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DIRECT AUTOREGRESSIVE PREDICTORS FOR MULTISTEP

PREDICTION: ORDER SELECTION AND PERFORMANCE

RELATIVE TO THE PLUG IN PREDICTORS

R. J. Bhansali

University of Liverpool

Abstract: A direct method for multistep prediction of a stationary time series con-

sists of fitting a new autoregression for each lead time, h, by a linear regression

procedure and to select the order to be fitted from the data. By contrast, a more

usual ‘plug in’ method involves the least-squares fitting of an initial kth order

autoregression; the multistep forecasts are then obtained from the model equa-

tion, but with the unknown future values replaced by their own forecasts. The

asymptotic distributions of the direct and plug in estimates of the h-step predic-

tion constants and their respective mean squared errors of prediction are derived

for a finite autoregressive process; explicit asymptotic expressions for comparing

the loss in predictive and parameter estimation efficiency due to using the direct

method instead of the plug in method in this situation are also given. The finite

sample behaviour of the prediction errors with these two methods is investigated

by a simulation study.
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1. Introduction

Consider a discrete-time autoregressive process of order m,

m∑
u=0

am(u)xt−u = εt, am(0) = 1, (1.1)

where m ≥ 0 is finite or infinite, {εt} is a sequence of uncorrelated random
variables each with mean 0 and variance σ2, the am(j) are real coefficients such
that the polynomial

Am(z) =
m∑

j=0

am(j)zj (1.2)

is bounded away from zero, |z| ≤ 1 and
∑ |am(j)| < ∞.

In practice, having only observed x1, . . . , xT , m is invariably unknown. If m

is finite, the Akaike information criterion, AIC, or the Final Prediction Error,
FPE, criterion (see Akaike (1970, 1973)), do not provide a consistent estimator
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of m, but m may be estimated consistently by using, for example, a criterion of
Schwarz (1978) (see also Hannan and Quinn (1979)).

If, on the other hand, m is infinite, the orders selected by the AIC and
FPE criteria and that by a criterion introduced by Shibata (1980, 1981) are
asymptotically efficient for one-step prediction and spectral estimation, in the
sense defined by this author; furthermore, now the consistent criteria referred to
above are not asymptotically efficient in this sense.

Bhansali (1996) has recently shown that even when m in (1.1) is infinite, AIC
and the related criteria are not asymptotically efficient in the Shibata sense for h-
step prediction, h > 1. The notion of an asymptotically efficient model selection
for h-step prediction is also introduced there: A direct procedure involving a
linear least-squares regression of xt+h on xt, . . . , xt−k+1 is used for estimating
the prediction constants, with k = k̃h, say, treated as a random variable whose
value is selected anew for each h by an order selection criterion. An asymptotic
lower bound for the resulting mean squared error of prediction is derived and it is
shown that the order selection by suitable h-step generalizations of the AIC and
FPE criteria and that by an h-step criterion of Shibata (1980) are asymptotically
efficient for h-step prediction as the bound is attained in the limit if k̃h is selected
by any of these criteria.

The direct method may be viewed as an alternative to the widely-used ‘plug
in’ method in which the multistep forecasts are obtained from an initial autore-
gression fitted to the data, but by repeatedly iterating the model and replacing
the unknown future values by their own forecasts. If m is finite and the fitted
order, k, of the autoregression is such that k ≥ m, then for a Gaussian process
the plug in method provides maximum likelihood estimates of the prediction
constants. This result does not hold, however, if m is infinite; for this situation,
Bhansali (1996) has also derived a lower bound for the h-step mean squared error
of prediction of the plug in method, but with the initial order selected by AIC
or a related criterion. The results given there point to a two-fold advantage of
the direct method for multistep prediction: first, the asymptotic lower bound on
its mean squared error of prediction is smaller than that for the plug in method;
secondly, whereas the former bound is attainable asymptotically, that for the
plug in method is not even asymptotically attainable.

The analysis described above is, however, based on the assumption of an
infinite m. In practice, an analyst may not know whether this is so. Thus, a
pertinent question and one addressed here is: How does the direct method behave
for finite m?

In Section 3, the asymptotic distributions of the direct and plug in estimates
of the h-step prediction constants, and asymptotic expressions for their respective
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mean squared errors of prediction, are derived. For a finite m, unlike the plug
in method, the direct method is shown not to provide asymptotically efficient
estimates of the prediction constants. Explicit asymptotic expressions for eval-
uating and comparing the loss in parameter estimation efficiency and predictive
efficiency due to using the direct method instead of the plug in method are also
given in Section 3. In Section 4, these results are illustrated for some specific
values of m and h. In Section 5, the h-step AIC and FPE criteria are shown not
to be consistent for m even though they are asymptotically efficient in the sense
described above. Simulation results are presented in Section 6.

Earlier references advocating lead-time dependent model selection and/or
parameter estimation for multistep forecasting include Findley (1983), Tiao and
Xu (1993) and Lin and Granger (1994).

2. Preliminaries

Suppose that the observed time series is a realization of a discrete-time pro-
cess, {xt}, satisfying the following assumption:

Assumption 1. {xt} has representation (1.1) where m ≥ 0 is finite, Am(z)
is bounded away from zero, |z| ≤ 1, and {εt} is a sequence of independent
identically distributed random variables each with mean 0, variance σ2 and finite
fourth cumulant τ4.

Having observed x1, . . . , xT , T > 1, the kth order least- squares estimates,
â(k) = [âk(1), . . . , âk(k)]′ and σ̂2(k) of the autoregressive parameters, conditional
on a knowledge of x1, . . . , xk, are given by:

â(k) = −R̂(k)−1r̂(k), (2.1)

σ̂2(k) = CT (0, 0) +
k∑

j=1

âk(j)CT (0, 1), (2.2)

where R̂(k) = [CT (u, v)](u, v = 1, . . . , k), r̂(k) = [CT (0, 1), . . . , CT (0, k)]′ and

CT (u, v) = (T − K)−1
T−1∑
t=K

xt−u+1xt−v+1 (u, v = 0, 1, . . . , k).

Here, k ≥ 1, is an arbitrary integer, that is, it does not necessarily equal m, K

denotes the maximum autoregressive order to be fitted.
If the εt are Normally distributed and k = m, the estimates (2.1) - (2.2) are

well known (Anderson (1971)) to also provide approximate maximum likelihood
estimates of the autoregressive parameters. In what follows we call them approx-
imate Gaussian maximum likelihood estimates even though we do not explicitly
require that the εt be Gaussian.



428 R. J. BHANSALI

We make the following assumption about K:

Assumption 2. K ≥ m is a sufficiently large known integer which remains fixed
as T → ∞.

The Akaike information criterion, AIC, for autoregressive model selection is
a special case with α = 2 of the criterion,

AICα(k) = T ln σ̂2(k) + αk (k = 0, 1, . . . ,K), (2.3)

where α > 0 is a real number; the selected order, m̂α, say, is determined by
minimizing this criterion, that is,

AICα(m̂α) = inf
k

AICα(k). (2.4)

A precursor of AIC is the Final Prediction Error, FPE, criterion of Akaike
(1970), which, on ignoring O(T−2) terms, may be written as a special case with
α = 2 of an extended criterion (see Bhansali and Downham (1977)),

FPEα(k) = σ̂2(k)(1 + αk/T ), (2.5)

and the order is once again selected by minimizing this criterion.
A third criterion we consider is due to Shibata (1980) and it may also be

written as a special case, with α = 2, of the criterion

Sα(k) = σ̂2(k)(Ñ + αk) (2.6)

in which Ñ = T − K.
As discussed in Section 1, the above three criteria do not provide a consistent

estimator of m with a fixed α although they are asymptotically efficient in the
Shibata (1980) sense if m is infinite and certain additional conditions hold. If,
however, α = α(T ), a function of T , satisfying α(T ) → ∞, α(T )/T → 0, as
T → ∞, the selected order is consistent for m. Schwarz (1978), Akaike (1977)
and Rissanen (1978) justify the choice α(T ) = log T from a variety of different
perspectives.

