

the sure screening property (Xu and Chen (2014)). However, such an accurate

initial estimation might not be easy to obtain in a high-dimensional LCA. By

comparison, using the hybrid L0-L1 penalty in the proposed method helps to

relax this requirement and improves the practical screening accuracy.

We now investigate the classification accuracy of the HHS-EM-based LCA,

as discussed in Section 2.3. We assess the accuracy of the classifier G1;Θ̂ (as

defined in (2.13)) using the training misclassification rate R̂1, which measures

the goodness of fit of a model-based classifier on the training data. A low R̂1

indicates that the classifier is able to correctly classify the cases in the training

data set used to screen the features and estimate the parameters of the classifier.

Mathematically, R̂1 is given by

R̂1 = Pr{G1;Θ̂(x,y) 6= L(y)}

=

Q∑
m=1

∑
G1;Θ̂(x,y)6=m

E{πm(x,β∗)R(G1;Θ̂(x,y)|L(y) = m)}, (3.2)

where R(r|m) denotes the probability that a unit in class m is misclassified to

class r by rule (2.13), and L(y) denotes the true class membership of a unit with

response y. When Q = 2, R̂1 can be explicitly expressed as

R̂1 = E

{
π1(x,β∗)

∫
Ĥ1(x,y)<0

f1(y)dy + π2(x,β∗)

∫
Ĥ1(x,y)≥0

f2(y)dy

}
,

where fm(y) is the probability density of the response for class m, with m = 1, 2.

To assess R̂1, we compare it with the misclassification rate of the conceptually

best classifier G1;Θ∗ , which is constructed based on the true model s∗. This

optimal rate is given by

R1,opt = Pr{G1;Θ∗(x,y) 6= L(y)}

=

Q∑
m=1

∑
G1;Θ∗ (x,y) 6=m

E{πm(x,β∗)R(G1;Θ∗(x,y)|L(y) = m)}.
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We assess the classifier G2;Θ̂ (as defined in (2.14)) using the testing misclas-

sification rate R̂2. This rate measures the accuracy of a classifier in predicting

the class label of a new case based on information on x only. Mathematically,

R̂2 is expressed as

R̂2 = Pr{G2;Θ̂(x) 6= L(y)}. (3.3)

Similarly, we compare R̂2 with the optimal rate R2,opt, which is defined by

R2,opt = Pr{G2;Θ∗(x) 6= L(y)}.

In general, R̂1(R1,opt) tends to be relatively smaller than R̂2 (R2,opt), owing

to its in-sample classification. We derive the misclassification error bounds for

both R̂1 and R̂2 in the following theorem.

Theorem 2. (Misclassification error). Let fH∗
m

(x) be the probability density

of H∗m(x,y), for m = 1, . . . , Q. Suppose sup|x−H∗
l (x,y)|<c fH∗

m
(x) < A, for some

positive constants c and A. Then, under the conditions of Theorem 1, we have

R̂1 −R1,opt = Op[(Q− 2)nτ3−τ1 + n2τ3−2τ1 ] and R̂2 −R2,opt = Op(n
−τ1),

for some τ3 ∈ (0, τ1).

With most irrelevant features screened out by the HHS-EM algorithm, we

obtain a refined LCA with a manageable set of important features. From Theo-

rem 2, the HHS-EM-based LCA leads to viable classifiers G1;Θ̂ and G2;Θ̂, which

mimic the oracle classifiers G1;Θ∗ and G2;Θ∗ , respectively. Our classifiers are

asymptotically optimal in the sense that, as n→∞, their misclassification rates

R̂1 and R̂2, respectively, converge to the optimal rates R1,opt and R2,opt, respec-

tively, in probability. In other words, when the sample size is large, the proposed

method performs an effective classification, as if the true model were known in

advance.

In particular, when Q = 2, we have R̂1 − R1,opt = Op(n
2(τ3−τ1)). When

Condition (C1) is satisfied with τ → 0, Condition (C3) implies that the value of

τ1 can get arbitrarily close to 0.5 with sufficiently small τ2 and ζ. Consequently,

the bound of R̂1−R1,opt is nearly Op(n
−1), which echoes the minmax error bound

for the clustering of high-dimensional Gaussian mixtures with two components

(Cai, Ma and Zhang (2019)).
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4. Numerical Studies

In this section, we present several simulation studies to investigate the finite–

sample performance of the proposed HHS-EM procedure in terms of its screening

accuracy and misclassification rate. The simulations are conducted using the

software R on a Microsoft Windows computer with an eight-core 2.21 GHz CPU

and 16 GB RAM.

