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Abstract: We first construct a new generalized Hausman test for detecting the

structural change in a multiplicative form of covariance matrix time series model.

This generalized Hausman test is asymptotically pivotal, and has nontrivial power in

detecting a broad class of alternatives. Moreover, we propose a new semiparametric

covariance matrix time series model. The proposed model has a time-varying long-

run component that takes the structural change into account, and a BEKK-type

short-run component that captures the temporal dependence. We propose a two-

step estimation procedure to estimate this semiparametric model, and establish the

asymptotics of the related estimators. Finally, the importance of the generalized

Hausman test and the semiparametric model is illustrated by means of simulations

and an application to realized covariance matrix data.

Key words and phrases: Covariance matrix time series model, profiled quasi maxi-
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1. Introduction

Matrix-variate observations are often encountered in statistical applications

with structured information. An important example is the realized covariance

(RCOV) matrix, which is calculated from intraday high-frequency returns and

enhances the prediction ability for the covariance matrix of the underlying mul-

tivariate process (see, e.g., Barndorff-Nielsen and Shephard (2002, 2004) and

Andersen et al. (2003)). Because modelling and forecasting a covariance matrix

are fundamental in asset pricing, portfolio selection, and risk management, it is

necessary to study the dynamics of the RCOV matrix.

The non-ignorable structured feature of the RCOV matrix is its positive

definiteness. To preserve this feature, many covariance matrix time series mod-

els have been proposed based on the Wishart or matrix-F innovation distribu-
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tion, which generates random positive-definite matrices automatically. Related

works in this direction include Gouriéroux, Jasiak and Sufana (2009), Golosnoy,

Gribisch and Liesenfeld (2012), Yu, Li and Ng (2017), Opschoor et al. (2018), and

many others. However, the aforementioned models all require stationarity, which

may be less reliable in view of the ubiquity of structural changes in applications;

see, for example, Aue and Horváth (2013) for an overview. In the presence of a

structural change, conventional statistical methodologies could lead to a severe

deterioration in predictions (Pesaran and Timmermann (2004)). Furthermore,

sub-optimal long-memory models may be adopted to capture the spurious long-

memory phenomenon (Mikosch and Stărică (2004); Stărică and Granger (2005)).

In this paper, we show that RCOV matrix data can also exhibit the spurious

long-memory phenomenon caused by a structural change. This indicates that

existing long-memory models (Corsi (2009); Chiriac and Voev (2011)) for RCOV

matrix data should be used with caution, because they overlook the possibility

of spurious long memory. To circumvent the aforementioned dilemmas, a formal

test for detecting structural changes in matrix time series models is needed, but

has not been attempted before.

We propose a new generalized Hausman test for detecting a structural change

in a multiplicative formulation of the covariance matrix time series model. The

considered multiplicative testing model is a matrix generalization of the univari-

ate volatility model in Feng (2004) and the multivariate one in Hafner and Linton

(2010), both of which allow for abrupt and smooth structural changes with an

unknown form, in the spirit of Robinson (1989, 1991). The generalized Hausman

testing framework was first proposed by Chen and Hong (2012), and then later

adopted and extended by Zhang and Wu (2012), Chen (2015), Chen and Hong

(2016), and Fu and Hong (2019). To the best of our knowledge, our generalized

Hausman test is the first formal attempt to detect structural changes for matrix

time series models. Under suitable conditions, our test is shown to have a stan-

dard normal limiting null distribution, as well as nontrivial power in detecting a

broad class of abrupt and smooth local alternatives.

Testing for structural changes is a long-standing problem in the literature.

In addition to the generalized Hausman test, many other tests have been studied

for regression or univariate/multivariate time series models; see, for example, the

cumulative sum type tests in Brown, Durbin and Evans (1975), Hidalgo (1995), Su

and Xiao (2008), Aue et al. (2009), and Shao and Zhang (2010); the supremum

type tests in Andrews (1993), Davis, Huang and Yao (1995), Bai and Perron

(1998), Hansen (2000), and Qu and Perron (2007); and the Lagrange multiplier

tests in Lin and Teräsvirta (1994) and Amado and Teräsvirta (2008). In this
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paper, we study the generalized Hausman test, because it has several appealing

advantages over other tests. First, it can detect both abrupt and smooth changes

without assuming a specified structural change alternative or knowing the type

of change. Clearly, it is important for the test to avoid such potential model mis-

specification. Second, it is asymptotically pivotal, and thus easy-to-implement.

Third, there is no need to trim the boundary region near the end points of the

sample period, allowing the test to detect changes that happen very early or very

late.

Once a structural change is indicated by our generalized Hausman test, it

is important to have a dynamic model to capture this change. For this pur-

pose, we propose a new semiparametric covariance matrix time series model.

Our semiparametric model has a multiplicative form, combining a time-varying

deterministic long-run component and a BEKK-type (Engle and Kroner (1995))

short-run component. Hence, we call it the time-varying BEKK (TVB) model.

For this nonstationary TVB model, we propose a two-step estimation procedure.

Specifically, we first consider a kernel estimator for the long-run component. Sec-

ond, we estimate the unknown parameter vector of the BEKK-type short-run

component using a profiled quasi maximum likelihood estimator (QMLE). This

profiled QMLE is obtained by assuming that the model innovation follows the

Wishart distribution, and profiles out the unobserved long-run component by

using the kernel estimator in step one. The consistency of both the kernel esti-

mator and the profiled QMLE is established under conditions allowing for both

smooth and abrupt changes (at some finite points) in the long-run component,

and the asymptotic normality of both estimators is derived under some smooth-

ness conditions on the long-run component. To derive the asymptotics of the

profiled QMLE, we show that the involved kernel estimation effect from step one

is negligible. This requires nontrivial proof techniques, because the BEKK-type

process depends on all past unobserved lagged variables in our TVB model.

The remainder of the paper is organized as follows. Section 2 presents the

testing framework, proposes the test statistic, and derives the corresponding

asymptotic theory. Section 3 introduces the semiparametric TVB model and

studies its two-step estimation procedure. Simulations are given in Section 4,

and a real-data example is provided in Section 5. Concluding remarks are offered

in Section 6. Proofs are relegated to the Appendices, which can be found in the

Supplementary Material.

The following notation is used throughout the paper. For a matrix A of size

n ˆ n, Aij is its pi, jqth element, trpAq is its trace, A1 is its transpose, detpAq

is its determinant, ρpAq is its spectral radius, }A} “ trpA1Aq1{2 is its Frobenius
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norm, vecpAq is a vector obtained by stacking all the columns of A, vechpAq

is a vector obtained by stacking all columns of the lower triangular part of A,

Dn is the n2 ˆ npn ` 1q{2 duplication matrix defined by DnvechpAq “ vecpAq,

D`n “ pD
1
nDnq

´1D1n is its generalized inverse, Ln is the elimination matrix defined

by LnvecpAq “ vechpAq, andKnn is the transposition-permutation matrix defined

by KnnvecpAq “ vecpA1q. For a random variable ξ, }ξ}k “ pE|ξ|
kq1{k is its Lk-

norm. In addtion, In is the identity matrix of size n ˆ n, 1p¨q is the indicator

function, C is a universal constant, AbB is the Kronecker product of two matrices

A and B, Ab2 “ Ab A, ÑL denotes convergence in distribution, and the range

of integration is r´1, 1s, unless stated otherwise.