Assumption 1 ensures that {xt} has a representation

xt =
∞∑

j=0

b(j)εt−j , b(0) = 1,

in which the b(j) are absolutely summable and satisfy (1.2) but with the b(j)
replacing the am(j) and [Am(z)]−1 = 1 + b(1)z + · · · .
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The covariance function of {xt} is denoted by R(s) = E(xtxt+s) (t, s =
0,±1,±2, . . .), its spectral density function by f(µ) and the autoregressive trans-
fer function by A(µ) = A{exp(−iµ)}.

Under Assumption 1, for any integer n and all h ≥ 1, we have

xn+h = −
m∑

j=1

ϕ
h
(j)xn+1−j + zn(h), (2.7)

where −ϕ
h
(j) is the coefficient of xn+1−j (j = 1, . . . ,m) in the linear least-squares

predictor, x̄n(h), say, of xn+h based on the infinite past, {xt, t ≤ n}, and

zn(h) =
h−1∑
j=0

b(j)εn+h−j (2.8)

is the h-step prediction error. The corresponding h-step mean squared error of
prediction is given by

V (h) = E[{zn(h)}2] = σ2
h−1∑
j=0

b2(j) (h ≥ 1). (2.9)

It is readily verified that ϕ1(j) = am(j), j = 1, . . . ,m and for h > 1, the
ϕ

h
(j) satisfy the recursive relations:

ϕ
h
(j) = b(h − 1)ϕ1(j) + ϕ

h−1
(j + 1), (2.10)

where b(h) = −ϕ
h
(1) and ϕ

h
(j) = 0, j > m.

Denote the kth order (direct) linear least-squares predictor of xn+h based on
the finite past {xn, xn−1, . . . , xn−k+1}, k ≥ 1, by

x̄Dhk(n) = −
k∑

j=1

ϕ
Dhk

(j)xn+1−j ,

the corresponding prediction error by zDhk(n) = xn+h−x̄Dhk(n) and let ΦDh(k) =
[ϕ

Dhk
(1), . . . , ϕ

Dhk
(k)]′, rh(k) = [R(h), R(h + 1), . . . , R(h + k − 1)]′ and R(k) =

[R(u − v)](u, v,= 1, . . . , k). We have,

ΦDh(k) = −R(k)−1rh(k), (2.11)

VD(h, k) = E[{zDhk(n)}2] = R(0) + rh(k)′Φh(k). (2.12)

As in Shibata (1980) and Bhansali (1996), let Φ̂Dh(k) = [ϕ̂
Dhk

(1), . . . , ϕ̂
Dhk

(k)]′ be the kth order direct estimate of the h-step prediction constant, ΦDh(k),
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obtained by regressing xt+h on xt, xt−1, . . . , xt−k+1, t = K,K + 1, . . . , T −h, and
let V̂Dh(k) denote the residual error variance in this regression. We have,

Φ̂Dh(k) = −R̂h(k)−1r̂h(k), (2.13)

V̂Dh(k) = d̂h(0) + r̂h(k)′Φ̂Dh(k), (2.14)

where R̂h(k) = [ChT (u, v)](u, v=1, . . . , k), r̂h(k)=[ChT (−h+1, 1), . . . , ChT (−h+
1, k)]′, d̂h(0) = ChT (−h+1,−h+1), the subscript D stands for the direct method
and, with N = T − h − K + 1,

ChT (u, v) = N−1
T−h∑
t=K

xt−u+1xt−v+1. (2.15)

Let R(T )(s) denote the positive definite estimator of R(s) and I(T )(µ) the
periodogram function. We have,

I(T )(µ) = (2πT )−1
∣∣∣ T∑

t=1

xt exp(−itµ)
∣∣∣2,

R(T )(s) = T−1
T−|s|∑
t=1

xtxt+|s| (s = 0,±1, . . . ,±T − 1)

=
∫ π

−π
I(T )(µ) exp(isµ)dµ. (2.16)

Moreover, for u − v ≥ 0 and h + u ≥ 1 we may write

R(T )(u − v) − NT−1ChT (u, v) = T−1
[ K−u∑

t=1

xtxt+u−v +
T−u+v∑

t=T−h−u+2

xtxt+u−v

]
(2.17)

which still holds for v > u by transposing u and v if h + v ≥ 1.
For h = 1, we write a(k) ≡ ΦD1(k), σ2(k) ≡ VD(1, k) and now, Φ̂Dh(k) =

â(k) and V̂Dh(k) = σ̂2(k).
Bhansali (1996) has developed a bound for the mean squared error of h-step

prediction of the direct method when k = k̃DT (h), say, is a random variable
possibly dependent on x1, . . . , xT and K = KT is a function of T such that
KT → ∞, K2

T /T → 0, as T → ∞, m in (1.1) is infinite, that is, {xt} does not
degenerate to a finite autoregression and certain additional regularity conditions
hold. Moreover, this bound is attainable, as T → ∞, if k̃DT (h) is determined by
minimizing, with α = 2, any of the following h-step generalizations of the criteria
(2.3), (2.5) and (2.6) above:

AIChα(k) = T ln V̂Dh(k) + αk, (2.18)

FPEhα(k) = V̂Dh(k)(1 + αk/T ), (2.19)

Shα(k) = V̂Dh(k)(N + αk), (2.20)
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and, also, if the am(j) in (1.1) decrease to 0 exponentially as j → ∞, with
any fixed α > 1. Thus, in this sense, when {xt} does not degenerate to a finite
autoregression, the order selection by the criteria (2.18) - (2.20) is asymptotically
optimal for h-step prediction. In Section 5, the order selected by these criteria is
shown not to be consistent if m is finite.

Consider now the plug in method. As in Yamamoto (1976), the kth order
plug in estimator, Φ̂Ph(k) = [ϕ̂

Phk
(1), . . . , ϕ̂

Phk
(k)]′ of the h-step prediction con-

stants is, with ek = [1, 0, . . . , 0]′, Φ̂Ph(k) = −e′kΓ̂ (k)h, and the corresponding
theoretical parameter is ΦPh(k) = −e′kΓ (k)h. Here, Γ (k) is a k × k companion
matrix for a(k) and it has −a(k)′ in its first row, an identity matrix of dimension
k − 1 in its bottom left hand (k − 1) × (k − 1) corner and a vector of zeroes of
dimension k− 1 in its last column and Γ̂ (k) is defined analogously but with â(k)
replacing a(k).

For each h ≤ 0 and k ≥ 1, put ϕ
h
(j) = −1, j = −h + 1, ϕ

h
(j) = 0,

j �= −h + 1 and ΦDh(k) = [ϕ
h
(1), . . . , ϕ

h
(k)]′. It is readily verified that Γ(m)h

has −ϕ
h−u+1

(v) in its (u, v)th position, u, v = 1, . . . ,m; moreover, as, on setting
zn(h) = 0, h ≤ 0, (2.7) still holds, ΦDh(k) also satisfies (2.11) with rh(k) as
defined there but with h ≤ 0. Note also that the ϕ

h
(j) satisfy the recursive

relations (2.10) for all h ≤ 0, but with b(j) = 0, j < 0 and b(0) = 1.
From (2.9), a kth order plug in estimate of V (h) is given by

V̂Ph(k) = σ̂2(k)
h−1∑
j=0

{b̂Pk(j)}2, (2.21)

where b̂Pk(0) = 1, and if b̂Pk,h−1 = [b̂Pk(1), . . . , b̂Pk(h − 1)]′,

Ĥk(h − 1) = [âk(u − v)](u, v = 1, . . . , h − 1), âk(j) = 0, j < 0,

âk,h−1 = [âk(1), . . . , âk(h − 1)]′,

b̂Pk,h−1 = −Ĥk(h − 1)−1âk,h−1, (2.22)