In particular, we compare the proposed method with several popular screen-

ing approaches: the marginal maximum likelihood estimation(MMLE) (Fan and

Song (2010)), mean variance sure independence screening (MV-SIS)(Cui, Li and

Zhong (2015)), and forward regression (FR) (Wang (2009)). Because these meth-

ods are designed mainly for regression models, we modify them for an LCA under

an EM-framework, and refer to these modified methods as MMLE-EM, MV-EM,

and FR-EM, respectively. In the modified screening methods, the screening indi-

cator is sequentially estimated using a marginal LCA model involving one feature

at a time. Owing to the nature of these methods, we treat the retained features as

relevant for all classes, and conduct the classification using these features based

on a refitted LCA. We also include the L1-penalized selection method discussed

in Houseman, Coull and Betensky (2006) and Wu (2013), which we refer to as

the Lasso-EM.

In our numerical studies, the HHS-EM is implemented based on Algorithm

1, with λ = 0.1
√

log p/n and ε = 0.1. We set β(0) = θ(0) = 0, and set µ
(0)
m

and Σ
(0)
m using the naive K-means method. We terminate the iterations when

‖θ(t)−θ(t−1)‖2 < 10−3, and evaluate the screening accuracy of each method using

the following two indices:

RC =
1

V

V∑
ν=1

I(s∗ ⊂ ŝν) and PSR =
1

V‖s∗‖0

V∑
ν=1

‖s∗ ∩ ŝν‖0,

where ŝν denotes the set of retained features for the νth independent experiment,

and V is the total number of experiments. RC measures the proportion of times

that all relevant features are retained after screening, and PSR is the averaged

proportion of the retained relevant features. Because relevant features may vary

across classes in an LCA, we use RC and PSR to indicate the overall values,

and use RCm and PSRm to denote the class-specific values for class m. A good

screening method in an LCA is expected to have a high RCm and PSRm for all

classes.

In addition, for each of the aforementioned methods, we assess the associated

post-screening classification using both the training and the testing misclassifica-
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tion rates, as discussed in Section 3. Specifically, let Dtrain = {yi,xi}ni=1 denote

a training data set of size n, based on which G1;Θ̂ and G2;Θ̂ are constructed. Let

Dtest = {yi,xi}ni=1 be a testing data set of the same sample size corresponding

to Dtrain.

We estimate the training misclassification rate as

TrMR =
1

nV

V∑
ν=1

∑
i∈Dtrain

I{L(yi) 6= G1;Θ̂(xi,yi)},

and estimate the testing misclassification rate as

TeMR =
1

nV

V∑
ν=1

∑
i∈Dtest

I{L(yi) 6= G2;Θ̂(xi)}.

As a benchmark, we also report the TrMR and TeMR of G1;Θ∗ and G2;Θ∗ , which

are constructed based on the true model s∗.

We generate Dtrain based on model (2.1) under two scenarios. In scenario 1,

we set Q = 3, and generate the response based on the following two cases:

(M1) y is a 3 × 1 vector of response variables. The true values of µm (m =

1, 2, 3) are taken as µ1 = (−1.0, 0.0, 1.0)>, µ2 = (0.0, 1.5,−1.0)>, and

µ3 = (1.0,−1.5, 0.0)>, and the true values of Σm (m = 1, 2, 3) are set as

Σm = Σ and Σjj = 1, Σij = 0.5, for i 6= j, i, j = 1, 2, 3. In this case, the

groups have the same correlation structure, but different mean structures.

(M2) y is a univariate response variable. The true values of µm (m = 1, 2, 3) are

taken as µ1 = −5.0, µ2 = 0.0, and µ3 = 5.0, and the true values of Σ1,Σ2,

and Σ3 are set as Σ1 = Σ3 = 4.0 and Σ2 = 1.0. This indicates that the

three groups considered have different means.