2. Testing for Structural Changes

2.1. The testing model and hypotheses

Let yt P Rnˆn for t “ 1, 2, . . . , T be a positive-definite matrix-valued time

series. We consider the following data-generating process (DGP) for yt:

yt “ Σ
1{2
t utΣ

1{2
t with Σt “ Σ

ˆ

t

T

˙

, (2.1)

where Σpxq is a deterministic bounded positive-definite matrix function with un-

known form on the interval r0, 1s, and tutu
T
t“1 is a sequence of strictly stationary

positive definite random matrices with Eut “ In. In model (2.1), both the dy-

namic process ut and its parameter matrix Σt have unspecified forms, allowing the

structure of yt to change abruptly or smoothly. Our idea of using a time-varying

function Σt to capture the structural change is motivated by the pioneering work

of Robinson (1989, 1991) for the linear regression model with time-varying pa-

rameters. Here, we adopt a multiplicative form in model (2.1) to maintain the

positive-definite feature of yt. Moreover, note that the possible nonstationarity

of yt in model (2.1) is caused by the deterministic Σt. This setting is in accor-

dance with the semiparametric model in Section 3, but does not allow Σt to be

nonstationary driven by some unit root-type process. To study the unit root-type

nonstationarity of yt, one may refer to the testing and modelling methodologies

and their related technical treatments in Wang and Phillips (2012) and Chan and

Wang (2015).

In the literature, researchers tend to build parametric models for the RCOV

matrix by implicitly assuming the stationarity of yt, or equivalently, the con-

stancy of Σt. However, changes are common, and tend to be the rule, rather

than the exception. It is well documented that ignoring structural changes can
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mislead conventional time series analysis procedures, resulting in erroneous con-

clusions (Pesaran and Timmermann (2004)). This motivates us to propose a

formal structural change test for model (2.1). Our other motivation for the struc-

tural change test is triggered by the spurious long-memory phenomenon (see the

Supplementary Material for numerical evidence). However, this important aspect

has been overlooked in matrix time series applications. For instance, RCOV ma-

trix time series data often exhibit the long-memory phenomenon, and empirical

researchers usually apply long-memory models to fit RCOV matrix data (Corsi

(2009); Chiriac and Voev (2011)). We argue that these fitted long-memory mod-

els should be used with caution, because they do not consider the possibility

of spurious long-memory phenomena. Motivated by these arguments, the null

hypothesis of interest is

H0 : Σt “ Σ0 for all t,

where Σ0 is a positive-definite constant matrix in Rnˆn. The alternative hypoth-

esis H1 is that H0 is false. Under H0, the structure of yt is unchanged over

time. Under H1, Σt is a time-varying parameter matrix, and allows the structure

of yt to change smoothly or abruptly. Testing for structural changes has been

well studied for regression or conditional mean time series models; see Fu and

Hong (2019) and the references therein. For conditional variance models, most

efforts focus on GARCH models; see Berkes, Horváth and Kokoszka (2004) and

Fryzlewicz and Rao (2014) for abrupt structural change alternatives, Amado and

Teräsvirta (2008) for smooth structural change alternatives, and Chen and Hong

(2016) for both abrupt and smooth structural change alternatives. For multivari-

ate conditional variance models with an unknown form, related structural change

tests are absent. This is also true for our matrix model (2.1) with n ą 1.

2.2. Test statistic

We adopt the idea of the generalized Hausman test in Chen and Hong (2012)

to propose a structural change test for model (2.1). Here, we need two estimators

of Σt, where one estimator is always consistent and the other is consistent only

under H0. Then, our new test measures the distance of these two estimators

under a certain norm to look for evidence of rejection.

Our first estimator of Σt is chosen as

Σ “
1

T

T
ÿ

s“1

ys,

which is obviously efficient and consistent under H0, but inconsistent under H1.
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To introduce our second estimator of Σt, we simply consider the Nadaraya–

Watson estimator of Σpxq, x P r0, 1s, given by

qΣpxq “

řT
s“1Khpx´ s{T qys
řT
s“1Khpx´ s{T q

(see, e.g., Fan and Yao (2008) for other choices of kernel estimator), where

Khp¨q “ Kp¨{hq{h, Kp¨q is a kernel function, and h is the bandwidth. Because

p1{T q
řT
s“1Khpx´ s{T q “ 1`OpT´1h´1q by the integrability of Kp¨q, it is more

convenient to consider an alternative estimator of Σpxq given by

pΣpxq “
1

T

T
ÿ

s“1

Kh

ˆ

x´
s

T

˙

ys. (2.2)

Given that Eyt “ Σt in model (2.1), we then take our second estimator of Σt as
pΣt “ pΣpt{T q.

A practical issue for pΣt is the edge effect in finite samples, that is, there is

insufficient information for the estimators at the extreme left and right ends of the

sample interval. To avoid such a problem, following Chen and Hong (2012), we

consider the reflection method proposed by Hall and Wehrly (1991) to generate

pseudo data yt “ y´t for ´rThs ď t ď ´1, and yt “ y2T´t for T ` 1 ď

t ď T ` rThs. Using the reflection method, we make the boundary points act

similarly to those in the interior region rThs ă t ă T ´ rThs, and modify pΣt as

pΣpxq “
1

T

t`rThs
ÿ

s“t´rThs

Kh

ˆ

x´
s

T

˙

ys, (2.3)

for each t P t1, 2, . . . , T u.

Another way to circumvent the edge effect is to use the local linear estimator

(Fan and Gijbels (1996)), for which the intercepts and slopes are estimated via

the weighted least squares. We feel that the arguments used in Fu and Hong

(2019) still apply to the test statistic defined in (2.4), with some appropriate

modifications. However, using the local linear estimator complicates the estima-

tion theory for the proposed semiparametric model in Section 3. Hence, we focus

on the kernel (local constant) estimator, for brevity, and leave the investigation

of the local linear estimator for future research.

With the two estimators Σ and pΣt, we measure their distance in the Frobenius

norm (cumulatively over all t) by
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pS “ 1

T

T
ÿ

t“1

rvechppΣt ´ Σq1vechppΣt ´ Σqs.

Formally, our test statistic is a standardized version of pS, defined by

pD “ Th1{2
pS ´ pB

pV1{2
, (2.4)

where pB “ h´1{2trpxMq
“ ş

K2pxqdx
‰

, pV “ 2trpxM2q
ş “ ş

KpxqKpx` λqdx
‰2
dλ, and

xM “

bT
ÿ

j“´bT

k

ˆ

j

bT

˙

pΓv,j .

Here, kp¨q is another kernel function, bT is the truncated lag, and

pΓv,j “

$

’

’

’

’

’

&

’

’

’

’

’

%

1

T

T
ÿ

t“j`1

pvtpv
1
t´j , for j “ 0, 1, . . . , bT ,

1

T

T
ÿ

t“1´j

pvt`jpv
1
t, for j “ ´1,´2, . . . ,´bT ,

with pvt “ vechpyt ´ Σq.

In (2.4), the factors pB and pV are the estimators of the mean and variance,

respectively, of Th1{2
pS. Both of them depend on xM , which is essentially the

estimator for the asymptotic variance of T´1{2
řT
t“1 vechpyt ´ Σ0q (see Newey

and West (1987); Andrews (1991)). Note that the test in Chen and Hong (2012)

does not need to consider the corresponding long-run variance estimator, because

their assumed model error is a martingale difference sequence (m.d.s.). Fu and

Hong (2019) later relaxed this m.d.s. assumption with the help of instrumental

variables. In our model (2.1), we only require Eput ´ Inq “ 0 instead of the

m.d.s. assumption that Eput´In|Ft´1q “ 0, where Ft “ σpys, s ď tq is the sigma

field generated by the information up to time t. Hence, our test statistic pD is

robust to not only conditional heteroscedasticity and higher-order moments of

unknown form, as in Chen and Hong (2012), but also endogeneity, as in Fu and

Hong (2019).