(see Bhansali (1989, 1993)).
Under Assumption 1, σ2R(m)−1 may be decomposed as a difference of prod-

ucts of lower triangular times upper triangular Toeplitz matrices as follows :

σ2R(m)−1 = H(m)H(m)′ − L(m)L(m)′, (2.23)

where, with am(j) = 0, j < 0 or j > m, H(m) = [am(u−v)], L(m) = [am(m+v−
u)] (u, v = 1, . . . ,m) (see Galbraith and Galbraith (1974)). Also, now ΦDh(m) =
ΦPh(m) = [ϕ

h
(1), . . . , ϕ

h
(m)]′ = Φh(m), say.
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3. Asymptotic Properties of the Direct Estimates

For each h ≥ 1, let Rh−1(u) = E{zn(h)zn+u(h)} (n, u = 0,±1, . . .) denote
the covariance function of {zn(h)}, where

Rh−1(u) = σ2
h−1−|u|∑

j=0

b(j)b(j + |u|) (|u| ≤ h − 1), (3.1)

Rh−1(u) = 0, |u| ≥ h and let fh−1(µ) denote the spectral density function of
{zn(h)}, where

fh−1(µ) = (σ2/2π)
∣∣∣ h−1∑

j=0

b(j) exp(−ijµ)
∣∣∣2. (3.2)

For all h ≤ 0, we set Rh−1(u) = 0, all u, as now zn(h) = 0.
As discussed in Section 2, for a Gaussian process, â(m) provides a maximum

likelihood estimator of a(m) and this estimator is asymptotically efficient in the
sense that its asymptotic covariance matrix attains the Cramer-Rao lower bound
applicable to this situation. Furthermore, if u{a(m)} denotes a differentiable
function of a(m) then the corresponding estimator, u{â(m)}, based on â(m) of
this quantity is also asymptotically efficient in this sense. In the sequel, we use
the term asymptotically Gaussian efficient for the plug in estimates of Φ(m) and
V (h) and related parameters in accordance with this definition.

The asymptotic distribution of Φ̂Dh(k) when {xt} satisfies Assumption 1 and
k = m is given in the following theorem:

Theorem 3.1. Let {xt} satisfy Assumption 1. Then, as T → ∞, T 1/2{Φ̂Dh(m)−
ΦDh(m)} is asymptotically distributed as Normal with a 0 mean vector and co-
variance matrix U(m) = R(m)−1W(m)R(m)−1, where W(m) = [w(u, v)] (u, v

= 1, . . . ,m) and

w(u, v) =
h−1∑

s=−h+1

Rh−1(s)R(u − v − s)

= 2π
∫ π

−π
fh−1(µ)f(µ) exp{i(u − v)µ}dµ. (3.3)

Remark. The term involving the fourth order cumulant, τ4, of {εt} disappears
algebraically from (3.3).

Proof. We may write
√

T{Φ̂Dh(m) − Φh(m)} = −{R̂h(m)−1ph(m)}
√

T , (3.4)

where
ph(m) = r̂h(m) + R̂h(m)Φh(m) (3.5)



DIRECT AUTOREGRESSIVE PREDICTORS FOR MULTISTEP PREDICTION 433

and its typical element is given by,

p
hu

(m) =
√

T
{
ChT (−h + 1, u) +

m∑
j=1

ϕ
h
(j)ChT (u, j)

}
(3.6)

with u = 1, . . . ,m. As T → ∞, each element of R̂h(m)−1 converges in probability
to that of R(m)−1. The theorem now follows from the results of Anderson (1971),
Whittle (1963), p. 32 (see also Bhansali (1981)), by demonstrating that W(m) is
the covariance matrix of p(m).

We note that our Theorem 3.1 accords with the earlier results of Hosoya
and Taniguchi (1982) and Kabaila (1981) on the asymptotic distribution of the
ϕ̂

Dh
(j); these authors do not, however, present the asymptotic covariance matrix

of the direct estimates in the explicit form given in (3.3).
Thus, in view of the representation (2.7), the actual spectral density function

of {xt} may be written as

ftrue(µ) = fh−1(µ)/
∣∣∣1 +

m∑
j=1

ϕ
h
(j) exp{−i(h + j − 1)µ}

∣∣∣2. (3.7)

On the other hand, as the direct method of estimating the ϕ
h
(j) is equivalent to

fitting a (scale-free) spectral density of the form given in Remark 3.2 of Hosoya
and Taniguchi (1982), it follows from this remark that our Theorem 3.1 agrees
with their Theorem 3.2.

Kabaila (1981) earlier established that the estimates of the parameters of a
non-linear autoregression obtained by minimising the sum of squares of h-step
prediction errors are, T → ∞, asymptotically normal with a 0 mean vector,
and gave an expression for evaluating the asymptotic covariance matrix of the
estimates. For the direct method considered here, result (1.6) of this author
coincides exactly with our Theorem 3.1. Thus, treating Φh(m) as the parameter
of interest, this author has proved that, as T → ∞, T 1/2{Φ̂Dh(m) − Φh(m)} is
asymptotically normal with a 0 mean vector and covariance matrix C−1ZC−1,
say, where C = [C(u, v)], Z = [Z(u, v)] (u, v = 1, . . . ,m) and from (2.7) and (2.8)

C(u, v) = 2E([{∂/∂ϕ
h
(u)}zn(h)][{∂/∂ϕ

h
(v)}zn(h)]) = 2R(u − v),

Z(u, v) = 4
h−1∑

j=−h+1

E{zn(h)xn+1−vzn+j(h)xn+j+1−u}

= 4
h−1∑

j=−h+1

Rh−1(j)R(u − v − j);

and this result is readily seen to agree with our Theorem 3.1.
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The asymptotic distribution of V̂Dh(m), h = 1, . . . , J , with J ≥ 1 denoting
the maximum prediction lead time, is given below:

Theorem 3.2. Let {xt} satisfy Assumption 1. Then, as T → ∞,
√

T{V̂D1(m) − V (1)}, . . . ,
√

T{V̂DJ(m) − V (J)}
are jointly asymptotically normal with a 0 mean vector and covariance matrix,
Q, whose typical element is given by

q(h, n)=2
min(n,h)−1∑

s=−min(n,h)+1

Rh−1(s)Rn−1(s)+(τ4/σ
4)Rh−1(0)Rn−1(0) (h, n=1, . . . , J),

where Rn−1(u) is given by (3.1) but with h replaced by n.

Proof. For a fixed h ≥ 1, let,

g1(h) =
{
d̂h(0)−R(0)}+2

m∑
j=1

ϕ
h
(j)

√
T{ChT (−h+1, j)−R(h−1+j)

}

+
m∑

u=1

m∑
j=1

ϕ
h
(u)ϕ

h
(j)

√
T{ChT (u, j) − R(u − j)}. (3.8)

From (2.7) and (2.8), on using (3.4), the difference between T 1/2{V̂Dh(m)−
V (h)} and g1(h) tends to 0 in probability, as T → ∞, for each fixed h ≥ 1. Also,
by (2.17), with K = m, the difference between T 1/2{ChT (u, j) − R(T )(u − j)}
converges to 0 in probability for each fixed (u, j) such that h+u ≥ 1 and h+j ≥ 1.
Hence, replacing ChT (u, j) by R(T )(u − j) on the right of (3.8) and using (2.16)
and (3.7), the difference between g1(h) and g2(h) also tends to 0 in probability
as T → ∞, where

g2(h) =
∫ π

−π
fh−1(µ){f(µ)}−1

√
T{I(T )(µ) − f(µ)}dµ. (3.9)

The asymptotic normality of the V̂Dh(m) now follows from (3.8) and the asymp-
totic covariance structure from (3.9) (see Anderson (1971), pp. 463-467 and
Brillinger (1975) pp. 254-255).

