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Abstract: Mainly because of their nice mathematical properties, Gaussian Kalman
filter models have been widely used, especially for forecasting. However, in many
situations Gaussian models may not do well, and as an alternative, non-Gaussian
models may be more appropriate. Unlike Gaussian models, non-Gaussian models
are hard to construct. In 1965, Bather developed some methods for constructing
“nvariant conditional distributions”, which can be considered as special forms of non-
Gaussian Kalman filter models. In this paper, we propose a non-Gaussian Kalman
filter model, based on the family of invariant conditional distributions. This model
is suitable for tracking reliability growth, and is applied to a well known set of data
on software failures. Implementing the model requires numerical techniques for which
the Gibbs Sampling algorithm is used.
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1. Introduction and Overview

Over the past two decades, mainly as a result of an increased demand for
credible software, the topic of software reliability has attracted the attention of
computer scientists, software engineers, and statisticians. In a recent article,
Littlewood and Strigini (1992) give a perspective on how critical the reliability
of software has become, and the role of probability and statistics in assessing it.

A key stage in the development of reliable software is the “test-debug stage”.
Here the software is subjected to testing with the aim of determining whether the
developed product meets specifications. When an input is run on the software and
its outcome differs from what is expected, it is said that a “software failure” has
occurred. Those parts of the code that cause the failure are referred to as “bugs”.
Whenever a software failure occurs, an attempt is made to identify the bug, and to
remove it. This process is called “debugging the software”. Debugging is intended
to improve the quality of the software which is often expressed in terms of the
reliability of the software. Many definitions for the reliability of software have
been proposed, (see, for example, Nelson (1978), Brown and Lipow (1979), and
Goel (1985)), but the one most commonly used is, “the probability of failure-free



536 YIPING CHEN AND NOZER D. SINGPURWALLA

operation of a computer program for a specified time in a specified environment”
(cf. Jelinski and Moranda (1972), Musa (1989)).

Since an attempt at identifying and removing a bug may not always result in
a success, a question that arises is whether the overall reliability of the software
is growing as the result of the debugging, and if so, how reliable is the software at
its current stage? Numerous models have been proposed to describe the growth
of reliability during the test-debugging stage. Many of these models take the
approach of specifying the failure rate functions for the times between software
failures. Others use non-homogeneous Poisson Processes to model the number
of bugs that are detected and eliminated up to a certain time. The former have
been referred to by Singpurwalla and Wilson (1992) as models for times between
successive failures, and the later as models for the number of failures. Recently,
Singpurwalla and Soyer (1992) have proposed a Gaussian Kalman filter model
to describe reliability growth. This model, when applied to a well known set of
software failure data, outperforms the predictive ability of competing models.

Since failure data are generally skewed, a use of Gaussian models for analyz-
ing such data is not meaningful. In this paper we propose a non-Gaussian Kalman
filter model, and discuss its application to the set of data alluded above. The the-
ory underlying our model is based on a paper by Bather (1965) entitled “Invariant
Conditional Distributions” (ICD); thus we refer to our model as the ICD model.
In Section 2, we describe a non-Gaussian Kalman filter model in its general form;
in Section 3, we discuss the relevance of this model to assess the growth of re-
liability and illustrate its application. An application of our ICD model entails
expressions which, due to a lack of conjugacy of non-Gaussian terms, cannot be
expressed in closed form. Thus its implementation calls for numerical techniques,
and for this we resort to the Markov-chain simulation technique of “Gibbs Sam-
pling”; see Gelfand and Smith (1990). The performances of the ICD model and
the Gaussian Kalman filter model are then compared. Our conclusion is that a
consideration of the non-Gaussian model results in an improved predictive per-
formance over the Gaussian model. Thus, our recommendation is to use models
of the type discussed here for assessing reliability growth.