2.3. Asymptotic theory

To study the limiting distribution of pD, the following four assumptions are

needed.
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Assumption 1. Σpxq is bounded, positive-definite, and continuous, except at a

finite number of points on r0, 1s, such that for some constants 0 ă cl ď cu ă 8,

cl ď infxPr0,1s }Σpxq} ď supxPr0,1s }Σpxq} ď cu.

Assumption 2. (i) vechputq is a strictly stationary β-mixing process with mixing

coefficients βpjq satisfying
ř8
j“1 j

2βpjqδ{p1`δq ă 8, for some 0 ă δ ă 1; (ii)

E }ut}
4p1`δq

ă 8.

Assumption 3. (i) K : r´1, 1s Ñ R` is symmetric about zero, bounded, and

twice continuously differentiable, with
ş

Kpxqdx “ 1 and
ş

xrKpxqdx “ Cr ă 8,

for r ě 2; (ii) h “ chT
´λh, for some 0 ă λh ă 1{2 and 0 ă ch ă 8.

Assumption 4. (i) k : r´1, 1s Ñ R` is symmetric about zero, bounded, and

square integrable, with kp0q “ 1; (ii) bT “ cbT
λb, where 0 ă cb ă 8 and λh{2 ă

λb ă 1{2´ 1{2λh, for some 0 ă λh ă 1{2.

Assumption 1 is sufficient to guarantee that Σpxq is integrable on r0, 1s up

to any finite order, and when n “ 1, similar conditions have been used in Cav-

aliere and Taylor (2007), Xu and Phillips (2008), Zhu (2019), and many others.

Assumptions 2–4 are in line with Fu and Hong (2019). Assumption 2(i) re-

quires some sufficient technical conditions on ut. The stationarity condition for

ut might be restrictive under some circumstances. Future research may apply

the techniques in Zhang and Wu (2012) and Vogt (2015) to relieve this condi-

tion. The β-mixing condition is widely adopted in the literature. As shown in

Proposition 1 below, Assumption 2(i) holds when ut follows model (3.1), with

ρpA0 ` B0q ă 1. Assumption 2(ii) imposes a higher moment condition on ut so

that the limit of xM under H0 (denoted by M) exists and some mixing inequalities

can be applied, where

M “ Σ0˚Z8Σ10˚ (2.5)

with Σ0˚ “ pΣ
1{2
0 qb2Dn, and

Z8 “
8
ÿ

j“´8

Epztz
1
t´jq (2.6)

with zt “ vechput ´ Inq. Assumption 3(i) holds for commonly used kernels, such

as the uniform, Epanechnikov, and truncated Gaussian kernels, among many

others. Assumption 3(ii) requires that h converges to zero at a slower rate than

T´1{2. Assumption 4(i) allows for Bartlett, Parzen, and Tukey–Hanning kernels

or the truncated quadratic-spectral (QS) kernel, where the truncated QS kernel

is defined by restricting the domain of the QS kernel to r´1, 1s. Assumption 4(ii)
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gives a sufficient technical condition on bT to ensure the consistency of xM under

the null, and was adopted in Hong, Wang and Wang (2017) and Fu and Hong

(2019).

Now, we are ready to give the limiting null distribution of pD.

Theorem 1. Suppose Assumptions 1–4 hold. Then, under H0,

pD ÑL Np0, 1q as T Ñ8.

Let cα be the α-upper percentile of Np0, 1q. Because a large value of pD
indicates a rejection of H0, we set the critical region of our test as

pD ą cα, (2.7)

which has an asymptotic significance level α, by Theorem 1.

To compute pD, we need to select two kernel functions K and k, the bandwidth

h, and the truncated lag bT . As demonstrated in our numerical studies, the choice

of K seems less sensitive, and a simple rule-of-thumb of h “ T´1{5{
?

12, as in Fu

and Hong (2019), works well. Here, the constant 1{
?

12 is the standard deviation

of a uniform distribution on r0, 1s, which can be viewed as the limiting distribution

of the grid points t{T , for t “ 1, 2, . . . , T . Typically, one would expect that the

constant ch in h “ chT
´1{5 should depend on the structure of the underlying

process yt and the smoothness of Σpxq. In the framework of estimation, ch can

be optimally chosen by minimizing the integrated mean square error (Robinson

(1989)). However, the chosen ch may not be optimal for the test, as pointed out

by Hong, Wang and Wang (2017). In general, to obtain the optimal bandwidth

for pD, we may need higher-order Edgeworth expansions for the finite-sample

distribution of pD, and we leave this interesting topic for future work.

To select the kernel function k and the truncated lag bT , we use the method

in Andrews (1991) so that the mean and variance of Th1{2
pS can be estimated

precisely. Specifically, we consider the truncated QS kernel for k with bT “

1.3221pπT q1{5, where π is a function of the unknown spectral density matrix of

vechpyt ´ Σ0q. We use the truncated QS kernel, because its related long-run

variance estimator is close to the one based on the QS kernel for large bT , and

Andrews (1991) has shown that the QS kernel with the preceding choice of bT is

optimal under the asymptotic truncated mean squared error optimality criterion.

In practice, one can estimate π by pπ using preliminary information. For instance,

we can take pπ “ minppπ1, pπ2q with the upper bound pπ1 “ 1600, as suggested by
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Lima and Xiao (2010), and

pπ2 “

npn`1q{2
ÿ

a“1

4p1` pφa pψaq
2ppφa ` pψaq

2
pσ4
a

p1´ pφaq6p1` pφ2
aq

M

npn`1q{2
ÿ

a“1

p1` pψaq
4
pσ4
a

p1´ pφaq4
(2.8)

(see (6.5) in Andrews (1991)), where ppφa, pψaq is the least squares estimator of

pφ, ψq in the ARMA(1, 1) model ya,t “ φya,t´1`ψτa,t´1`τa,t, pσ
2
a is the estimator

of Varpτa,tq, and ya,t is ath element of vechpyt´Σq. Our numerical studies below

show that this choice of pπ performs well in finite samples.

Next, we study the power behavior of our test pD under the local alternative

H1T : Σt “ Σ0 `
Σ1t

cT
for all t,

where Σ1t “ Σ1pt{T q, the deterministic matrix function Σ1pxq satisfies the con-

ditions for Σpxq in Assumption 1, and

Bl “
ż 1

0
vechpΣ1pxqq

1vechpΣ1pxqqdx´

ż 1

0
vechpΣ1pxqq

1dx

ż 1

0
vechpΣ1pxqqdx ą 0.

Note that pS using the Frobenius norm can be viewed as an L2-type statistic, and

its convergence rate in Theorem 1 is Th1{2. This implies that the local rate cT
should have the order O

`

pTh1{2q1{2
˘

“ OpT 1{2h1{4q to ensure the nontrivial local

power of pD.

Theorem 2. Suppose Assumptions 1–3, 4(i) hold, and Assumption 4(ii) holds

with λh{2 ă λb ă 1{2´ λh, for some 0 ă λh ă 1{3. Under H1T , as T Ñ8,

(i) if T 1{2h1{4{cT Ñ 0, then pD ÑL Np0, 1q;

(ii) if T 1{2h1{4{cT Ñ c P p0,8q, then pD ÑL Npc
2Blv, 1q;

(iii) if T 1{2h1{4{cT Ñ8, then pD Ñ8 in probability;

where Blv “ Bl{
?
V ą 0, with V “ 2trpM2q

ş “ ş

KpxqKpx` λqdx
‰2
dλ.