With (M1) and (M2), we further consider the following four model setups:

(S1) s∗ = {s∗1, s∗2}, with ‖s∗1‖0 = ‖s∗2‖0 = 4, and s∗m is a simple random sample

of size four generated from the index set {1, . . . , p}, for m = 1, 2. The com-

ponents of βs∗m are generated independently from U{6 log(n)/
√
n+ |Z|/4},

and the components of βsc∗m are taken as zero, for m = 1, 2, where U is a

Bernoulli random variable with Pr(U = 1) = Pr(U = −1) = 0.5, and Z

is sampled from the standard normal distribution N (0, 1). The responses

are generated from case (M1), and the features xik are generated indepen-

dently from the standard normal distribution N (0, 1), for i = 1, . . . , n and
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k = 1, . . . , p. Obviously, these features are independent of each other. In

this case, we set (n, p) = (320, 1500).

(S2) s∗1 = {1, 3, 5}, s∗2 = {7, 9, 11}, βs∗1 = (2.0, 2.0,−1.5), and βs∗2 = (−1.5, 2.0,

2.0), and the components of βsc∗1 and βsc∗2 are set as zero. The responses are

generated from case (M1), and xi = (xi1, . . . , xip)
> are independently sam-

pled from the multivariate normal distribution N (0,Υ), for i = 1, . . . , n,

where Υ = (γjk), with γjj = 1.0, γj,j−1 = 2/3, γj,j−2 = 1/3 for j ≥ 3, and

γjk = 0.0 for |j − k| ≥ 3. In this case, we take (n, p) = (300, 1500).

(S3) s∗1 = {1, 2, 3, 4}, s∗2 = {1, 2, 3, 5}, and βs∗m = (2.0, 2.0, 2.0, 2.0), for m = 1, 2.

The responses are generated from case (M2). The features xi are generated

independently from case (S2), with Υ specified by an AR(1) structure, that

is, γjk = 0.5|j−k|. In this case, we set (n, p) = (320, 2000).

(S4) s∗1 and s∗2 take the same values as those in case (S3), and βs∗m = (3.0, 3.0, 3.0,

−3.0), for m = 1, 2. The responses are generated from case (M2). The fea-

tures xi are generated independently from case (S2), with Υ having a

compound symmetry (CS) structure, that is, γjj = 1.0 and γjk = 0.5, for

j 6= k. In this case, we set (n, p) = (350, 2000).

Note that in (S1) and (S2), the two sets of relevant features have no overlap,

whereas in (S3) and (S4), features 1, 2, and 3 affect both classes.

In scenario 2, we further consider two model setups, (S5) and (S6), in which

Q = 6 and (n, p) = (400, 1000). In these two setups, we generate a univariate

response from model (2.1) with µ1 = −4.0, µ2 = −2.0, µ3 = 0.0, µ4 = 2.0,

µ5 = 4.0, µ6 = 6.0, Σ1 = Σ6 = 4.0, and Σ2 = · · · = Σ5 = 1.0. We set

βs∗m = (2,−2), where s∗m contains two randomly chosen features from {1, . . . , p},
for m = 1, . . . , 5. In (S5), the features xi are generated independently based on

(S2), with γjj = 1.0, γjk = 0.15 for j, k ∈ s∗m, and γjk = 0.3 for j, k ∈ sc∗m . In

(S6), the features xi are generated independently based on (S4).

We use the proposed HHS-EM and its competitors to retain κ=3−1 log(n)n1/3

features on the data sets generated from setups (S1)–(S6). The simulation results

are summarized in Table 1, based on V = 100 repetitions, where the running time

in seconds (Time(s)) for a single repetition is also reported. All methods perform

well in (S1), which is the most straightforward setup for feature screening. As the

correlation structure among x becomes more complex, the screening accuracy of

the marginal-effect-based methods (i.e., MMV–EM and MMLE-EM) deteriorates

drastically. Although Lasso-EM and FR-EM maintain a decent RC in (S2), they
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seem not to work well for retaining all s∗m in (S3), where some features are im-

portant for both classes. In comparison, the proposed HHS-EM shows promising

accuracy by achieving the highest RC and the lowest TrMR/TeMR for all cases.

In particular, it leads to a high RC of 0.92 for a very challenging case (S4), where

the irrelevant features are strongly correlated with the relevant features. By set-

ting Q = 6 in (S5) and (S6), we further increase the difficulty of the feature

screening. In those two cases, the HHS-EM still yields encouraging results by

showing the “best-in-group” accuracy for both screening and classification. By

the nature of Algorithm 1, the high accuracy of the HHS-EM comes with a com-

putational cost, but this is moderate in most cases. Considering the improved

accuracy achieved by the HHS-EM, this small computational investment seems

worthwhile.