2. A Non-Gaussian Kalman Filter Model

Largely due to their mathematical tractability, Gaussian Kalman filter mod-
els and their applications have been extensively reported in the statistical lit-
erature (cf. Meinhold and Singpurwalla (1983, 1986), and West and Harrison
(1989)). However, in an important, but hitherto unnoticed paper, Bather (1965)
introduced the concept of “Invariant Conditional Distributions”, developed some
theory, and gave four illustrative examples. Bather’s paper is generally difficult to
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read; however, once decoded, this paper and its examples provides an appropri-
ate framework for both Gaussian and non-Gaussian filtering. Smith (1979) uses
Bather’s result for a generalization of the Bayesian steady forecasting model, and
Smith and Miller (1986) use it to address a problem in the prediction of records.
In this section we use the ICD to develop the updating mechanism for a non-
Gaussian Kalman filter model that is relevant to assessing reliability growth; in
the sequel, we generalize some aspects of the work of Smith and Miller (1986).

2.1. Review of a Gaussian Kalman filter Model

For developing a non-Gaussian Kalman filter Model we shall adopt the format
used by West and Harrison (1989) for Gaussian models. Accordingly, let X, rep-
resent the observation at time n, 8, the state of nature at n, D,, = {X1,...,Xn}
the collection of observations until n, and m, and By the starting values of the
Kalman filter. The notation “X ~ N|u,0?]” denotes the fact that X has a
Gaussian distribution with mean p and variance 0.

The Gaussian Model

The observation equation: (Xn|6,) ~ N[Fyn, Vy].
The system equation: (0,]0n-1) ~ N[Gpbn_1, Wy].
The starting distribution: (60| Do) ~ N[meo, Bol.

The Results (Updating Equations)

The posterior of 6,,_;: (Bp—1|Dn-1) ~ N{mpn_1, Br_].
The prior of 8,: (64|Dn_q) ~ N[Grpmin-y, Ry).
The 1-step ahead prediction: (Xp|Dn-1) ~ N|fn,Qn].

The posterior of 6,: (8,|Dn) ~ N[mn, By].

The appropriate expressions for my, Bn, Rn, Qn and fr can be found in
West and Harrison (1989, p.110). Observe that we have used B, in place of the
C. used by West and Harrison (1989); this is to avoid confusion with the C,’s of
the following section.

2.2. Development of a non-Gaussian Kalman filter Model

By rewriting Example 2 of Bather (1965) in a format that is parallel to
the one above, we are led to a model for non-Gaussian filtering. The notation
“X ~ Gamma(v,8)” denotes the fact that X has a gamma distribution with
shape parameter v and scale parameter 6. Similarly, “X ~ Beta(o,8)” denotes
the fact that X has a beta distribution with parameters o and 6. The coefficient
C, which for us plays a key role for assessing reliability growth, is a scaling
constant.
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A Non-Gaussian Model

The observation equation: (X,|0,) ~ Gamma(v, §,,).
The system equation: (C6,/0,-1|0,-1) ~ Beta(o,v),

where v, C and ¢ are assumed to be known.
The starting distribution: (60| Do) ~ Gamma(o + v, ug).

The Results (Updating Equations)

The posterior of ,_1: (0r-1|Dp—1) ~ Gamma(o + v, up_1).
The prior of 6,,: (6n]Dy-1) ~ Gamma(o, cu,_1).
The 1-step ahead prediction: (Xn/(Ctp-1)|Dn-1) ~ Pearson Type VI
(with p = v and ¢ = 0);
i (see Johnson and Kotz (1970), p.51).
The posterior of 6,: (6,]D,) ~ Gamma(o + v, u,),
where u, = Cup_; + .

The restrictions on the model parameters indicated above, ensure that the
set up remains within the framework of the ICD’s. For a brief overview of the
ICD’s see Appendix A. However, for many applications the above restrictions are
limiting, and need to be relaxed. This is done below.

2.3. A generalization of the non-Gaussian Model

The observation equation: (X,16.) ~ Gamma(w,,0,).
The system equation: (Cr0n/0r-1|0n—1) ~ Beta(op_1,vpn_1).
The initial information: (60| Do) ~ Gamma(cg + vg, ug),

where C,,, wn,, v, and o, are assumed to be known and non-negative; furthermore,
they are required to satisfy the condition

On-1+ Wp = 0n + Uy, forn=2,3,....

Observe that our generalization allows the C’s and ¢’s to change from stage
to stage, and does not require that the observation equation and the system
equation have a common fixed parameter. Even though our application does not
call for the above generalizations, they are presented here for completeness.