The above theorem implies that pD has nontrivial power against local alter-

natives with decay rate T 1{2h1{4; it has no power if cT is faster than T 1{2h1{4,

and it is consistent if cT is slower than T 1{2h1{4. The local rate T 1{2h1{4 is only

slightly slower than the parametric local rate T 1{2 as h Ñ 0. For example, if

h9T´1{5, then T 1{2h1{49T 9{20 is close to T 1{2. The same local rate T 1{2h1{4 is

also considered in Härdle and Mammen (1993), Chen and Hong (2012), Fu and

Hong (2019), and many others.
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Moreover, the modification of Assumption 4(ii) is tailored to give a sufficient

technical condition on bT to ensure the consistency of xM for Theorem 2(i)–(ii)

(see Proposition A.5 in the Supplementary Material). Here, the commonly used

bandwidth h9T´1{5 is still allowed under the conditions in Theorem 2.

3. A Semiparametric Matrix Model

3.1. Model specification

Once the null hypothesis H0 is rejected by the test statistic pD, a semipara-

metric matrix model with an appropriate specification for ut is needed to model

yt. Here, we model ut by

ut “ G
1{2
t etG

1{2
t (3.1)

with Gt “ In ´A0A
1
0 ´B0B

1
0 `A0ut´1A

1
0 `B0Gt´1B

1
0,

where Gt P Ft´1 has the first-order BEKK specification in Engle and Kroner

(1995) with EGt “ In, and tetu
T
t“1 is a sequence of independent and identically

distributed (i.i.d.) positive-definite random innovation matrices with Eet “ In.

With minor modifications, our work can be easily extended to the case where Gt
has a higher-order mean-targeted BEKK specification, which is not considered

below for ease of presentation.

From now on, we call model (2.1) with ut „ (3.1) the time-varying BEKK

(TVB) model. Clearly, as a special case, the TVB model becomes stationary

when Σt ” Σ0, for all t. In the TVB model, yt has a nonparametric long-run

component Σt and a parametric short-run component Gt, which jointly specify

the dynamic structure of yt with Eyt “ Σt and Epyt|Ft´1q “ Σ
1{2
t GtΣ

1{2
t . The

idea of using a combination of nonparametric and parametric components was

first proposed by Feng (2004) for the univariate volatility model. The idea has

since become popular for describing the dynamics of univariate volatility (see,

e.g., Engle and Rangel (2008); Xu and Phillips (2008); Chen and Hong (2012);

Zhu (2019); Zhang et al. (2020); Jiang, Li and Zhu (2021)) and multivariate

volatility (see, e.g., Hafner and Linton (2010); Patilea and Räıssi (2010); Amado

and Teräsvirta (2014)). The TVB model can thus be viewed as a matrix general-

ization of the model in Feng (2004). Furthermore, under some suitable conditions,

the TVB model could be approximated by a family of locally stationary processes

(Dahlhaus (1997)), meaning that yt is close to a stationary process pytpsq, for t{T

in a small neighborhood of s.
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3.2. Probabilistic properties

In this subsection, we first study the stationarity of model (3.1). Let A0 “

LnA
b2
0 Dn and B0 “ LnB

b2
0 Dn. By Theorem 2.1 in Zhou et al. (2022), we have

the following proposition, which gives the stationarity and moment properties of

ut.

Proposition 1. Suppose (i) et admits a density Fe, which is absolutely continu-

ous w.r.t. the Lebesgue measure; (ii) the point In is in the interior of the support

of Fe; (iii) E }et} ă 8. Then, ut is strictly stationary and geometrically ergodic

with E }ut} ă 8 if and only if ρpA0 ` B0q ă 1.

Note that if ut is geometrically ergodic, it is also β-mixing with exponential decay.

Hence, if ρpA0 ` B0q ă 1, yt is β-mixing with exponential decay by Proposition

1 and the boundedness of Σpxq. If we do not require E }ut} ă 8, we may use

a milder condition than ρpA0 ` B0q ă 1 to ensure that yt is β-mixing with

exponential decay; see, for example, Hafner and Preminger (2009).

Next, we study the moments of yt when ut „ p3.1q. Let ut “ vechputq.

By rearranging the terms, ut admits a vector moving average (VMA) structure:

ut “ vechpInq `
ř8
i“0 Φirt´i, where Φ0 “ In, Φi “ pA0 ` B0q

i´1A0 and rt “

Eput|Ft´1q ´ ut is an m.d.s. By using this VMA representation, we can get

the cross-covariance of ut and yt; the details are straightforward, and are hence

omitted.

Proposition 2. Suppose ut is strictly stationary, with E }ut}
2
ă 8. Then,

(i) Epztz
1
t´jq “

ř8
i“0 Φj`iEprtr

1
tqΦ

1
i; (ii) Epwtw

1
t´jq “ Ln

`

Σ
1{2
t

˘b2
DnEpztz

1
t´jq

D1n
`

Σ
1{2
t´j

˘b2
L1n, where zt is defined as in (2.6), and wt “ vechpyt ´ Σtq.

3.3. Model estimation

Let φ “ pvecpAq1, vecpBq1q1 P Γφ be the unknown parameter in model (3.1),

and φ0 “ pvecpA0q
1, vecpB0q

1q1 P Γφ be its true value, where Γφ is the parameter

space. In this subsection, we use a two-step estimation procedure to estimate the

nonparametric function Σpxq and the unknown parameter φ.

Our procedure first estimates Σpxq by pΣpxq in (2.2). To study the asymptotic

property of pΣpxq, two technical assumptions are needed.

Assumption 5. ut is strictly stationary and ergodic, with E }ut}
2
ă 8.

Assumption 6. h “ chT
´λh, for some 1{5 ď λh ă 1 and 0 ă ch ă 8.

Assumption 5 gives some regularity conditions on ut, which imply that ut is

β-mixing with exponential decay by Proposition 1. Assumption 6 requires that
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h converges to zero at a slower rate than T´1, and is weaker than Assumption

3(ii).

Let σpxq “ vechpΣpxqq, pσpxq “ vechppΣpxqq, bpxq “ C2pB
2σpxq{Bx2q{2, and

Vσpxq “

«

ż

K2pxqdx

ff

LnrΣpxq
1{2sb2DnZ8D

1
nrΣpxq

1{2sb2L1n.

Using this notation, the asymptotics of pΣpxq are given in the following theorem.

Theorem 3. Suppose Assumptions 1, 3(i), and 5–6 hold. Then, for any x P

p0, 1q,

(i) pσpxq Ñ p1{2qrσpx´q ` σpx`qs in probability as T Ñ 8, where σpx´q “

limx̄Òx σpx̄q and σpx`q “ limx̄Óx σpx̄q;

(ii) furthermore, if Σpxq is twice continuously differentiable on p0, 1q, then

?
Thppσpxq ´ σpxq ´ h2bpxqq ÑL Np0, Vσpxqq as T Ñ8.

Remark 1. At continuous points, Theorem 3 shows that pΣpxq always converges

to Σpxq, and its asymptotic normality further holds under some smoothness con-

ditions on Σpxq. At discontinuous points, the consistency of pΣpxq fails, but this

has no impact on the asymptotics of the estimator of φ; see Theorem 4 and

Remark 3 below.

