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Abstract: The study of optimal connected block designs when the number of exper-
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nication, several new optimality results in di�erent classes of connected block designs

are obtained for this situation.
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1. Introduction

Suppose it is desired to investigate the e�ects of v (> 2) treatments using a

block design d, having b blocks. It is well known that under a standard �xed

e�ects model, all treatment contrasts are estimable using d (i.e., d is connected)

only if

n � b+ v � 1 = n0; say, (1:1)

where n is the number of experimental units in d.

In the recent past, several papers have appeared in the literature which deal

with the optimality of connected block designs when the number of experimental

units is small, typically, n0 or (n0 + 1) (see e.g., Mukerjee, Chatterjee and Sen

(1986), Kra�t (1990), Mukerjee and Sinha (1990), Bapat and Dey (1991), Birkes

and Dodge (1991) and Mandal, Shah and Sinha (1991)). With such a small

number of experimental units, the usual symmetry arguments for arriving at

optimality results no longer work and special techniques are needed to identify

optimal designs.

The purpose of this communication is to present additional optimality re-

sults in di�erent classes of connected block designs with n0 or n1 = (n0 + 1)

experimental units. For i = 0; 1, let Di(v; b; k) denote the class of all connected

block designs with v treatments, b blocks and constant block size k, satisfying

bk = b+ v + i� 1: (1:2)

Also, let D(v; b; n) denote the class of all connected block designs with v treat-

ments, b blocks and n experimental units (block sizes being arbitrary).
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In Section 2, we identifyD- and E-optimal designs inD(v; b; n1). It turns out

that the design that is A- and MV -optimal in D(v; b; n1) (see Birkes and Dodge

(1991)) is also D- and E-optimal in the same class. In Section 3, MV -optimal

designs in D1(v; b; k) are identi�ed. Bapat and Dey (1991) and Mandal et al.

(1991) have identi�ed a design that is A-, D- and E-optimal in D0(v; b; k). We

show in Section 4 that the same design is MV -optimal in D0(v; b; k) and is also

A- and MV -optimal in D0(v; b; k) for inference regarding elementary treatment

contrasts between a control treatment and each of a set of test treatments. We

further show in Section 4 that inD0(v; b; k) there is no  f -optimal design. Finally,

in Section 5, we refer to some open problems. For the de�nitions of various

optimality criteria, one may refer to the monograph of Shah and Sinha (1989).

2. Optimality Results in D(v; b; n1)

2.1. D-optimality

For obtaining results on D-optimality of block designs in D(v; b; n1), we make

use of a graph-theoretic formulation of the D-criterion (see e.g., Ga�ke (1982)

and Bapat and Dey (1991)). We briey summarize this formulation �rst. For

graph-theoretic terminology, one may refer to, e.g., Harary (1988).

Any block design d with v treatments and b blocks can be described by a

bipartite multigraph Hd; the treatment labels 1; 2; : : : ; v and the block labels

�1; �2; : : : ; �b, say, are the vertices of Hd. A pair of vertices (i; �j) is joined by

ndij parallel edges, where ndij is the number of times the ith treatment appears

in the jth block of d. The design d is connected if and only if Hd is connected in

the graph-theoretic sense. A (simple) graph T is called a tree if it is connected

and has no cycles. For a multigraph G, a subgraph of G is called a spanning

tree if it is a tree and has the same number of vertices as G. For a connected

multigraph G, the number of spanning trees in G is called the complexity of G

and is denoted by c(G).

It is well known (see Chakrabarti (1963)) that for a connected block design

d, all cofactors of Cd (the \C-matrix" of d) are equal and positive and

v�1Y
i=1

�di = vCo(Cd); (2:1)

where Co(Cd) is the cofactor of an element of Cd and 0 = �do < �d1 � �d2 �

� � � � �d;v�1 are the eigenvalues of Cd. If Hd is the bipartite graph associated

with a connected block design d, then it is easy to see that (see e.g., Bapat and

Dey (1991))

c(Hd) = Co(Cd)
bY

j=1

kdj ; (2:2)



MINIMALLY CONNECTED OPTIMAL BLOCK DESIGNS 549

where kd1; kd2; : : : ; kdb are the block sizes of d. Hence from (2.1) and (2.2), we

have
v�1Y
i=1

�di = vc(Hd)=f
bY

j=1

kdjg: (2:3)

Thus, a design is D-optimal over a class of competing designs if it maximizes the

r.h.s. of (2.3). Recall that a design is D-optimal over a certain class of competing

designs if it maximizes
Qv�1

i=1 �di over the class.