Note that the asymptotic covariance matrix of the V̂Dh(m) derived above in
Theorem 3.2 under the assumption of a finite and known m coincides exactly
with that derived by Bhansali (1993), who earlier obtained the joint asymptotic
distribution of a finite collection of T 1/2{V̂Dh(k)−V (h)} on the assumption that
k converges to infinity simultaneously but sufficiently slowly with T . Hence,
Theorem 3.2 has a similar interpretation to that given there, and, even for a
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finite m, the asymptotic distribution of V̂Dh(m) and that of a ‘nonparametric’
estimator, R

(T )
h−1(0), given by (2.16) but with the z’s replacing the x’s, of V (h)

are the same.
Put δ(h − 1) = [Rh−1(1), . . . , Rh−1(h − 1)]′, G(m) = H(m)−1 = [b(u −

v)] (u, v = 1, . . . ,m), and let Eh−1(m) = [Ih−1,0h−1,m−h+1] and E∗
m(h − 1) =

[Im,0m,h−1−m]′, in which 0i,j denotes an i × j matrix of 0’s, be two auxiliary
matrices, each of dimension (h − 1) × m.

The asymptotic distributions of the corresponding plug in estimators,
Φ̂Ph(m) and V̂Ph(m) is given in the following theorem:

Theorem 3.3. Let {xt} satisfy Assumption 1. Then, as T → ∞, (a) T 1/2

{Φ̂Ph(m) −Φh(m)} is asymptotically distributed as Normal with a 0 mean vector
and covariance matrix F (m), where

F (m) = σ2
[ h−1∑

j=0

b(j){Γ (m)′}h−1−j
]
[R(m)−1]

[ h−1∑
k=0

b(k){Γ (m)}h−1−k
]
. (3.10)

(b) T 1/2{V̂P1(m) − V (1)}, . . . , T 1/2{V̂PJ(m) − V (J)} are jointly asymptotically
normal with a 0 mean vector and covariance matrix Ω = [Ω(h, n)] (h, n =
1, . . . , J), where

Ω(h, n) = q(h, n) − d(h, n), 1 ≤ h, n ≤ m + 1 (3.11a)

= q(h, n) − d(h, n) = Ω(n, h), n ≥ m + 2, h = 1, . . . , J, (3.11b)

and where

d(h, n) = 4δ(h − 1)′G(h − 1)Eh−1(m)L(m)L(m)′En−1(m)′G(n − 1)δ(n − 1),

q(h, n) = 4δ(h−1)′G(h−1)′E∗
m(h−1)H(m)H(m)′E∗

m(n−1)′G(n−1)′δ(n−1)

+2Rh−1(0)Rn−1(0) + (τ4/σ
4)Rh−1(0)Rn−1(0),

and d̃(h, n) is obtained from d(h, n) by replacing Eh−1(m) and En−1(m) by
E∗

m(h − 1) and E∗
m(n − 1), respectively.

Proof. (a) Since Γ̂ (m)′ −Γ (m)′ = {Γ̂ (m)′ − Γ (m)′}eme′m, the result follows by
noting that b̂m(j) = e′mΓ̂ (m)jem converges in probability to b(j) for each j ≥ 1,
as T → ∞, and

√
T{Φ̂Ph(m) − Φh(m)}

=
√

T
[ h−1∑

j=0

{Γ (m)′}h−1−j{Γ̂ (m)′ − Γ (m)′}{Γ̂ (m)′}j
]
em

=
h−1∑
j=0

{Γ (m)′}h−1−j
√

T{â(m) − a(m)}b̂m(j).
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(b) Let bm,h−1 = [b(1), . . . , b(h − 1)]′. For each fixed h ≥ 1, we may write
√

T{V̂Ph(m) − V (h)}
= σ−2V (h)

√
T{σ̂2(m)−σ2}+2σ2b′m,h−1

√
T{b̂Pm,h−1−bm,h−1}+op(1), (3.12)

where op(1) denotes a term tending to 0 in probability as T → ∞. Now, if
h ≤ m+1, bm,h−1 = −H(h−1)−1Eh−1(m)a(m), then from (2.22), we may write
(see also Bhansali (1989)).
√

T{b̂Pm,h−1−bm,h−1} = −G(h−1)2Eh−1(m)
√

T{â(m)−a(m)}+op(1), (3.13)

and a similar result holds also for h > m + 1, provided on the right hand side of
(3.13) Eh−1(m) is replaced by E∗

m(h − 1). The result (b) now follows from the
representation (2.23) for σ2R(m)−1 by observing that δ(h−1)′ = σ2b′m,h−1G(h−
1) and by noting that, as T → ∞, the two terms occurring on the right of (3.12)
are asymptotically independent.

Yamamoto (1976) and Stine (1987) also derive the asymptotic distributions
of T 1/2{Φ̂Ph(m) − ΦPh(m)} and T 1/2{V̂Ph(m) − V (h)}, respectively; these au-
thors, however, do not present the asymptotic covariance structure of these quan-
tities in the explicit form given in Theorem 3.3.

Bhansali (1993) shows that if as T → ∞, k → ∞ and additional regularity
conditions hold, V̂Dh(k) and V̂Ph(k) have the same asymptotic distributions. This
result may be gleaned from Theorem 3.3 as an iterated limit since, as m → ∞,
d(h, n) → 0 for each fixed (h, n). For a finite and known m, however, as dis-
cussed earlier, unlike V̂Dh(m), V̂Ph(m) provides a Gaussian maximum likelihood
estimator of V (h) and in this situation it is asymptotically Gaussian efficient; for
h ≤ m + 1, d(h, n) now provides an asymptotic measure of the extent to which
V̂Dh(m) is asymptotically inefficient, relative to V̂Ph(m).

Note that although {zn(h)} is a moving average process of order h − 1,
the problem of estimating its variance is different from that of constructing an
asymptotically efficient estimator (see Anderson(1975)) of the variance of a mov-
ing average process based only on a partial realization of this process; thus, under
the hypothesis of Assumption 1, V̂Ph(m) provides a Gaussian maximum likeli-
hood estimator of V (h) = Var (zt) only because the b(j) are functionally related
to the am(j).

Next, we compare the asymptotic covariance matrices of the direct and plug
in estimates of the h-step prediction constants. We have the following proposi-
tion:

Proposition 3.1. Let {xt} satisfy Assumption 1. Then the following results
hold:
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(a) The asymptotic covariance matrix, U(m), of T 1/2{Φ̂Dh(m) − Φh(m)} may
also be written as

U(m) = Rh−1(0)R(m)−1 +
h−1∑
s=1

Rh−1(s)[R(m)−1Γ (m)s + Γ (m)′sR(m)−1].

(3.14)
(b) If, for each h > 1,

[∂Φ(h)/∂Φ(1)] = [∂ϕ
h
(j)/∂ϕ1(k)] (j, k = 1, . . . ,m)

denotes the matrix of partial derivatives of the ϕ
h
(j) with respect to the ϕ1(k),

then

[∂Φ(h)/∂Φ(1)] =
h−1∑
j=0

b(j){Γ (m)′}h−1−j

and the estimator Φ̂Ph(m) of Φh(m) is asymptotically Gaussian efficient.
(c) For each h > 1, we may write

σ−2[U(m)−F (m)] =
h−2∑
s=1

h−2−s∑
j=0

b(j)b(j + s)[D(s, j + s, j)+D(s, j + s, j)′ ]

+
h−2∑
j=0

b2(j)D(0, j, j), (3.15)

where D(i, j, k) = R(m)−1Γ (m)i − Γ (m)′h−1−jR(m)−1Γ (m)h−1−k.