Based on pΣpxq, we estimate Σt by pΣt “ pΣpt{T q. With this plug-in estimate
pΣt, our procedure next estimates φ via a profiled quasi maximum likelihood

estimator (QMLE). Specifically, we write the parametric Gt as

Gtpφq “ In ´AA
1 ´BB1 `Aut´1A

1 `BGt´1pφqB
1, (3.2)

for t “ 1, . . . , T . Let γ “ pφ1, νq1. By assuming that et „ ν´1Wishartpν, Inq

with degrees of freedom ν ą n, the negative log-likelihood function (ignoring

constants) of tytu
T
t“1 is

LT pγq “ ν
T
ÿ

t“1

`pyt,Ωtpφqq `
T
ÿ

t“1

cpyt, νq fi νLT pφq `
T
ÿ

t“1

cpyt, νq, (3.3)

where Ωtpφq “ Σ
1{2
t GtpφqΣ

1{2
t , `py,Ωq “ trpΩ´1yq ` log detpΩq, and

cpy, νq “ ´pν ´ n´ 1q log detpyq ` νn logp2q ` 2
n
ÿ

i“1

log Γ
´ν ` 1´ i

2

¯

´ nν logpνq.
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Here, ν can be viewed as a nuisance parameter, because our main interest is

to estimate φ. We consider the Wishart log-likelihood function in the estima-

tion for two reasons. First, the covariance matrix estimator based on Gaussian

observations is Wishart distributed. Second, like the Gaussian QMLE for the

BEKK volatility model (Engle and Kroner (1995); Jiang, Li and Zhu (2021)), the

Wishart profiled QMLE of φ0 dose not require any distributional assumption on

et for its asymptotics.

Owing to the unobservable Σt and ut, the calculation of LT pγq is infeasi-

ble. To circumvent this difficulty, we have to replace Σt and ut by pΣt and put,

respectively, where put “ pΣ
´1{2
t ytpΣ

´1{2
t . Consequently, we consider the following

profiled log-likelihood function:

pLT pγq “ ν
T
ÿ

t“1

`pyt, pΩtpφqq `
T
ÿ

t“1

cpyt, νq fi ν xLT pφq `
T
ÿ

t“1

cpyt, νq, (3.4)

where pΩtpφq “ pΣ
1{2
t

pGtpφqpΣ
1{2
t and

pGtpφq “ In ´AA
1 ´BB1 `Aput´1A

1 `B pGt´1pφqB
1, (3.5)

for t “ 1, . . . , T , with given initial values pG0pφq and pu0 .

Let pγ “ ppφ1, pνq1 be the minimizer of pLT pγq, that is,

pγ “ argmin
γPΓ

pLT pγq, (3.6)

where Γ “ Γφ ˆ Γν , and Γν is a compact subset of tν : ν ą nu. Interestingly, we

can see that the calculation of pφ is irrelevant to ν, leading to

pφ “ argmin
φPΓφ

xLT pφq. (3.7)

Although pφ is defined by assuming et „ ν´1Wishartpν, Inq, the consistency and

asymptotic normality of pφ hold for any distribution of et with Eet “ In (see

Theorem 4 below). Hence, we call pφ the profiled QMLE of φ0.

To study the asymptotics of pφ, we need three addtional assumptions:

Assumption 7. (i) detpA0q ‰ 0; (ii) ρpA ` Bq ă 1; (iii) if Gtpφq “ Gtpφ0q

(almost surely) for any φ, φ0 P Γφ, then φ “ φ0.

Assumption 8. Γφ is a compact subset of R2n2

, and φ0 is an interior point of

Γφ.

Assumption 9. h “ chT
´λh, for some 1{4 ă λh ă 1{2 and 0 ă ch ă 8.
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Assumption 7(i) rules out the deterministic situation of the BEKK process,

Assumption 7(ii) ensures the positive definiteness of Gtpφq, and Assumption 7(iii)

is standard for model identifiability; see Engle and Kroner (1995). Assumption 8

gives some regularity conditions for studying the model estimation. Assumption

9 is the key to deriving the asymptotics of pφ. A restricted h is required to

undersmooth the estimation of Σt so that the impact of its bias on the asymptotics

of pφ can be neglected; see Hafner and Linton (2010), Jiang, Li and Zhu (2021),

and Remark 4 below for further discussion.

Let ξt“vecpet´Inq, ρt,i“vecpBGt{Bφiq
1
`

G
´1{2
t

˘b2
, ηt,i“vec

`

G´1
t pBGt{Bφiq

˘1
,

M i
j “ E

`

ut´j bG
´1
t pBGt{BφiqG

´1
t

˘

, and

Fi “
8
ÿ

j“1

vecpBj´1
0 A0q

1M i
j rIn bB

j´1
0 A0s.

Using this notation, define

Υpxq “ pF ´ EηtqrΣpxq
1{4 b Σpxq´1{4s,

where F P R2n2ˆn2

is a matrix with ith row Fi, and ηt P R2n2ˆn2

is a matrix

process with ith row ηt,i; furthermore, define

Jφ0
“ Epρtρ

1
tq and Qφ0

“ N `Ψ`H `H 1, (3.8)

where ρt P R2n2ˆn2

is a matrix process with ith row ρt,i, and N P R2n2ˆ2n2

,

Ψ P R2n2ˆ2n2

, and H P R2n2ˆ2n2

are defined according to

vecpNq “ E
`

ρb2
t

˘

vecpVarpξtqq,

vecpΨq “
”

ż 1

0
Υpxqb2dx

ı

Ξb2
0 E

“

pG
1{2
t qb4

‰

vecpVarpξtqq,

vecpHq “
”

ż 1

0

`

Υpxq b I2n2

˘

dx
ı

rΞ0 b I2n2sE
“

pG
1{2
t qb2 b ρt

‰

vecpVarpξtqq,

respectively, with Ξ0 “ pIn2 ´Ab2
0 ´Bb2

0 q´1pIn2 ´Bb2
0 q.

Now, we give the consistency and asymptotic normality of pφ.

Theorem 4. Suppose Assumptions 1, 3(i), and 5–8 hold, and Σpxq is twice

continuously differentiable at continuous points on p0, 1q. Then,

(i) pφÑ φ0 in probability as T Ñ8;

(ii) furthermore, if Σpxq is continuous everywhere on p0, 1q, E}ut}
6p1`2δq ă 8
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for some δ ą 0, and Assumption 6 is replaced by Assumption 9,

?
T ppφ´ φ0q ÑL Np0, Vφ0

q as T Ñ8,

where Vφ0
“ J´1

φ0
Qφ0

J´1
φ0

, and Jφ0
and Qφ0

are defined in (3.8).

Remark 2. When n “ 1, pφ is adaptive to the unknown form of Σpxq, because

its asymptotic variance is invariant regardless of the form of Σpxq. However,

when n ą 1, pφ is no longer adaptive because of the term Υpxq, unless Σpxq1{4 b

Σpxq´1{4 ” In (e.g., Σpxq “ τpxqIn with τpxq ą 0, for x P p0, 1q). See also

the similar findings for the BEKK volatility model in Jiang, Li and Zhu (2021).

Therefore, when n ą 1, if there exists cross-sectional dependence between any

two elements of yt, the estimation of Σt should affect the asymptotic distribution

of pφ. Note that when n “ 1, Σt represents only the scale of yt, and has no effect

on the dynamics of ut. This may be the reason for the adaptiveness of pφ in this

univariate case.

Remark 3. To prove Theorem 4(ii), we need a higher smooth condition on Σpxq.

It is not clear whether this condition can be relieved to allow Σpxq to have finite

discontinuous points. Numerically, the simulation studies in Section 4 show that

the asymptotic normality of pφ in Theorem 4(ii) still holds when Σpxq has abrupt

changes. Theoretically, a new technique is required to modify Propositions B.5–

B.7 in the Supplementary Material. This kind of modification seems challenging,

and hence is left for future work.