Now, observe that for any design d 2 D(v; b; n0);Hd itself is a tree and hence

has precisely one spanning tree. A design in D(v; b; n1) has just one additional

experimental unit over a design in D(v; b; n0). This means that the graph associ-

ated with any design in D(v; b; n1) has precisely one extra edge over the number

of edges in the graph of a design in D(v; b; n0). The consequence of adding one

more edge to a tree is that in the new graph, there is precisely one cycle, unless

the added edge results in a multiple edge. Note that for d 2 D(v; b; n1);Hd will

have a multiple edge if and only if the design d is non binary. But, if there is a

multiple edge in Hd for d 2 D(v; b; n1), the number of spanning trees is just two.

If Hd has a cycle, then since Hd is bipartite, the length of the cycle is at least

four and equals the number of spanning trees. Further, since Hd is bipartite, the

length of the cycle is even and cannot exceed 2 min (b; v). Hence we have

Lemma 2.1. For any d 2 D(v; b; n1); c(Hd) = 2r, for some r 2 [1;min(b; v)].

We next have the following

Lemma 2.2. Let 1 � x1 � x2 � � � � � xt be integers satisfying the following

conditions:

(i) at least u of the xi's are each greater than or equal to 2,

(ii)
Pt

i=1xi = s.

Then
Qt

i=1xi is minimized when x1 = x2 = � � � = xt�u = 1; xt�u+1 = xt�u+2 =

� � � = xt�1 = 2 and xt = (s� t� u+ 2).

Proof. Observe that for two integers p; q; 2 � p � q; p+q = c (a given constant),

pq � (p� 1)(q + 1). Using this fact repeatedly, one gets the result.

Now, let d 2 D(v; b; n1) be arbitrary. If Hd has a multiple edge, then r = 1,

and in that case, in view of Lemma 2.2, the maximum of the r.h.s. of (2.3) is

2v=(v + 1). If Hd does not have a multiple edge, it must have a cycle of length

2r for some r 2 [2;min(b; v)]. In such a case, at least r of the block sizes fkdjg

must be at least two. Hence, using Lemma 2.2, the maximum of the r.h.s. of

(2.3), for given r, is

f(r) = 2vr=f2r�1(v � r + 2)g; 2 � r � min(b; v): (2:4)
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Thus, we have

Lemma 2.3. For any d 2 D(v; b; n1), if c(Hd) = 2r, for some r 2 [1;min(b; v)],

then the maximum of the r:h:s: of (2:3), for given r, is f(r); 1 � r � min(b; v);

and is attained when the design d is such that

(i) (b� r) of the blocks of d are each of size unity,

(ii) (r � 1) blocks of d are each of size two and

(iii) one block is of size (v � r + 2).

The next step is to maximize f(r) for variation in r. We prove

Lemma 2.4. f(2) = max1�r�vf(r), except when r = 3 = v.

Proof. Observe that f(2) = 2 > f(1) = 2v=(v + 1). Also, f(2) � f(3) for all

v � 4. Further,

f(2)� f(r) =
2r�1(v � r + 2)� vr

2r�2(v � r + 2)

�
2r�1(v � r + 2)� vr � (2r � r2)

2r�2(v � r + 2)
; for r � 4

=
(2r�1 � r)(v � r)

2r�2(v � r + 2)
� 0:

Hence the result is proved.

Consider now the design d� 2 D(v; b; n1), given by

d� �

1 1 1 1 : : : 1

2 2

3
...

v

(2:5)

where columns represent blocks and there are (b � 2) blocks each of size one.

From (2.3), Lemmas 2.3 and 2.4, the following result is easily obtained.

Theorem 2.1. The design d� in (2:5) is D-optimal over D(v; b; n1) for all v � 4

and for v = 3; b = 2.

Remark 2.1. Since the dual of the design in (2.5) also has the same structure,

it is also D-optimal for estimating the block contrasts, when b � 4.