Proof. (a) Since, for each integer s, Φs(m) = −R(m)−1rs(m), the result follows
by writing

U(m) = U0(m) + U1(m) + U2(m), say,

where U0(m) = Rh−1(0)R(m)−1,

U1(m) = R(m)−1
{ h−1∑

s=1

Rh−1(s)[rs(m)rs−1(m) · · · rs−m+1(m)]R(m)−1
}

=
{ h−1∑

s=1

Rh−1(s)Γ (m)′s
}
R(m)−1,

U2(m) = R(m)−1
{ h−1∑

s=1

Rh−1(s)[rs(m)rs−1(m) · · · rs−m+1(m)]′R(m)−1
}

=
h−1∑
s=1

Rh−1(s)R(m)−1Γ (m)s.
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It should be observed that the expression inside the square brackets on the right
of Uj(m) (j = 1, 2) is in fact a matrix.
(b) The proof is by induction. The stated result clearly holds for h = 1 and it
is readily verified for h = 2. Now assume that the result holds for some integer
h = n. To show that it also holds for h = n + 1, use (2.10) and deduce that for
1 ≤ j ≤ m,

[∂ϕn+1(j)/∂Φ1(m)] = −
n∑

u=0

b(u)[ϕn−u(j)ϕn−u−1(j) · · ·ϕn−u−m+1(j)].

(c) The result follows readily from (3.10) and (a) above by using (3.1).

Proposition 3.1 (b) implies that, under Assumption 1, Φ̂Ph(m) provides a
Gaussian asymptotically efficient estimator of Φh(m) and it asymptotically at-
tains the Cramer-Rao lower bound for the variance of an unbiased estimator of
this parameter. By contrast, the direct estimator, Φ̂Dh(m) is not even asymp-
totically Gaussian efficient, and it follows by standard theory that the difference,
U(m)− F (m), between their asymptotic covariance matrices is nonnegative def-
inite. Proposition 3.1 (c) provides an explicit expression for evaluating this dif-
ference and shows that its ‘size’ depends upon the magnitudes of the b(j) and on
the ‘size’ of D(s, j + s, j), 0 ≤ j, s ≤ h − 2.

For two finite-dimensional matrices A and B, let ‖A‖, ‖B‖ denote their
respective matrix norms. On using the inequalities, ‖A − B‖ ≥ ‖A‖ − ‖B‖,
‖AB‖ ≤ ‖A‖ ‖B‖ and noting that ‖Γ (m)‖ < 1, it readily follows that for all
0 ≤ j, s ≤ h − 2

‖D(s, j + s, j)‖ ≥ ‖R(m)−1Γ (m)s‖−‖Γ (m)′h−1−j−sR(m)−1Γ (m)sΓ (m)h−1−j−s‖
≥ {1 − ‖Γ (m)‖ ‖Γ (m)′‖}‖R(m)−1Γ (m)s‖ > 0.

Unfortunately, (3.15) is a complex expression involving a double sum of the
different D(s, j + s, j + s)’s, and a useful bound valid for all values of m and
h for the difference between U(m) and F (m) is not readily given; instead, the
efficiency loss in using the direct estimates is illustrated in Section 4 for some
specific values of m and/or h.

Next, consider the h-step mean squared error of prediction. As in Akaike
(1970), among others, we assume that the process to be predicted, {yt}, say,
is independent of and has the same stochastic structure as {xt}, and for some
integer n and J ≥ 1, the past {yn+1−j , j = 1, . . . ,m} of {yt} is known and the
future {y

n+h
, h = 1, . . . , J} is to be predicted by fitting an autoregression of order

m by either the direct or the plug-in method from a realization of T consecutive
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observations of {xt}. Let ŷ
Dn

(h) and ŷ
Pn

(h) denote the respective h-step direct
and plug in forecasts of y

n+h
. We have

ŷ
Dn

(h) = −
m∑

j=1

ϕ̂
Dh

(j)yn+1−j (3.16)

and ŷ
Pn

(h) is defined analogously, but with the ϕ̂
Ph

(j) replacing the ϕ̂
Dh

(j) in
(3.16).

If op(T−1/2) terms are ignored then as in Yamamoto (1976) the h-step mean
squared error of prediction, E[{ŷPn(h) − y

n+h
}2], of the plug-in method may be

approximated by PMSEP (h), where

PMSEP (h) = V (h) + MP (h) (h = 1, . . . , J), (3.17)

MP (h) = T−1σ2
h−1∑
j=0

h−1∑
k=0

b(j)b(k) tr[Γ (m)′h−1−jR(m)−1Γ (m)h−1−kR(m)].

(3.18)
By a similar argument, it follows from Theorem 3.1 that if op(T−1/2) terms are ig-
nored, the h-step mean squared error of the direct method may be approximated
by PMSED(h), where

PMSED(h) = V (h) + MD(h), (3.19)

MD(h) = T−1 tr{R(m)−1W(m)}. (3.20)

Bhansali (1981) has shown that (3.17) remains valid even when o(T−1) terms
are ignored; however, here we do not attempt to extend the results (3.19)-(3.20)
for the direct method in this direction. Rather we examine the loss in predictive
efficiency by using the direct method for a finite m and give an explicit expression
for the difference, MD(h) − MP (h), between PMSED(h) and PMSEP (h). We
first establish the following lemma:

Lemma 3.1. Suppose that {xt} satisfies Assumption 1. Then for each h ≥ 1
and 0 ≤ j, k ≤ h − 1,

Γ (m)h−1−kR(m)Γ (m)′h−1−j = Θ1(j, k) − Θ2(j, k), (3.21)

where Θ1(j, k) = [R(v − u + j − k)] (u, v = 1, . . . ,m) and the term, [Θ2(j, k)]u,v ,
in the (u, v)th position of Θ2(j, k) is given by

[Θ2(j, k)]u,v =

{
Rh−1−j−v(k + u − v − j), if v − u ≤ k − j,

Rh−1−k−u(j + v − k − u), if v − u ≥ k − j,
(3.22)

where, if s ≥ 0, Rs(u) is defined by (3.1), but with s replacing h − 1, and, if
s < 0, Rs(u) ≡ 0, all u.
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Proof. As Γ (m)h−1−k = [ϕ
h−1−k−u+1

(v)] (u, v = 1, . . . ,m), it follows from (2.11)
that Γ (m)h−1−kR(m) = [R(h − k − u + v − 1)] (u, v = 1, . . . ,m). The proof is
completed by demonstrating that [Γ (m)h−1−kR(m)Γ (m)′h−1−j ]u,v, the term in
the (u, v)th position of Γ (m)h−1−kR(m)Γ (m)′h−1−j , is given by

[Γ (m)h−1−kR(m)Γ (m)′h−1−j ]u,v = R(j+v−k−u)−E{zn(h− j−v)zn(h−k−u)},
where zn(h) is defined by (2.8), if h > 0, and zn(h) ≡ 0, h ≤ 0, and that
Θ2(j, k) = [E{zn(h − j − v)zn(h − k − u)}] (u, v = 1, . . . ,m).

Proposition 3.2. Let {xt} satisfy Assumption 1. Then, for each h ≥ 1,

(a) TMD(h) = mRh−1(0) − 2
h−1∑
s=1

min(s,m)∑
j=1

Rh−1(s)ϕs−j+1(j), (3.23)

(b) TMP (h) = T{MD(h) − MΘ(h)},
where

MΘ(h) = σ2
h−2∑
j=0

h−2∑
k=0

b(j)b(k) tr{R(m)−1Θ2(j, k)}. (3.24)

Proof. (a) The result follows directly from Proposition 3.1 (a) on using (2.11)
and by applying standard rules for evaluating the trace of a matrix.
(b) The result follows directly from definition (3.1) of Rh−1(u) and Lemma 3.1.