The Results (Updating Equations)

The posterior of 6,,_;: (0n-1]Dn-1) ~ Gamma(op_1 + Un_1, Un_1).
The prior of 6,,: (6n]|Dp-1) ~ Gamma(o,_1, Cpttn_1).
The 1-step forecast: (Xn/Cntin_1|Dp-1) ~ Pearson Type VI

(p =Wn, = a‘n—l)'
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The posterior for 6,: (8n|Dn) ~ Gamma(on—1 + Wn, Un);
where u, = Cpn_1 + Xn.

In the next section, we argue that when the above model is used for assessing
reliability, the parameter C, provides inference about the growth or decay of
reliability. Thus it is meaningful to treat the C,’s as being unknown. However,
when such is the case, and even if C,, were to be a constant C, the C, and 6, are
correlated, and no close form updating formulae are available. Thus inference
about C,, and 6, would call for computer intensive technologies, such as Gibbs
Sampling, which involves an extensive simutation, or the numerical solution of
optimization problems, as is done by control engineers.

3. Relevance of Model for Tracking Reliability Growth

The model for software failures proposed here is based on the development
of Section 2.3. In what follows, we replace the X,,’s of the observation equation
by T,’s, where T,, denotes the time between the (n—1)th and the nth failure, for
n > 1. Ty > 0is chosen arbitrarily; it reflects our best assessment about the inter-
failure times prior to observing any data. For predictions, we use the mean of the
distribution of the 1-step ahead forecasts. To simplify the model specifications,
we let w, = v, = 0, = 2, and set C, = C. The latter simplification is restrictive,
but as will be argued soon, does provide advantages of interpretation vis-a-vis
the overall growth or decay of reliability. When the above have been done, t,,, our
prediction for T,,, given the collection of inter-failure times D,_1 = {t1,...,tn-1},
and the parameter C, is of the form

i = E(Ta|Dp-1,C) = 2Cun_1,

where
' Up =ty + Ctpo1 + C?*tp_g+ -+ C'to.

The above relationships suggest that C plays a key role in describing the
growth or decay of reliability. Specifically, for C' = 1, E(Ty|Dy-1,C) is always
increasing in n, implying a substantial growth in reliability, whereas C equal to
zero would suggest a drastic decay in reliability. Values of C' that are intermediate
to the above would, depending on D,_,, imply a growth or decay in reliability.
As a general rule, we should expect a growth (decay) in reliability as C tends
towards 1 (0); for details about this, see Appendix B. Consequently, a suitable
prior for C, assuming that there are no previous notions about the growth or the
decay of the reliability of the software, is a Uniform on (0,1), and this is what we
shall use. Other prior distributions on (0, 1) may also be meaningful, depending
on the prior information that is available.
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As an interesting aside, the expression for u, suggests that when C < 1,
its role is identical to that of the weight constant in ezponential smoothing (see
Box and Jenkins (1976), Section 4.3). Thus it appears that there must be an
analogy between the ARIMA (0, 1, 1) model of Box and Jenkins (1976) and a non-
Gaussian version of the ICD model of Section 2.3. For C > 1, the corresponding
ARIMA process would not be invertible, and so this case will be of little interest
to pursue.

3.1. Application to real data on computer software failures

Singpurwalla and Soyer (1992) used the “System 40” data of Musa (1979)
to investigate the predictive performance of their model which we refer to as
the S&S Model. To illustrate the workings of our ICD Model, and also to see
how well it performs in relation to the S&S Model, we apply the former to the
“System 40” data. Our application entails the following algorithm:

Step 1: Discretize the prior distribution of C at m points to obtain {c;|i =
1,2,...,m}, and P(C = ¢;|Dy), fori =1,2,...,m.

Step 2: Obtain the conditional distributions (6,|C, D,-1) and (C|6,, D,_1); the
former is via the ICD model, and the latter by an application of Bayes
law.

Step 3: For each c;, perform a Gibbs Sampling on (6, |C, D,,—1) and (C|6,, D, _1)
s times, to obtain ¢, i =1,2,...,m.

(See Appendix C for details).

Step 4: Predict T),, the time between next failure via £,.
(See Appendix D for details).