We repeat the above simulation study in (S3) with the screening size κ vary-

ing from ‖s∗‖0 to 2 log(n)n1/3 . We report the RC of different screening methods

over κ in Figure 2. We observe that the proposed method is able to maintain

a high RC over a wide range of κ, making it a viable and robust approach in

practice.

5. An Real–Data Example

To further demonstrate the proposed HHS-EM method, we apply it to a

crime data set that contains the crime rate and p = 100 other social and economic

indices measured on n = 1994 US communities. This data set incorporates data

from the 1990 US census, 1990 US LEMAS survey, and 1995 FBI UCR. For more

information about this data set, please refer to http://archive.ics.uci.edu/

ml/datasets/Communities+and+Crime.

Our goal is to identify important social indices (e.g., income, school engage-

ment, etc.) that could help to partition the communities into subgroups based on

their crime rates. To this end, an LCA is performed using model (2.1), where the

crime rate of a community is used as the response y, and the 100 social indices are

treated as the covariates (features) x. In the model, we postulate Q = 3 latent

classes with low, high, and general criminal risk, respectively, where the unknown

class membership wi of community i is to be estimated for i = 1, . . . , 1994.

Because we have p = 100 features in this case, feature screening is benefi-

cial for the analysis. To obtain a reliable result, we generate a training set by

randomly selecting 50% of the observations from the full data, and use the HHS-

EM and its competitors to retain the most important κ = 10 features using the

training set. We repeat the above procedure 100 times. A feature is considered

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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important if it is retained after screening by at least one method and at least

once.

In Table 2, we report the identities of the important features, along with

their (averaged) estimated LCA coefficients and standard errors. We find that

three features are suggested by all the methods:

x4 : Percentage of Caucasian population;

x45 : Percentage of kids in family housing with two parents;

x51 : Percentage of kids born to never married.

The HHS-EM shows that x4 and x45 have a positive effect of 0.8 for class

1, and x51 has a positive effect of 1.28 in class 2. Accordingly, communities

with higher percentages of a Caucasian population and kids in families with two

parents are more likely to belong to class 1, whereas communities with a higher

percentage of kids born to couples who were never married are more likely to

belong to class 2.

To determine the identities of the two classes, we classified the n = 1994

communities based on an LCA using x4, x45, and x51 only. We find that the

communities classified as class 1 tend to have a low crime rate, and the commu-

nities classified as class 2 tend to have a high crime rate. Intuitively, this seems

to confirm that class 1 and class 2 are associated with a low and high crime risk,

respectively; class 3 is treated as a class with a general risk. Our findings match

the results in the relevant literature (e.g., Li et al. (2017)).

To further test the HHS-EM, we combine the original 100 features with 1,200

synthetic random features. We then perform the feature screening on the com-

bined data using the same procedure as before with 50% or 70% of the training

data. In Table 3, we show the proportion of times (i.e., RC) that x4, x45, and x51

are still selected as important, based on 100 repetitions. The results of the other

screening methods are also reported for comparison purpose. The proposed HHS-

EM shows its superior robustness and stability over its competitors by achieving

the highest RC for all three important features.

In addition, we select a set of communities from each class based on the orig-

inal LCA, and then repeat the membership classification using the new screening

results based on the combined data. In Table 4, we report the proportion of

times that a selected community is classified into the same class as in the original

analysis, based on 100 repetitions. This tests whether a screening method leads

to robust classification against changes in the data. Table 4 again demonstrates

the promising performance of the HHS-EM.
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6. Conclusion

We have proposed a new feature screening method, the HHS-EM, for high-

dimensional LCAs, in which accurate selection is often difficult. The proposed

method is inspired from solving a hybrid L0-L1 penalized problem, allowing users

to precisely control the number of features to be retained, with significantly en-

hanced stability. The promising performance of the method is supported by both

theory and extensive numerical examples.

Our current work focuses on cases with normally distributed responses. We

briefly discuss extending the HHS-EM to LCAs with categorical responses in the

Supplementary Material. It would also be interesting to extend the existing work

further to cases with mixed-type responses. Finally, it would be promising to

explore the possibility of using a hybrid L0-L1 penalization in nonparametric

(model-free) clustering.

Supplementary Material

The proofs, tables, and figures in this paper are provided in the online Sup-

plementary Material.
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