Proposition 3.2 provides an explicit asymptotic expression for evaluating the
increase in the h-step mean squared error of prediction, MD(h), due to esti-
mating the prediction constants by the direct method. This proposition also
gives an explicit expression for evaluating asymptotically the difference between
the h-step mean squared errors of prediction of the direct and plug in meth-
ods, which is known to be positive by Proposition 3.1. It may be deduced from
(3.24) that this difference depends upon the magnitudes of the b(j) and those of
tr{R(m)−1Θ2(j, k)}, j, k = 0, . . . , h − 2. As Θ2(j, k) defines the cross-covariance
matrix of zn(h− j − v) and zn(h− k− u), u, v = 1, . . . ,m, we may in general ex-
pect the ‘size’ of tr{R(m)−1Θ2(j, k)} to be dependent upon the extent to which
the observed series is predictable from its own past. Thus, for example, if the
observed series is not highly predictable from the past then Θ2(j, j) would be
close to R(m) and the value of tr{R(m)−1Θ2(j, j)} ‘large’; the converse may be
expected to hold for highly predictable series since now Θ2(j, j) would be closer
to 0 and so would the value of this trace. In Section 5, we illustrate the behaviour
of (3.24) for several specific values of m and/or h.

Lewis and Reinsel (1985) and Bhansali (1993) show that if an autoregressive
model of order k is fitted, where k → ∞ as T → ∞ and additional regularity
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conditions hold, (T/k)MP (h) and (T/k)MD(h) both converge to Rh−1(0) and
the difference between the asymptotic mean squared errors of prediction of the
plug in and direct methods now vanishes. This result follows from (3.23) and
(3.24) as an iterated limit since, when divided by m, the first term to the right
of (3.23) converges to Rh−1(0) and the second term to 0, as the number of terms
occurring in this term remains fixed as m increases. It follows analogously that
since [Θ2(j, k)]u,v ≡ 0, 0 ≤ j, k ≤ h−1 and u > h−1 or v > h−1, MΘ(h) divided
by m, converges to 0 as m → ∞.

It should be observed that although the results of this section have been
derived by assuming that the fitted order, k, equals the true order, m, of the
process (1.1), the results continue to hold even when k ≥ m (see Bhansali (1981)).

4. Examples

We illustrate the results of Section 3 by evaluating (3.3), (3.10), (3.15), (3.23)
and (3.24) explicitly for m = 1, 2 and h = 2, 3; the case of a general m with h = 2
and a general h with m = 1 is also discussed.

Thus, suppose that m = 1 and xt = axt−1 + εt, |a| < 1, where {εt} is as in
Assumption 1. Now, ϕ

h
(1) = −ah and it follows from Theorems 3.1 and 3.3 that

as T → ∞, T 1/2{ϕ̂
Dh

(1) − ϕ
h
(1)} and T 1/2{ϕ̂

Ph
(1) − ϕ

h
(1)} are asymptotically

normal with 0 means and variances vDh(1) and vPh(1), where

vDh(1) = (1 − a2)−1[1 + a2 − (2h + 1)a2h + (2h − 1)a2h+2],

vPh(1) = h2a2h−2(1 − a2).

If, in particular, h = 2, vD2(1) = 1 + 2a2 − 3a4 and vP2(1) = 4a2(1 − a2);
also, if h = 3, vD3(1) = (1 − a2)(1 + 3a2 + 5a4) and vP3(1) = 9a4(1 − a2).
On adopting ePDh(1) = vPh(1)/vDh(1) as a measure of the asymptotic relative
efficiency of the plug-in method with respect to the direct method, we have,
ePD2(1) = 4a2(1 + 3a2)−1, ePD3(1) = 9a4(1 + 3a2 + 5a4)−1, depend only on
the absolute value, |a|, of a, and, for h = 2 and 3, ePDh(1) → 0 as |a| → 0
and ePDh(1) → 1 as |a| → 1. The actual numerical values of ePDh(1) for some
specific values of |a| are shown below:

|a| : 0.1 0.5 0.9
ePD2(1) : 0.04 0.57 0.94
ePD3(1) : 0.001 0.27 0.88

The loss in asymptotic efficiency by using the direct method is seen to be greater
for h = 3 than for h = 2, moreover, this loss could be substantial for small values
of |a|.
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Consider now the loss in predictive efficiency by using the direct method. If
m = 1, we get from (3.23) - (3.24), with h ≥ 1,

Tσ−2MD(h) = (1 − a2)−1[1 + 2a2(1 − a2h−2)(1 − a2)−1 − (2h − 1)a2h],

Tσ−2MΘ(h) = Tσ−2{MD(h) − MP (h)}
= (1−a2)−1[1−h2a2h−2+(h−1)2a2h+2a2(1−a2h−2)(1−a2)−1], (4.1)

Tσ−2MP (h) = h2a2h−2.

If now h = 2, Tσ−2MD(h) = 1 + 3a2, Tσ−2MP (h) = 4a2, and Tσ−2{MD(h) −
MP (h)} = 1−a2; also, if h = 3, Tσ−2MD(h) = 1+3a2 +5a4, Tσ−2MP (h) = 9a4,
and Tσ−2{MD(h) − MP (h)} = (1 − a2)(1 + 4a2); thus, {MD(h) − MP (h)} is
a monotonic decreasing function of a2 for h = 2; for h = 3, however, it is a
quadratic function of a2 and attains its maximum when a2 = 0.75.

Next suppose that m = 2 and xt = a1xt−1+a2xt−2+εt, where 1−a1z−a2z
2 �=

0, |z| ≤ 1. We consider only h = 2, 3 as the case of a general h is awkward to
illustrate.

We have, from (3.15), if h = 2 and m = 2,

σ−2{U(m) − F (m)} =

[
a2

1(1 + a2)2 −a1(1 − a2
2)(1 + a2)

−a1(1 + a2)(1 − a2
2) (1 − a2

2)
2

]
.

Next, consider the loss in predictive efficiency with m = 2. From (3.23)
and (3.24), we have, if m = 2, h = 2, Tσ−2MD(h) = 2 + 4a2

1, Tσ−2MP (h) =
1 + 4a2

1 + a2
2,

Tσ−2{MD(h) − MP (h)} = 1 − a2
2; (4.2)

and, if h = 3, with m = 2, Tσ−2MD(h) = 2{1+2a2
1+3(a2

1+a2)2}, Tσ−2{MD(h)−
MP (h)} = (1 + a2)(1 − 2a2

1a2 − a2). Thus, with h = 2 the loss in predictive effi-
ciency is a monotonic decreasing function of only a2 and the predictive efficiency
of the direct method with respect to the plug in method increases as |a2| ap-
proaches one, the converse also holds and for |a2| close to zero the direct method
would be least efficient in comparison with the plug in method. It may be ob-
served, however, that for h = 3, the predictive efficiency loss of the direct method
depends on the values of both a1 and a2.

Finally, for a general m ≥ 1 and h = 2 we get from (3.15),

σ−2{U(m) − F (m)} = R(m)−1 − Γ (m)′R(m)−1Γ (m),

‖σ−2{U(m) − F (m)}‖ ≥ ‖R(m)−1‖{1 − ‖Γ (m)′‖ ‖Γ (m)‖} > 0.

Also, we may generalize the results (4.1) (4.2) given above for h = 2 and m =
1, 2. We have, for all m ≥ 1 and h = 2, Tσ−2MD(h) = {m + (m + 2)a2

1},
Tσ−2MP (h) = (m − 1) + (m + 2)a2

1 + a2
m, and

Tσ−2{MD(h) − MP (h)} = 1 − a2
m, (4.3)
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where aj = −am(j), j = 1, . . . ,m. Thus, for h = 2 and all m ≥ 1, the loss in
predictive efficiency of the direct method with respect to the plug in method is
a monotonic decreasing function of am(m)2 and it tends to 1 as am(m) → 0 and
it tends to 0 as am(m)2 → 1, where −1 ≤ am(m) ≤ 1.

It should be noted, however, that both MP (h) and MD(h) are O(T−1) and
even for moderately large values of T their respective contributions to the overall
prediction mean squared errors would be dominated by V (h), the leading term
in (3.17) and (3.19); consequently, the overall increase in the prediction mean
squared error due to using the direct method in preference to the plug in method
may not be substantial, a point illustrated further in Section 6.