Step 5: Observe T, = t,, and compute the posterior distribution (C|t,, D,_,) =
(C|D,,), and go to Step 2. :

The number of points m for the discretization is chosen to be 200, and s, the
number of iterations for the Gibbs Sampler, is set to 500. For an expository
overview on Gibbs Sampling, see Casella and George (1990).

In Figure 1, we plot the mean values of the posterior distribution of C from
stage 1 to 101; in Figure 2, we plot the initial prior and the final posterior
distributions of C. Figure 1 shows that the mean of the posterior of C stabilizes
after the first 15 observations at around 0.425, and Figure 2 shows the sharpness
of the final posterior distribution of C. All of these indicate that the ICD Model
is quite stable in assessing the reliability growth (decay), and that it is quite
robust to the choice of the initial uniform distribution of C.
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Figure 1. Mean of the posteriors of C from Stage 1 to 101.
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of the ICD Model and the S&S Model.
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3.4. Comparison of the results given by ICD Model and S&S Model

With the S&S Model, predictions of Y,, = log(7,,), the logarithms of the
times between failures 7,, are made. For this Model, the posterior distribution
of Y, is a Gaussian, and therefore T, has the lognormal distribution. Thus to
compare the ICD Model with the S&S Model, we exponentiate ¢, the predictions
given by the of S&S Model, to obtain f, = exp(§,). Observe that exp(g,) is an
estimate of the median of the lognormal distribution of T;,. The predictions given
by the S&S Model, together with the real data, and the predictions given by the
ICD Model are given in Appendix E. The absolute value of each prediction error
from both the ICD Model and the S&S Model are plotted in Figure 3. It shows
that the predictions from the ICD Model outperforms the S&S Model most of
time, with the sum of the absolute errors reduced by as much as 3,860,608.

To further support our claim of the superiority of the ICD Model over the
S&S Model, we analyze their prequential ratio of likelihoods. Figure 4 shows the
likelihood ratios f(t,|T'(n — 1),ICD)/f(t.|T(n — 1), S&S), for n = 1,...,100.
Here T'(n — 1) = {t1,ta,...,ta_1}, and f(t,|T(n — 1), ICD) and f(t,|T(n — 1),
S&S) are the predictive distributions of the ICD Model and the S&S Model,
respectively. Most of the ratios are greater than 1, suggesting the superiority of
the ICD Model over the S&S Model.
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Figure 4. Prequential ratios of the likelihood.

The cumulative of the logarithm of the prequential likelihood ratio is plotted
in Figure 5; this ratio is defined as

" f(t:|T(i - 1),ICD)
11 ft | T = 1), 8&8)

=1

n=1,2...,100.



NON-GAUSSIAN KALMAN FILTER MODEL 543

Though this ratio starts with a negative number, it soon becomes positive and
increases with n to a very large number. The superiority of the ICD Model over

S&S Model is, again, evident.
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Figure 5. Cumulative prequential likelihood ratios.
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Appendix A: An Overview of the ICD Framework
A general parametric mathematical model can be stated as follows:
6., the state, is of interest to us;
X" = (z41,...,Zn,), all observations up to time n;

(X1]0n, X™71) = (X,|6,), that is, given 6,,, X, is independent of the history
Xnt

There are two major difficulties that need be overcome to use this model.
These two problems are:

(i) in general (6,|X""!) becomes very complicated as n increases, and
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(ii) the accumulation of X™ = (z,,...,%,) causes computer storage problem,
as n becomes larger and larger.

To address this problem, Bather (1965) studied the conditions under which
the relevant information (6,|X™ ') can be transformed through some sufficient
statistics of fixed dimension. In particular, under what conditions, could we have

(0,] X" 1) = (On|un), where Uy = Up(Tn,Un—1)?

Here u,, which depends on z, and u,_;, is a two-dimensional sufficient statistic.
We need to introduce some notation before proceeding further. Under the
assumption that u, is a sufficient statistic,

p(6,16,_1), denotes the transition probability density function of 8, given
971—1;

f(z]6), the observation probability density function of an observation;
hn(0n|tn-1), the prior distribution of 6,,;

9n(0r|un,), the posterior distribution of 8,;

90(6o), the initial distribution of 6.