Remark 2.2. Note that any design d with one block containing all the v

treatments, one block having any two distinct treatments out of 1; 2; : : : ; v and

(b � 2) blocks, each of size unity, containing any one of the v treatments is D-

optimal over D(v; b; n1). Further, for v = 3; b � 3, the design obtained by taking
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the union of the blocks of a balanced incomplete block design with parameters

v = 3 = b; r = 2 = k; � = 1 and (b� 3) blocks, each of size unity and containing

any one of the three treatments, is universally optimal over D(3; b; b + 3), and

hence is also D-optimal.

2.2. E-optimality

Birkes and Dodge (1991), among other things, identi�ed A- andMV -optimal

designs in D(v; b; n1) for all v � 4 and for v = 3; b = 2; in fact, they show that

the design d� of (2.5) is both A- and MV -optimal in D(v; b; n1). We show that

d� is also E-optimal over D(v; b; n1) for all v � 4 and for v = 3; b = 2.

It is easy to see that the positive eigenvalues of Cd� are

�d�1 = 1 with multiplicity v � 2

and

�d�2 = 2 with multiplicity 1:

Also, it is well known that for any connected block design d,

Var(t̂i � t̂j)d � 2�2=�d1 for all i 6= j; i; j = 1; 2; : : : ; v; (2:6)

where Var(t̂i � t̂j)d represents the variance of the best linear unbiased estimator

(BLUE) of the elementary treatment contrast ti � tj , using d; �
2 is the variance

of an observation and �d1 is the smallest positive eigenvalue of Cd. This implies

that

max
1�i<j�v

Var(t̂i � t̂j)d � 2�2=�d1 ) �d1 �
2�2

max1�i<j�vVar(t̂i � t̂j)d
: (2:7)

But as, shown by Birkes and Dodge (1991), for any d 2 D(v; b; n1); with v � 4

or v = 3 and b = 2,

max
1�i<j�v

Var(t̂i � t̂j)d � 2�2: (2:8)

Combining (2.7) and (2.8), we have, for any d 2 D(v; b; n1), with v � 4 or

v = 3; b = 2

�d1 �
2�2

2�2
= 1 = �d�1

which leads us to the following

Theorem 2.2. The design d�, given by (2:5) is E-optimal over D(v; b; n1) for

all v � 4 and v = 3; b = 2.

Remark 2.3. For v = 3; b � 3, the design of Remark 2.1 is universally optimal

over D(v; b; n1) and hence is also E-optimal.
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Remark 2.4. The results of this Section (Theorems 2.1 and 2.2) are better

viewed as optimality results on main-e�ect plans for two-factor experiments,

rather than on block designs, as the design that turns out to be optimal has little

appeal as a block design. See Mukerjee and Sinha (1990) for a related result.

3. MV-Optimal Designs in D1(v; b; k)

In this Section, MV-optimal designs in D1(v; b; k) are identi�ed, where k � 3.

Recall that a design is MV-optimal over a class of competing designs if it mini-

mizes the maximum variance of the BLUE of an elementary treatment contrast.

Let d 2 D1(v; b; k) be arbitrary. Then, arguing as in Section 2, one can show

that for d 2 D1(v; b; k); the bipartite graph Hd has 2r spanning trees for some

r 2 [1; b]. Note that in D1(v; b; k); b < v. Towards MV-optimality, we �rst show

that for b � 4,

max
1�i<j�v

Var(t̂i � t̂j)d � 4�2 8 d 2 D1(v; b; k): (3:1)

For proving (3.1), we �rst prove the following result.

Lemma 3.1. For any d 2 D1(v; b; k), the variance of the BLUE of a treatment

contrast t� � t� is at least 4�2 if

s � 4(t� 2); (3:2)

where 2t is the number of observations involved in an unbiased estimator U of

t��t� and s is the number of cells common between U and the cycle (or, multiple

edge) of Hd, the bipartite graph associated with d.

Proof. For any d 2 D1(v; b; k), there is a unique error function (apart from a

scalar multiple), say Z. (Recall that a linear function of observations with ex-

pectation zero is called an error function). Clearly, Z must be a linear function

of 2r observations belonging to the cycle (or, multiple edge) of Hd and the coef-

�cients in this linear function are �1. Let U be a linear unbiased estimator of

t� � t�, based on 2t observations. If U and Z have s observations in common,

the covariance between U and Z, Cov(U;Z) = �s�2, where �2, as before, is the

variance of an observation. Since Z is the only error function, it is easy to see

that the BLUE of t� � t� is

t̂� � t̂� = U � fCov(U;Z)=Var(Z)gZ (3:3)

and

Var(t̂� � t̂�) = (2t� s2=2r)�2: (3:4)
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We can assume, without loss of generality that, s � r, for, if s > r, we can replace

U by U 0 = U � Z, and for U 0, the corresponding value of s is s0 = 2r � s < r.