5. Order Selection by the Direct Method

We now show that the h-step criteria, (2.18) - (2.20), are not consistent for m

if α remains fixed as T → ∞, but they are consistent for each h ≥ 1, if α = α(T ),
a function of T , and α(T ) → ∞, α(T )/T → 0. However, as we do not attempt
to establish a law of the iterated logarithm for the direct estimates, an answer to
the question of how fast should α(T ) grow with T for obtaining a consistent order
selection is not given. For h = 1, as is well-known, setting α(T ) > 2 log log T ,
and α(T ) = log T , in particular, yields a consistent estimator of m.

An explicit expression for the difference between V̂Dh(m) and V̂Dh(m + s),
s > 0 is given in the following lemma; the lemma generalizes to h > 1 the
well-known result (Hannan (1970), p.337) relating the differences between σ̂2(m)
and σ̂2(m + s) to the estimated partial correlations. To save space, a proof
of this lemma, and that of Theorem 4.1 and Proposition 4.1 below, has been
omitted; the methods used essentially generalise to h > 1 the arguments used by
Anderson (1971), pp.13-16, Shibata (1976) and Hannan (1980) for establishing
the corresponding results for h = 1.

Lemma 5.1. Let {xt} satisfy Assumption 1. For each fixed s ≥ 1,

N{V̂Dh(m) − V̂Dh(m + s)} = σ2
s∑

i=1

N{ϕ̂
Dhm+i

(m + i)}2 + op(1).

Let m̂α(h) denote the order selected by minimising any of the h-step criteria,
(2.18) - (2.20). We have the following theorem:

Theorem 5.1. Let {xt} satisfy Assumption 1 and K Assumption 2, and suppose
that α > 0 is a fixed constant. Then, for each h ≥ 1,
(a) limT→∞ P{m̂α(h) < m} = 0;
(b) limT→∞ P{m̂α(h) = m} < 1;
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(c) limT→∞ P{m̂α(h) > m} > 0.

Suppose now that α = α(T ), a function of T , such that as T → ∞, α(T ) →
∞ but α(T )/T → 0. We have the following proposition:

Proposition 5.1. Let the assumptions of Theorem 4.1 hold but α = α(T ) be
such that as T → ∞, α(T ) → ∞, α(T )/T → 0. Then,

lim
T→∞

P{m̂α(h) = j} =

{
0, j �= m,

1, j = m.

6. Simulation Results

The direct and plug in methods were applied to several different (15 al-
together) autoregressive-moving average, ARMA, models of order (2, 2) of the
form

xt = a1xt−1 + a2xt−2 + δ1εt−1 + δ2εt−2 + εt. (6.1)

However, to save space, the discussion here is restricted to 5 second-order autore-
gressive, AR(2), models, called Models 1 - 5, with parameters, (a1, a2), shown
in Table 1, and to 4 ARMA models, called Models 6 - 9, with parameter values
shown in Table 2 using the notation (p, q; a1, . . . , ap; δ1, . . . , δq), where (p, q) de-
notes the order of the simulated ARMA model. These 9 models form a subset of
the models used by Bhansali (1989, 1993) in two related but different studies.

The εt were generated as independent standard normal deviates using the
routine G05DDF of the NAG library. Four different values of T , namely T =
50, 100, 200, 500, were considered, and the number of simulations for each model
and each T was 500.

For each (Model, Simulation) combination, the direct and plug in forecasts
up to 10 steps ahead were obtained. For ensuring that the observations used
for generating the forecasts are (approximately) independent of those used for
estimating the prediction constants, a total of T +100 observations was generated
at each simulation, of which only the first T observations were used for fitting
autoregressions by the direct and plug in methods as described in Section 2; the
remaining 100 observations were split in three blocks: the first block, consisting
of 70 observations was ignored, the second block of 20 observations was used for
actually computing the multistep forecasts and the final block of 10 observations
was used for a comparison of the calculated forecasts with the actual (simulated)
values and for computing the simulated mean squared errors of prediction for the
direct and plug in methods; thus, for each simulation, the value of n in (2.7) was
set equal to T + 90.
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Table 1. Simulated h-step mean squared errors of prediction∗ for various
AR(2) models.

Correct order fitted Order Selected

Plug-in Method Direct Method α = 2 α = ln T

Model h Simul. Asymp. Simul. Asymp. Plug-in Direct Plug-in Direct

T = 100

1 (0.4,-0.15) 2 121.3 117.7 121.2 118.6 122.9 125.3 121.5 119.3

4 106.1 116.4 108.3 119.0 108.2 109.0 106.5 106.1

6 108.6 116.4 112.1 119.1 110.6 111.1 108.8 110.3

10 121.6 116.4 120.4 119.1 121.1 122.3 121.7 120.8

2 (0.4,0.3) 2 120.7 117.7 122.5 118.6 123.5 126.9 124.4 123.2

4 133.1 148.7 136.2 151.1 136.7 140.5 136.1 138.9

6 148.3 158.8 151.0 162.7 150.5 156.2 149.4 153.7

10 164.8 163.0 162.0 168.9 163.0 166.5 164.7 164.1

3 (1.1,-0.24) 2 241.3 226.9 245.4 227.8 245.7 256.4 244.3 248.4

4 373.9 392.1 383.7 397.2 384.4 403.1 379.9 389.5

6 417.2 463.2 428.6 474.4 428.2 439.9 419.8 440.6

10 486.1 497.7 470.5 521.5 473.4 483.5 484.8 475.8

4 (0.95,-0.9) 2 207.7 195.7 208.3 195.9 210.5 212.1 207.5 209.5

4 266.1 273.2 268.7 274.4 280.1 278.4 270.3 272.6

6 328.9 343.2 333.5 346.9 336.6 331.8 328.8 332.0

10 452.8 497.1 474.6 509.2 468.4 501.3 454.4 486.9

5(1.75,-0.96) 2 471.1 420.4 472.9 420.5 480.6 493.2 479.0 482.2

4 1386.1 1318.6 1403.3 1320.8 1398.0 1490.0 1401.4 1415.1

6 1514.9 1604.1 1560.9 1612.4 1534.4 1639.0 1525.2 1620.9

10 2402.2 2456.8 2484.2 2482.7 2419.7 2580.4 2428.8 2552.3

T = 500

1 (0.4,-0.15) 2 117.4 116.3 116.7 116.5 117.6 118.9 117.5 118.4

4 122.9 116.3 123.6 117.0 122.8 124.8 123.0 123.1

6 113.4 116.4 113.9 117.0 112.9 114.4 113.4 113.3

10 132.5 116.4 132.1 117.0 132.4 132.8 132.5 132.0

2 (0.4,0.3) 2 117.6 116.3 117.1 116.5 106.8 119.6 117.5 116.8

4 149.6 146.9 150.8 147.3 150.2 152.8 149.5 151.1

6 158.6 157.3 160.1 158.1 158.5 162.0 158.6 159.4

10 177.2 162.4 175.6 163.6 177.4 179.8 177.2 177.5

3 (1.1,-0.24) 2 225.8 222.2 225.8 222.4 224.8 228.4 225.8 225.7

4 386.6 382.1 390.3 383.1 388.2 397.2 386.8 394.4

6 466.6 452.0 471.4 454.3 467.9 483.5 466.6 473.9

10 502.2 491.4 498.0 496.2 501.8 513.5 502.1 504.0

4 (0.95,-0.9) 2 195.1 191.3 195.2 191.4 193.3 195.8 195.0 195.0

4 272.5 265.0 272.7 265.2 270.0 275.2 272.5 273.2

6 304.9 331.8 304.9 332.5 304.4 307.6 305.0 305.6

10 486.9 474.2 490.5 476.6 488.8 498.4 487.0 489.5

5 (1.75,-0.96) 2 431.9 409.1 431.7 409.1 425.7 425.9 431.4 430.9

4 1302.9 1262.2 1302.3 1262.6 1298.1 1300.4 1301.4 1301.6

6 1602.4 1530.7 1606.5 1532.3 1601.3 1648.0 1601.8 1612.5

10 2202.9 2288.3 2211.5 2293.5 2194.3 2212.2 2200.8 2202.4
∗ The mean squared errors have been multiplied by 100.
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Table 2. Ratios∗ of the simulated h-step mean squared errors of prediction of
the Plug in and direct methods when fitting AR models of fixed & selected
orders.