Remark 4. To obtain the result in Theorem 4(ii), we need Assumption 9 for our

undersmoothing technique, which makes the bias from the first step nonpara-

metric estimator pΣt have a negligible effect on the asymptotics of pφ. Because

of Assumption 9, the popular choice of bandwidth h “ chT
´1{5 is excluded. To

relax Assumption 9, one may use bias correction and small bandwidth techniques

(see, e.g., Newey, Hsieh and Robins (2004), Aradillas-Lopez, Honoré and Powell

(2007), Zhou and Wu (2010), and Cattaneo and Jansson (2018)), which could

account for the bias effect from pΣt on the asymptotics of pφ. How to derive the

asymptotics of pφ based on the bias correction techniques is interesting and de-

serves future investigation.

In practice, we can estimate Vφ0
consistently by its sample version. Specifi-

cally, let pGt “ pGtppφq, B pGt{Bφi “ B pGtppφq{Bφi, pet “ pG
´1{2
t put pG

´1{2
t and define pηt, pρt,

pξt accordingly. Based on these quantities, we compute the sample versions of Jφ0

and M i
j by pJ “ p1{T q

řT
t“1 pρtpρ

1
t and xM i

j “ p1{T q
řT
t“j`1 put´jb

pG´1
t pB

pGt{Bφiq pG
´1
t ,
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respectively. To compute the sample version of Qφ0
, we first let

pΥ

ˆ

t

T

˙

“

˜

pF ´
1

T

T
ÿ

s“1

pηs

¸

rpΣ
1{4
t b pΣ

´1{4
t s,

where the ith row of pF is pFi given by

pFi “
bT
ÿ

j“1

vecp pBj´1
pAq1xM i

j rIn b
pBj´1

pAs,

and bT is defined in Assumption 4(ii). Based on pΥpt{T q, we next compute the

sample versions of N , Ψ, and H by

vecp pNq “
1

T

T
ÿ

t“1

rpρb2
t svecp {Varpξtqq,

vecppΨq “

#

1

T

T
ÿ

t“1

„

pΥ

ˆ

t

T

˙

b pΥ

ˆ

t

T

˙

+

rpΞb I2n2s

#

1

T

T
ÿ

t“1

rp pG
1{2
t qb2 b pρts

+

vecp {Varpξtqq,

vecp pHq “

#

1

T

T
ÿ

t“1

„

pΥ

ˆ

t

T

˙

b I2n2



+

pΞb2 1

T

T
ÿ

t“1

!

rp pG
1{2
t qb4s

)

vecp {Varpξtqq,

respectively, where {Varpξtq is the sample variance of tpξtu. Further, we compute

the sample version of Qφ0
by pQ, where pQ “ pΨ` pH ` pH 1 ` pN . Finally, we obtain

the sample version of Vφ0
as pV :“ pJ´1

pQ pJ´1.

Based on pV , we can construct a Wald test statistic

xW “ T pΓpφ´ ιq1pΓpV Γ1q´1pΓpφ´ ιq (3.9)

to test the linear null hypothesis H0 : Γφ0 “ ι, where Γ P Rsˆ2n2

is a constant

matrix with rank s, and ι P Rsˆ1 is a constant vector. Conventionally, we reject

this linear null hypothesis if xW is larger than the upper-tailed critical value of

χ2
s.

It is also of interest to estimate the nuisance parameter ν by pν in (3.6), if we

have prior information that et „ ν´1
0 Wishartpν0, Inq. Because the calculations

of pφ and pν in (3.6) are independent, we can first obtain pφ via (3.7), and then
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compute pν by

pν “ argmin
νPΓν

pLT ppφ, νq. (3.10)

The asymptotics of pν are given as follows:

Theorem 5. Suppose et „ ν´1
0 WishartpIn, ν0q and the conditions in Theorem 4

hold. Then,

(i) pν Ñ ν0 in probability as T Ñ8;

(ii)
?
T ppν´ν0q ÑL Np0, 2J

´1
ν0 q as T Ñ8, where Jν0 “ p1{2q

řn
i“1 ψ

1ppν0 ` 1´ iq

{2q ´ n{ν0, and ψp¨q is the digamma function.

By some simple calculations, we can see that when et „ ν´1
0 WishartpIn, ν0q,

the Cramér–Rao lower bound with respect to ν0 is 2J´1
ν0 . Interestingly, Theorem

5(ii) shows that pν can attain the Cramér–Rao lower bound regardless of the

inclusion of the nonparametric part.

4. Simulation Studies

In this section, we assess the finite-sample performance of the generalized

Hausman test and the two-step estimation procedure by means of some simulation

experiments.

4.1. Study on the test

In this subsection, we examine the finite-sample performance of the gen-

eralized Hausman test pD. We generate 1,000 replications of sample size T “

500, 1000, 1500, 3000 from the following two DGPs:

DGP 1 : The TVB model with A0 “

˜

0.7 0

0.1 0.6

¸

and B0 “

˜

0.6 0

´0.2 0.65

¸

,

DGP 2 : The TVB model with A0 “

˜

0.5 0

0.2 0.4

¸

and B0 “

˜

0.5 0.1

´0.2 0.7

¸

,

where the function Σpxq is designed as follows:

[No change] Σpxq “ 2I2, (4.1)

[Diagonal smooth change] Σpxq “

ˆ

2`
rx

10

˙

I2, (4.2)

[Off diagonal smooth change] Σpxq “ 2I2 `

ˆ

rx

10

˙

˜

0 1

1 0

¸

, (4.3)
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[Single abrupt change] Σpxq “

ˆ

2`
r

10
1

ˆ

1

5
ă x

˙˙

I2, (4.4)

[Multiple abrupt changes] Σpxq “

ˆ

2`
r

10
1

ˆ

1

5
ă x ă

4

5

˙˙

I2, (4.5)

with r “ 1, . . . , 10; and the error et satisfies the following two distributions:

[Wishart distribution] et „
1

ν0
Wishartpν0, Inq,

[matrix-F distribution] et „ F

ˆ

ν:0,
ν20 ´ n´ 1

ν10
In

˙

with ν:0 “ pν10, ν20q,

where we choose ν0 “ 20 for DGP 1, ν0 “ 5 for DGP 2, and ν:0 “ p10, 6q for both

DGPs, and generate F pν:0, ppν20 ´ n´ 1q{ν10qInq distributed et by

et “

ˆ

ν20 ´ n´ 1

ν10

˙

L
1{2
t R´1

t L
1{2
t ,

with Lt „ Wishartpν10, Inq and Rt „ Wishartpν20, Inq (see Konno (1991)). Here,

the specification of Σpxq in (4.1) is used for the size study, and the specifications

of Σpxq in (4.2)–(4.5) are used for the power study.

For each replication, we compute pD according to the statements in Subsection

2.3. Specifically, we consider three choices of kernel function Kpxq:

[Uniform (U)] Kpxq “
1

2
1p|x| ď 1q,

[Epanechnikov (E)] Kpxq “
3

4
p1´ x2q1p|x| ď 1q,

[Truncated Normal (TN)] Kpxq “
expp´x2q ´ expp´1{2q

erfp1{
?

2q
?

2π ´ 2 expp´1{2q
1p|x| ď 1q,

and take the bandwidth h “ p1{
?

12qT´1{5, where erfp¨q is the error function.