Under suitable regularity conditions, it is shown that all the densities con-
cerned have exponential forms as follows:

#(18) = a(6)b(z) exp(6z),

gn(0]u) = mn(6) exp(ub — An(u)),

h(B10) = 52(6) exp{ea(u)d — pu(ca(w)));
or equivalently:

f(z|6) o b(z) exp(6z),

gn(8lu) o< mn(8) exp(ub),

ha(0lu) o< s,(8) exp{cn(u)8};

for some functions a(-), b(-), cn(-), mn(-) and s,(+), where s,(6) = m,(0)/a(8) and
Up = Cn(Un—1) + Zn.

The above results provide the same forms for the densities of our concern,
together with the updating formula for u,. However what is not good about the
above results is the dependence of the m,(-) and c¢,(-) on n.

Bather (1965) investigated some additional conditions under which the m,,(+)
and c,(-) are invariant with respect to n. That is, 3 m(-) and ¢(-) such that

mn(-) = m(), cn(r) =c(+), Vn.
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When this is the case, we have
9n(0,]ur) = m(6,) exp(unbn — Mun)) = g(60,|u,), and
hn(enlun—l) = 5<9n) eXP{C<un—1)9n - p(c(un—l))} = h(9n|un—1)'

The above are called the Invariant (wrt n) conditional densities (ICDs), and the
ICD framework that we are referring to is as follows:

f(z]6) = a(0)b(z) exp(6z),

Gn(0n]tn) = m(6,) exp(unbn — A(un)) = g(fnlun), and

ha(Bnltin-1) = 5(6n) exp{c(un-1)8n = p(c(tn-1))} = h(bn|tn-1),
where the sequence of distributions {gn} ({hn}) stays within the same family
g (h) with only its parameter as a function of u, (un-1)-
Appendix B: The Effect of C on Reliability Growth

Observe that when C = 0,

‘En = E(Tnan_l, C) = 2CUn._1 = 0,

and so the prediction is always 0. This implies that the next failure is experienced
immediately after debugging, suggesting that the software reliability clearly has

decayed.
On the other hand, when C = 1,

En = E(TnID'n—la C) =2CuUp_1 = 2Up_1,
where
Up_1 = tn1+ Clp_a +C%p_s+---+C"*
=tp_1 +tn_2+ta-z+t - +to

This implies that the predicted value of the next time between failure is twice the
cumulative of all previous times between failures, suggesting that the reliability
of the software has increased substantially.

Appendix C: The implementation of Step 3 of Section 3.1

Suppose that the conditional distributions (6,|C, Dn—1) and (C10,, Dy-1) are
given. Then for each (fixed) c;, using computer simulation, we first sample
6 from (6,]c”, Dn_1), where = ¢;, and

using the result from the above sampling, we obtain

" by sampling from (C|6), Dp_1).
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)

In general, assuming that we have obtained §4) and cy ), the 6U+Y) and cz(-j 1) are

obtained by first sampling
6U+Y) from (9n|c§j),Dn_1),
and then sampling

It from (C|0Y+Y, D, ;).

) is obtained for s, a pre-determined number

This process continues until the cgs
of iterations.

When we finish the above exercise for c¢;, we move on to ¢;y;, and so on.
Step 3 terminates when the above simulation is performed on every ¢; in {¢;|i =

1,2,...,m} and the sequence {c{*|i = 1,2,...,m} is produced.
Appendix D: The Prediction of 7,,, in Step 4 of Section 3.1

Based on the theory of Gibbs Sampling, we have the marginal distribution
of 6,, as
1 & R
E Z f(enlcg )7 Dn-—l):

1=1

f(enIDn—l) =

which is a linear combination of the prior for 6,, given ¢ = cl(-s),i =12,...,m.
Applying the results from Section 2.2, we obtain the density function of the
predictive distribution of T,

FltalDass) = = 3 f(talel”, Dyoa).

i=1

The prediction of T,,, the next time between failures is then taken as

. 1 &
tn = E(Tu|Dyoy) = — > B(Ty |, Dyoy)
i=1
1 & s s
= =327 upa (),
™m -
2=1
where u,_1(¢) = t,_y + ctp_g + c*tp_3 + -+ + c"" g, is a function of ¢ and