k Order Selected

Model h 1 2 3 4 5 8 10 α = 2 α = ln T

6 (0,1;0.5) 2 101.4 100.5 99.1 99.3 99.5 99.4 99.2 99.9 98.2

4 100.8 99.9 99.3 99.2 99.5 100.1 99.6 99.6 100.5

6 100.9 99.4 99.1 99.3 98.2 98.9 98.9 99.0 100.1

10 100.4 100.4 99.5 99.0 99.2 98.2 96.8 99.4 100.4

7 (1,2;-0.7;-1.1,0.3) 2 103.4 102.3 101.3 101.1 99.4 99.9 99.8 99.0 99.3

4 109.1 101.6 103.7 98.2 99.0 99.4 100.3 98.8 99.4

6 111.9 104.9 101.2 99.0 100.1 98.9 99.6 99.3 100.3

10 105.9 101.1 100.5 100.4 100.3 100.3 99.3 100.0 101.0

8 (2,1;-0.64,-0.7;0.8) 2 156.0 107.5 102.4 105.9 99.7 100.0 99.4 99.4 99.8

4 101.0 106.1 101.0 102.8 100.7 99.6 99.9 100.3 102.2

6 105.5 111.1 104.5 99.6 98.4 99.8 98.8 98.6 100.7

10 101.6 98.4 97.8 102.2 102.2 97.4 97.2 98.4 99.5

9 (1,1;0.5;0.8) 2 104.2 102.8 99.8 99.4 99.7 100.0 99.4 100.9 97.4

4 104.9 101.2 102.1 102.2 99.6 99.7 100.0 99.6 99.9

6 101.8 100.3 99.3 98.9 100.6 97.7 98.2 101.7 101.1

10 100.8 100.5 99.3 99.6 99.0 98.2 98.2 99.3 100.1

10 (2,0;0.95;-0.9) 2 99.7 108.6 106.2 126.8 101.6 99.8 100.4 98.8 101.9

4 101.0 104.0 136.9 134.1 107.0 101.1 100.3 101.6 102.2

6 167.5 166.1 151.4 153.6 111.1 98.6 100.6 102.1 102.4

10 99.5 100.3 110.2 111.1 104.0 100.1 100.8 98.7 99.4
∗ The ratios have been multiplied by 100.

The simulated mean squared errors of prediction of the direct and plug in
methods were computed for the five AR(2) models in two separate situations:
first, when the order of the fitted model equalled the actual second order of the
generated model and second when the fitted order was selected from the data by
the criterion (2.20) but with α = 2 and α = ln T , the latter corresponding to the
use of a consistent criterion; the value of K, the maximum order fitted, was set
to equal 20 with T ≥ 100, but a smaller value was used with T = 50.

For the remaining four ARMA models, the simulated mean squared errors of
prediction were again computed in two separate situations, first, when an AR(k)
model was fitted by the direct and plug in methods, but with k taking each of ten
different fixed values, namely k = 1, 2, . . . , 10, for all h and in all 500 simulations,
and, secondly, when k was selected by the criterion (2.20) but with α = 2 and
α = ln T .

Note that (6.1) is a linear model and even when q > 0, the generated pro-
cess could be well approximated by an autoregressive model. For comparing the
behaviour of the direct and plug in forecasts when the stochastic structure pro-
ducing an observed time series is unknown but it could be non-linear, we also
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generated a stretch of NN = T + 500 observations from the following model:

Model 10: yt = a1yt−1 + a2yt−2 + εt,

where {εt} was generated as a sequence of independent Exponential variates,
each with mean 1.0. To save space, we only consider (a1 = 0.95, a2 = −0.9)
and T = 500. The direct and plug in methods were however actually applied to
observations x̃t = xt − x̄, where x̄ denotes the arithmetic mean of the xt’s and
the xt’s were obtained by a non-linear transformation of yt defined as follows:

xt = y∗2
t

,

y∗
t

= y
NN−t+1

, t = 1, . . . , NN, NN = T + 500.

The actual technique used for generating the multistep forecasts by the direct
and plug in methods was however the same as that described above and the
details are not repeated.

The simulated mean squared errors of prediction for the five AR(2) models
are shown in Table 1 together with the ‘asymptotic’ mean squared errors. The
latter were computed from (3.17), (3.19) and Proposition 3.2 and apply only when
the correct second order is fitted. To save space, only the results for h = 2, 4, 6, 10
and T = 100 and 500 are shown: The simulated mean squared errors of the direct
method are seen to be generally greater than those of the plug in method, both
when the order is selected and when the order is treated as known. On the other
hand, the difference between their respective mean squared errors is not large and
it is more noticeable for Model 5 than for other models. As may be expected on
intuitive grounds, the simulated mean squared errors are generally larger when
the order is selected than when the correct order is fitted; also the former tend
to be smaller when α = ln T than when α = 2.

For models 6 - 10, the ratio of the simulated mean squared errors of prediction
of the plug in and direct methods, after multiplication by 100, is shown in Table
2; thus, if the displayed value of this ratio equals 100 then the two methods have
identical mean squared errors, a value less than 100 indicates that the plug in
method has a smaller mean squared error, and a value greater than 100 indicates
that the converse holds and the direct method has a smaller mean squared error;
moreover, in both these situations a quantification of the extent to which the
relevant mean squared error is smaller is also given in Table 2. For all these five
models, there is no ‘true’ autoregressive order and thus the results obtained with
the various values of k demonstrate the effect of approximating the generated
process by a possibly under-parametrized autoregressive model; by contrast, the
results for order selected show the effectiveness of the criterion (2.20) in selecting
an approximating autoregressive model for describing the generating structure
of the process.
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Unlike the results described above for pure autoregressive models, the plug
in method is not necessarily superior to the direct method for Models 6 - 10,
especially when judged by the magnitudes of their respective mean squared errors
of prediction. It is seen that when an underparametrized autoregressive model is
fitted, that is, especially with k = 1 and 2, the simulated mean squared errors of
the plug in method are generally greater than those of the direct method and for
Models 8 and 10 in particular the former could be greater by as much as 66%.
On the other hand, however, if a sufficiently long autoregression is fitted, that
is, especially with k = 8 and 10, the plug in method tends to have a smaller
mean squared error, though the difference is not necessarily substantial. To gain
an appreciation for this behaviour, we observe that, in the former situation, the
main advantage of using the direct method, namely its smaller ‘bias’ is likely
to dominate its disadvantage, namely its greater variability in estimating the
prediction constants; but the converse may hold in the latter situation and the
greater variability of the direct method could nullify its smaller bias.

For an observed time series, the order of an approximating autoregressive
model would be selected by employing an order determining criterion. It is seen
that in this situation, neither of these two methods has a clear advantage over
the other. Thus, for α = ln T , the direct method tends to have a smaller mean
squared error, and the converse holds when α = 2; at the same time, the difference
between their respective mean squared errors is not necessarily substantial.

Thus, in conclusion, the simulation results indicate that for a finite autore-
gressive process, the plug in method has a clear advantage over the direct method
for multistep prediction, even when the order of the fitted model is selected by
an order determining criterion. For other models, however, the position is less
clear cut and the use of direct method would help in reducing the mean squared
error of prediction if an under-parametrized model is used and that this possibil-
ity could arise if the autoregressive order is selected by the criterion (2.20) with
α = ln T .
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