Since, by our assumption, s � r, the condition (3.2) ensures that Var(t̂� �

t̂�) � 4�2.

In subsequent discussions, it is assumed that U is so chosen that s � r. We

next prove

Lemma 3.2. For any d 2 D1(v; b; k); b � 4, one can always identify at least one

pair of treatments, � and �, such that (3:2) holds.

Proof. We consider three separate cases, viz., (i) r = b, (ii) r = b � 1 and (iii)

1 � r � b� 2. Here 2r is the number of spanning trees in the graph Hd.

Case (i) r = b.

Here we have a cycle of length 2b in Hd. Let the cells in the cycle be in

standard order (1; B1); (2; B1); (2; B2); (3; B2); : : : ; (b;Bb); (1; Bb); where Bj (j =

1; 2; : : : ; b) is the label of the vertex corresponding to the jth block in Hd and

1; 2; : : : ; v are the treatment labels. Note that the error function Z is a linear

combination (with coe�cients �1) of the observations arising from the above

cells. Let the remaining (v � b) treatments, each of which is singly replicated

in d, appear in the b blocks as follows: (b + 1); (b + 2); : : : ; (b + k � 2) in block

B1; b+ k� 1; b+ k; : : : ; b+2k� 4 in B2, and so on. It is now easy to see that for

� = b+ 1 and � = b+ 2k � 3, t = 3 and s = 4 and thus (3.2) holds.

Case (ii) r = b� 1.

Let the cycle of length 2(b � 1) in Hd involve the �rst (b � 1) blocks. The

last block contains precisely one treatment from the union of the (b � 1) blocks

of the cycle. Let � be this treatment. Clearly, � cannot occur in every block of

the cycle. Therefore, suppose B1 does not contain �. If � is a treatment from

B1, which is not a part of the cycle and � 6= � is a treatment from the last block,

then t � 3 and s � 2(t� 1) and thus (3.2) holds.

Case (iii) 1 � r � b� 2.

Let the blocks of the cycle of length 2r be B1; B2; : : : ; Br. If r = 1, i.e.,

if there is a multiple edge, let B1 be the block involved in the multiple edge.

Further, let S1 (respectively, S2) be the set of treatments in (respectively, not

in) B1; B2; : : : ; Br. The number of experimental units in B1 [ B2 [ � � � [ Br is

rk. This leaves (b � r)k experimental units. Since jS1j = r(k � 1); we have

jS2j = v� r(k� 1) = b(k� 1)� r(k� 1) = (b� r)(k� 1). Each of the treatments

in S2 must have at least one replication. Further, Br+1 [ Br+2 [ � � � [ Bb must

contain at least one treatment from S1. Thus, at most (b� r � 1) experimental

units are available for repeating a treatment from S2 in these units. Hence, at

least (b � r)(k � 1) � (b � r � 1) = (b � r)(k � 2) + 1 treatments belonging to
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S2 must have only single replication. Since k � 3; (b � r)(k � 2) + 1 � k for

1 � r � b� 2. Thus, there must exist two blocks, say Br+1 and Br+2 involving

treatments �; � 2 S2; � 2 Br+1; � 2 Br+2, which have only a single replication

each.

We now have two possibilities, viz., (i) there exists a chain (path) from � to �

not involving any cell of the cycle, and (ii) every chain from � to � involves cells in

the cycle. In the �rst case, s = 0; t � 2 and in the second case, t � 3; s � 2(t�1).

Thus, the condition (3.2) is met and the lemma is proved.

Lemmas 3.1 and 3.2 leads us to

Theorem 3.1. For any d 2 D1(v; b; k); b � 4,

max
1�i<j�v

Var(t̂i � t̂j)d � 4�2:

Now, let d1 2 D1(v; b; k) be the following design with columns as blocks:

d1 �

2
6666664

1 1 1 � � � 1 1

2 k + 1 2k (b� 2)k � b+ 4 (b� 1)k � b+ 2

3 k + 2 2k + 1 (b� 2)k � b+ 5 (b� 1)k � b+ 3
...

...
...