We choose the kernel function kpxq to be

[Truncated QS (TQS)] kpxq “
25

12π2x2

„

sinp6π{5q

6πx{5
´ cosp6πx{5q



1p|x| ď 1q,

and the truncated lag bT “ 1.3221ppπT q1{5, where pπ “ minp1600, pπ2q and pπ2 is

defined in (2.8). When the value of pD falls into the critical region in (2.7), we

reject H0 at level α.

Because the size performance of pD may be a bit sensitive to the choice of

h, we follow the suggestion in Fu and Hong (2019) to construct a bootstrapped
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critical region, and make decisions using the following moving block bootstrap

method:

1. Choose a block length lBT such that lBT Ñ8 and lBT {T Ñ 0 as T Ñ8;

2. Divide the original data into T ´ lBT ` 1 blocks tΞtu
T´lBT`1
t“1 , where Ξt “

tyt, . . . ,yt`lBT´1u;

3. Resample tΞtu
T´lBT`1
t“1 with replacement to form the bootstrapped data

tΞ˚t u
T´lBT`1
t“1 ;

4. Calculate pD˚ based on the bootstrapped data in step 3;

5. Repeat steps 3–4 J times to get the bootstrapped test statistics t pD˚j uJj“1,

calculate the empirical 100p1´αq sample percentile of t pD˚j uJj“1 (denoted by
pD˚α), and set the bootstrapped critical region as

pD ą pD˚α; (4.6)

6. Reject H0 at level α when the value of pD falls into the critical region in

(4.6).

To implement this moving block method, we follow Politis and White (2004)

to take lBT “ tp3{2qc2
BT u

1{3, where cB “ tr
`
řbT
j“´bT

k
`

j{bT
˘

|j|pΓv,j
˘

{trpxMq, and

xM and pΓv,j are defined as in (2.4). Currently, we are unable to provide the

consistency for the above bootstrap method, although our simulation results in-

dicate that it works well. This is because existing techniques for proving boot-

strap consistency in parametric models (see, e.g., Künsch (1989)) are not directly

transferrable to the case of a nonparametric kernel estimation.

Table 1 reports the sizes of pD, where pDAC and pDBC denote the results based

on the asymptotic critical region in (2.7) and the bootstrapped critical region in

(4.6), respectively. From this table, we find that (i) when the sample size T is

small, pDAC is undersized, but the size of pDBC is more accurate; (ii) both pDAC

and pDBC have satisfactory size performance, regardless of the choice of Kpxq and

the distribution of et, when the sample size T increases, and pDBC has slightly

better size performance than pDAC , especially at level 10%; and (iii) the size of
pDBC is slightly stable and close to the nominal level under both the Wishart and

the matrix-F distributions.

Next, we examine the power performance of pD under the alternative settings

in (4.2)–(4.5). As before, we consider both pDAC and pDBC . Their results at level

5% are reported in Fig 1 for the data generated from DGP 1, where T “ 1500
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Table 1. Sizes of pDAC and pDBC at level α “5% and 10%.

et „Wishart et „matrix-F

pDAC
pDBC

pDAC
pDBC

T Kpxq 5% 10% 5% 10% 5% 10% 5% 10%

DGP 1

500 U 0.025 0.045 0.026 0.083 0.038 0.073 0.068 0.115

E 0.020 0.042 0.045 0.090 0.024 0.038 0.036 0.065

TN 0.019 0.043 0.044 0.088 0.023 0.038 0.037 0.065

1,000 U 0.040 0.073 0.042 0.092 0.041 0.070 0.051 0.105

E 0.042 0.060 0.051 0.092 0.022 0.043 0.036 0.077

TN 0.042 0.059 0.050 0.093 0.022 0.040 0.038 0.079

1,500 U 0.058 0.104 0.049 0.101 0.045 0.080 0.047 0.096

E 0.043 0.089 0.047 0.099 0.042 0.072 0.051 0.095

TN 0.041 0.087 0.046 0.101 0.042 0.074 0.052 0.098

3,000 U 0.055 0.101 0.042 0.102 0.049 0.080 0.048 0.097

E 0.053 0.094 0.045 0.105 0.045 0.079 0.045 0.094

TN 0.053 0.098 0.044 0.099 0.046 0.079 0.045 0.088

DGP 2

500 U 0.036 0.067 0.054 0.106 0.018 0.036 0.047 0.080

E 0.028 0.058 0.052 0.112 0.029 0.059 0.056 0.112

TN 0.027 0.056 0.053 0.110 0.026 0.061 0.059 0.112

1,000 U 0.052 0.095 0.049 0.103 0.031 0.056 0.036 0.088

E 0.031 0.065 0.042 0.089 0.025 0.060 0.041 0.089

TN 0.032 0.066 0.043 0.090 0.024 0.060 0.039 0.086

1,500 U 0.056 0.104 0.053 0.109 0.038 0.076 0.038 0.091

E 0.046 0.081 0.048 0.100 0.042 0.072 0.042 0.097

TN 0.047 0.079 0.052 0.105 0.035 0.065 0.043 0.095

3,000 U 0.047 0.083 0.039 0.089 0.043 0.084 0.042 0.087

E 0.051 0.091 0.047 0.101 0.047 0.076 0.045 0.093

TN 0.052 0.090 0.048 0.097 0.046 0.077 0.045 0.083

and 3000, et „ Wishart, and pD is calculated by choosing Kpxq „ U . The results

for other cases are similar, and hence are not reported. From Fig 1, we find that

(i) pDAC is slightly more powerful than pDBC ; (ii) the power of pDAC and pDBC

always increases with r, as expected, and reaches one for large r; (iii) pDAC and
pDBC under the off-diagonal smooth (or multiple abrupt) change alternative are,

in general, more powerful than the diagonal smooth (or single abrupt) change

alternative for any fixed r.

Overall, pDAC is better than pDBC in terms of the power to detect both smooth

and abrupt changes, while pDBC shows some advantage over pDAC in terms of
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Figure 1. Power across r for pDAC (triangle “4” marker) and pDBC (cross “ˆ” marker)
when T “ 1500 (solid line) and T “ 3000 (dotted line). The horizontal dashed line
corresponds to the level α “ 5%.

size. Considering the trade-off between size accuracy and power enhancement,

we recommend considering the results of both pDAC and pDBC in practice.

4.2. Study on the estimation

In this subsection, we assess the finite-sample performance of the profiled

QMLE pφ. We generate 1,000 replications of sample size T “ 1500 and 3000 from

DGPs 1 and 2, where Σpxq is chosen as in (4.2) and (4.5) with r “ 10. To compute
pφ in each repetition, we estimate Σpxq by using Kpxq „ U , with a rule-of-thumb

bandwidth h “ T´1{3{
?

12. Here, we only consider the uniform kernel function

for Kpxq, because the results based on other choices of Kpxq are similar. We

do not take h9T´1{5, as suggested by the conventional cross-validation method,

because it violates Assumption 9.

Tables 2 and 3 report the sample bias, sample empirical standard deviation

(ESD), and average asymptotic standard deviation (ASD) of pφ based on DGPs

1 and 2, respectively, where the ASD is calculated according to Theorem 4(ii).