T(n—1) = {ti,t2, ..., tn1}.
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Appendix E: Musa’s Data and Predictions by the ICD Model and

the S&S Model

n| t(n) |ICD prediction|S&S prediction n| t(n) |ICD prediction|S&S prediction
0 320 510.00 - 511 31365 13336.63 10941.90
1] 14390 1204.36 319.99 52 24313 32765.46 47112.43
2 9000 22058.89 49418.76 53| 298890 35197.25 35781.24
3 2880 23924.20 22236.62 54 1280 267522.66 506611.63
4 5700 20255.50 4927.09 55 22099 114274.11 1628.10
51 21800 25632.41 10413.51 56 19150 65709.57 32894.16
6! 26800 48750.13 48004.90 57 2611 41151.91 28092.17
71113540 88110.80 56586.91 58 39170 20532.78 3436.01
81112137 244956.63 286440.66 59 55794 42022.25 59716.70
9 660 290003.82 261373.89 60 42632 64982.47 86167.72
10| 2700 110755.53 818.43 61| 267600 65464.91 64446.04
11| 28793 65888.62 3886.44 62 87074 254521.68 445675.81
12| 2173 46894.56 54929.40 63| 149606 182153.15 135423.75
13 7263 21388.95 3029.24 64 14400 204574.95 238005.20
14| 10865 16430.52 11316.04 65| 34560 96365.12 20226.06
15| 4230 16066.28 17231.77 66| 39600 69572.82 50497.13
16| 8460 11269.56 5990.43 67! 334395 65522.52 57947.17
17| 14805 13728.46 12564.66 68| 296015 316144.10 544305.44
18| 11844 19914.57 22720.07 69| 177355 390860.27 475570.03
19| 5361 19629.38 17370.18 70| 214622 329747.45 275861.63
20| 6553 13669.69 7305.34 71| 156400 330965.95 334991.66
21 6499 12744.48 8953.28 72| 166800 280318.57 238957.23
22 3124 11043.04 8763.92 73 10800 254832.05 254217.33
23] 51323 8872.73 3962.57 74| 267000 123497.40 14485.34
24| 17010 51652.02 80314.23 7512098833 291172.69 416760.75
25( 1890 38217.43 24194.46 76| 614080 1935391.90 3611422.25
26| 5400 17364.48 2319.21 77 7680 1351849.40 988926.88
271 62312 14942.98 7038.58 7812629667 629965.61 10155.20
28| 24826 64362.37 95854.78 7912948700 2591260.15 4666077.00
291 26335 53669.84 35438.79 80| 187200 3667195.44 5226017.50
30 363 45508.51 37330.68 81! 18000 1677352.01 288869.81
31| 13989 21629.86 410.53 821 178200 731019.82 24878.79
32| 15058 22453.09 20047.29 83| 487800 477826.72 273314.97
33| 32377 24529.41 21467.89 84| 639200 642735.98 780934.00
34| 41362 42373.38 48051.63 85| 334560 813990.24 1030877.13
35] 4160 56608.08 61709.57 861468800 651416.14 520881.38
36| 82040 31062.48 5391.53 87 86720 1555295.16 2418596.75
37| 13189 89922.38 127928.87 88| 199200 729633.94 126358.53
38| 3426 52177.42 18268.28 89| 215200 482663.53 299971.44
39| 5833 24836.98 4378.32 90| 86400 381221.35 323716.69
40 640 14455.37 7629.25 91 88640 235176.38 124444.38
41 640 5929.40 749.67 9211814400 182481.61 127318.24
42 2880 3246.33 747.07 93 4160 1634926.93 2971369.00
43 110 3563.77 3611.59 94 3200 678584.40 5319.34
44| 22080 1699.38 ¥0.35 95| 199200 287712.72 4039.84
45| 60654 19390.86 33445.11 96| 356160 298391.67 300655.94
46| 52163 59924.55 97102.96 97 518400 431429.47 549136.63
47| 12546 69002.42 81958.45 98| 345600 626867.43 809060.63
48 784 37764.68 17991.99 99 31360 551257.58 527703.38
49| 10193 16920.65 969.08 100| 265600 266743.05 43242.98
50| 7841 15401.10 14528.02
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