...
...

k 2k � 1 3k � 2 (b� 1)k � b+ 2 v

3
7777775
: (3:5)

Then, we have

Lemma 3.3. For d1 2 D1(v; b; k);

Var(t̂i � t̂j) � 4�2 8 i; j; 1 � i < j � v:

Proof. Since treatment 1 appears in all the blocks, the variance of the BLUE

of any elementary treatment contrast cannot exceed 4�2.

Combining Theorem 3.1 and Lemma 3.3, we have

Theorem 3.2. The design d1, given by (3:5), is MV-optimal over D1(v; b; k)

whenever b � 4.

We now discuss the cases b = 2 and 3. For b = 2, there are only two

distinct designs, d21 and d22, given below and every other design in D1(v; 2; k) is

isomorphic to one of these two designs:

d21 �
(1; 2; 3; : : : ; k � 1; k)

(k; k + 1; k + 2; : : : ; v; 1)
; d22 �

(1; 1; 2; 3; : : : ; k � 1)

(�; k; k + 1; k + 2; : : : ; v):

Here parentheses include blocks and in d22; � is any treatment from the �rst block.

Easy computations show that d21 is strictly MV -better than d22.
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For b = 3, there are three distinct designs, d31; d32; d33, given below:

d31 �

(1; 2; : : : ; k � 1; k)

(k; k + 1; : : : ; 2k � 2; 2k � 1)

(2k � 1; 2k; : : : ; v; 1)

d32 �

(1; 2; : : : ; k � 1; k)

(k; k + 1; : : : ; 2k � 2; 1)

(�; 2k � 1; : : : ; 3k � 2; v)

;

d33 �

(1; 1; 2; 3; : : : ; k � 1)

(�1; k; k + 1; k + 2; : : : ; 2k � 2)

(�2; 2k � 1; 2k; 2k + 2; : : : ; v):

Here rows are blocks, � in d32 is a treatment from the union of the �rst two blocks

and in d33; �1 is a treatment from the �rst block and �2 is a treatment from the

union of the �rst two blocks. One can easily see that d31 is MV -optimal in

D1(v; 3; k).

4. Optimality Results in D0(v; b; k)

Consider now the class D0(v; b; k) and recall that the parameters of any

design in D0(v; b; k) satisfy b(k � 1) = v � 1. Let d0 be a design constructed as

follows: allocate the v � 1 = b(k � 1) treatments to the b blocks at the rate of

(k � 1) treatments per block such that these blocks are mutually disjoint. Add

the vth treatment to each of the blocks to get the design d0. It is known (see

Bapat and Dey (1991) and Mandal et al. (1991)) that d0 is uniquely A- and

E-optimal and is also D-optimal (all designs in D0(v; b; k) are equivalent as per

the D-criterion). We now show that d0 is (i) MV -optimal, and (ii) A- and MV -

optimal for inference regarding control vs test comparisons. We �rst prove the

following result at the suggestion of a referee, which was stated without proof by

Mandal et al. (1991).

Lemma 4.1. The variance of the BLUE of any elementary treatment contrast,

using a design d 2 D0(v; b; k), is an even multiple of �2.

Proof. Since for any design in D0(v; b; k), there are no error functions, any linear

function of observations is the unique linear unbiased estimator of its expectation.

Now, suppose ti � tj is an elementary treatment contrast. Then, it is easy to

see that the unique linear unbiased estimator of ti � tj is necessarily of the formPb

u=1 �u(yru � ysu); where �u = 0 or 1 and yru; ysu are two observations in the

u-th block. The lemma is now obvious.

Note that since ti � tj has just one linear unbiased estimator, it is also the

`best' and the term BLUE in the statement of the lemma is used in this sense.

We next prove

Theorem 4.1. The design d0 is uniquely MV-optimal (up to isomorphism) in

D0(v; b; k).
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Proof. It is easy to see that

max
1�i<j�v

Var(t̂i � t̂j)d0 = 4�2:

Let d (6= d0) be an arbitrary design in D0(v; b; k). As shown in Mandal et al.

(1991), d has at least one pair of disjoint blocks. Hence

max
1�i<j�v

Var(t̂i � t̂j)d � 6�2 8 d 2 D0(v; b; k); d 6= d0:

This proves the theorem.

A problem that has received considerable attention in the recent past is

that of obtaining A- andMV -optimal designs for inference regarding elementary

treatment contrasts between a given treatment (called control treatment) and

each of a set of other treatments (called test treatments). For an excellent review

on the developments in this area, see Hedayat, Jacroux and Majumdar (1988).

For this problem, we now identify A- and MV -optimal designs in D0(v; b; k).

Theorem 4.2. The design d0 is A- and MV-optimal in D0(v; b; k) for inference
regarding elementary contrasts between the control and each of the test treat-

ments when the treatment common to all the blocks of d0 is treated as control

and the other (v � 1) treatments are test treatments.

Proof. By Lemma 4.1, for any d 2 D0(v; b; k),

Var(t̂0 � t̂i)d � 2�2; for i = 1; 2; : : : ; v � 1:

Also,
Var(t̂0 � t̂i)d0 = 2�2 8 i = 1; 2; : : : ; v � 1:

Here (t̂0 � t̂i) is the BLUE of t0 � ti; t0 is the e�ect of the control treatment and
ti, that of the ith test treatment. The A- and MV -optimality of d0 for inferring
on contrasts ft0 � tig now follows.

As mentioned earlier, the design d0 is known to be A-, D- and E-optimal in
D0(v; b; k) for inference regarding a complete set of orthonormal treatment con-
trasts, and, by Theorem 4.1 is alsoMV -optimal. One may become ambitous and
ask whether d0 is optimal in D0(v; b; k) according to a wider class of optimality
criteria as well, e.g., one may ask whether d0 is  f -optimal in D0(v; b; k) (For a
de�nition of  f -optimality, we refer the reader to Shah and Sinha (1989, p: 8)).
We answer this question in the negative in

Theorem 4.3. There does not exist a  f -optimal design in D0(v; b; k).

Proof. Recall that a design d� is  f -optimal for every continuous, nonincreasing
convex function f if and only if xd� is weakly upper majorized by xd where
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xd� = (xd�1; xd�2; : : : ; xd�;v�1) and xd = (xd1; xd2; : : : ; xd;v�1) are the vectors of
positive eigenvalues of Cd�(Cd) and d refers to any other competing design in the
same class to which d� belongs (see e.g. Shah and Sinha (1989, pp: 14-15)).

If possible, let d� 2 D0(v; b; k) be  f -optimal. Then, this implies that

xd� �
w
xd for any d (6= d�) in D0(v; b; k)

)xd� � xd; as tr (Cd) = tr(Cd�) 8 d 2 D0(v; b; k):

Here tr(�) stands for the trace of a square matrix, and, �w and � stand for weak
upper majorization and majorization respectively. Now, it is known (Marshall
and Olkin (1979, p: 79)) that for a pair of vectors a = (a1; a2; : : : ; an) and b =
(b1; b2; : : : ; bn),

a � b)

nY
i=1

ai �
nY
i=1

bi

with equality only if a is a permutation of b.
By our assumption, d� is  f -optimal ) d� is A- and E-optimal as well. But

we know from the results of Mandal et al. (1991) that there is a unique A-optimal
design (up to isomorphism) in D0(v; b; k), namely the design d0 of Theorem 4.2.
Hence d� = d0. This shows that xd� cannot be a permutation of xd, whatever be
d (6= d�) in D0(v; b; k). Further, since all designs in D0(v; b; k) are D-equivalent
(cf. Bapat and Dey (1991)), we have

v�1Y
i=1

xdi =
v�1Y
i=1

xd�i 8 d 2 D0(v; b; k):

This leads to a contradiction and hence d� cannot be  f -optimal in D0(v; b; k).

5. Concluding Remarks

In closing this paper, we look at the current state of solved and unsolved
optimality problems in the three design classes discussed in the earlier sections.

For D(v; b; n1), Birkes and Dodge (1991) have proved the A- and MV -opti-
mality of the design d�. In this paper, we have established the D- and E-
optimality of the same design.

For the class D0(v; b; k), the design d0 is known to be A-, D- and E-optimal.
In this paper, we have shown that d0 is also MV -optimal. We have also proved
the non existence of a  f -optimal design in D0(v; b; k).

In the class D1(v; b; k), we have obtained an MV -optimal design. In an
unpublished manuscript, Balasubramanian and Dey have established the D-
optimality of a design in D1(v; b; k) which is di�erent from the design that is
MV -optimal in that class. The problems of �nding A- and E-optimal designs in
D1(v; b; k) remain open.
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