From these two tables, we find that (i) the biases of pφ are small in all considered

cases; (ii) regardless of the specification of Σpxq and the distribution of et, the

values of ESD and ASD are close to each other (especially for large T ); (iii) when

the sample size T increases, the values of ESD and ASD decrease as expected;

(iv) the values of ESD (or ASD) in the case of et „ Wishart are smaller than the
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Table 2. Estimation results for pφ based on DGP 1.

et T A11 A21 A12 A22 B11 B21 B12 B22 ν

Panel A: Σpxq „ (4.2) with r “ 10

Wishart 1,500 Bias -0.0055 0.0030 -0.0011 -0.0070 -0.0093 -0.0138 0.0102 -0.0090 0.1712

ESD 0.0172 0.0169 0.0185 0.0189 0.0259 0.0248 0.0285 0.0299 0.4229

ASD 0.0156 0.0176 0.0180 0.0187 0.0255 0.0244 0.0302 0.0279 0.4089

3,000 Bias -0.0021 0.0017 -0.0006 -0.0030 -0.0056 0.0080 0.0051 -0.0047 0.0504

ESD 0.0118 0.0118 0.0131 0.0133 0.0176 0.0166 0.0203 0.0199 0.2903

ASD 0.0110 0.0122 0.0126 0.0131 0.0176 0.0166 0.0206 0.0191 0.2886

matrix-F 1,500 Bias -0.0319 0.0009 0.0019 -0.0245 0.0096 -0.0102 0.0098 -0.0009 \
ESD 0.0315 0.0306 0.0306 0.0337 0.0436 0.0394 0.0412 0.0413 \
ASD 0.0296 0.0330 0.0324 0.0409 0.0425 0.0352 0.0384 0.0363 \

3,000 Bias -0.0228 0.0012 0.0029 -0.0169 0.0119 -0.0062 0.0028 0.0048 \
ESD 0.0229 0.0224 0.0224 0.0299 0.0315 0.0269 0.0297 0.0322 \
ASD 0.0250 0.0236 0.0168 0.0303 0.0309 0.0242 0.0266 0.0248 \

Panel B: Σpxq „ (4.5) with r “ 10

Wishart 1,500 Bias -0.040 0.0045 -0.0016 -0.0050 -0.0087 -0.0151 0.0124 -0.0670 0.1108

ESD 0.0172 0.0170 0.0186 0.0190 0.0259 0.0248 0.0287 0.0297 0.4212

ASD 0.0154 0.0176 0.0179 0.0187 0.0253 0.0240 0.0297 0.0273 0.4085

3,000 Bias -0.0011 0.0030 -0.0010 -0.0018 -0.0049 -0.0910 0.0067 0.0198 0.0530

ESD 0.0118 0.0118 0.0133 0.0133 0.0177 0.0166 0.0205 0.0198 0.2897

ASD 0.0109 0.0122 0.0125 0.0131 0.0175 0.0164 0.0203 0.0187 0.2880

matrix-F 1,500 Bias -0.0313 0.0012 0.0019 -0.0239 0.0099 -0.0103 0.0101 -0.0005 \
ESD 0.0314 0.0306 0.0306 0.0337 0.0436 0.0394 0.0412 0.0472 \
ASD 0.0195 0.0330 0.0224 0.0410 0.0424 0.0351 0.0382 0.0361 \

3,000 Bias -0.0225 0.0014 0.0029 -0.0166 0.0122 -0.0063 0.0030 0.0054 \
ESD 0.0230 0.0225 0.0224 0.0247 0.0314 0.0269 0.0298 0.0322 \
ASD 0.0156 0.0236 0.0173 0.0304 0.0308 0.0243 0.0265 0.0252 \

corresponding values of ESD (or ASD) in the case of et „ matrix-F, and this is

consistent with the fact that pφ is an efficient estimator when et follows a Wishart

distribution. Note that when et „ Wishart, Tables 2 and 3 also give the results

for the estimate pν, which performs as well as pφ.

Overall, our profiled QMLE pφ has good finite-sample performance in all

considered smooth and abrupt change specifications.

5. An Empirical Example

In this section, we revisit the RCOV matrix time series data on IBM Com-

mon Stock (IBM) and Microsoft Corporation (MSFT) in Lunde, Shephard and

Sheppard (2016). This data set ranges from January 2006 to December 2011,

with 1,474 observations in total. Two flash crashes, on May 6, 2010, and August
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Table 3. Estimation results for pφ based on DGP 2.

et T A11 A21 A12 A22 B11 B21 B12 B22 ν

Panel A: Σpxq „ (4.2) with r “ 10

Wishart 1,500 Bias -0.0096 0.0055 -0.0012 -0.0111 -0.0492 0.0043 0.0264 -0.0411 0.0437

ESD 0.0271 0.0290 0.0306 0.0305 0.1003 0.1091 0.1119 0.0887 0.1090

ASD 0.0263 0.0282 0.0302 0.0293 0.0938 0.0891 0.0983 0.0850 0.1114

3,000 Bias -0.0044 0.0037 -0.0017 -0.0045 -0.0249 0.0037 0.0173 -0.0236 0.0225

ESD 0.0183 0.0201 0.0208 0.0207 0.0623 0.0619 0.0672 0.0581 0.0757

ASD 0.0184 0.0196 0.0211 0.0205 0.0617 0.0589 0.0653 0.0560 0.0784

matrix-F 1,500 Bias -0.0177 0.0062 -0.0037 -0.0182 -0.0686 0.0083 0.0460 -0.0509 \
ESD 0.0421 0.0396 0.0457 0.0438 0.1318 0.1463 0.1334 0.1311 \
ASD 0.0368 0.0369 0.0386 0.0428 0.1176 0.1195 0.1153 0.1028 \

3,000 Bias -0.0091 0.0037 -0.0022 -0.0091 -0.0360 0.0024 0.0233 -0.0252 \
ESD 0.0312 0.0284 0.0322 0.0319 0.0819 0.0749 0.0783 0.0783 \
ASD 0.0271 0.0270 0.0289 0.0318 0.0794 0.0732 0.0771 0.0693 \

Panel B: Σpxq „ (4.5) with r “ 10

Wishart 1,500 Bias -0.0075 0.0064 -0.0028 -0.0089 -0.0370 -0.0079 0.0219 -0.0290 0.0310

ESD 0.0273 0.0294 0.0312 0.0307 0.0998 0.1097 0.1145 0.0973 0.1090

ASD 0.0261 0.0279 0.0298 0.0291 0.0886 0.0838 0.0925 0.0797 0.1111

3,000 Bias -0.0029 0.0048 -0.0030 -0.0030 -0.0165 -0.0080 0.0141 -0.0129 0.0756

ESD 0.0184 0.0205 0.0213 0.0208 0.0629 0.0649 0.0689 0.0586 0.0756

ASD 0.0183 0.0195 0.0209 0.0204 0.0591 0.0560 0.0621 0.0529 0.0783

matrix-F 1,500 Bias -0.0162 0.0067 -0.0047 -0.0167 -0.0653 0.071 0.0467 -0.0488 \
ESD 0.0423 0.0398 0.0459 0.0439 0.1325 0.1488 0.1338 0.1343 \
ASD 0.0367 0.0368 0.0384 0.0428 0.1156 0.1065 0.1130 0.1006 \

3,000 Bias -0.0083 0.0051 -0.0028 -0.0085 -0.0349 -0.0063 0.0245 -0.0208 \
ESD 0.0314 0.0291 0.0323 0.0321 0.0842 0.0853 0.0808 0.0783 \
ASD 0.0274 0.0271 0.0282 0.0319 0.0781 0.0791 0.0757 0.0674 \

9, 2011, are replaced by the average of their nearest five preceding and following

matrices, respectively. Denote this data set by tytu
1,474
t“1 . First, we plot tyrs,tu

1,474
t“1

and the sample ACFs of yrs,t in Fig 2, where yrs,t is the pr, sqth element of yt.

This figure shows a peak in all yrs,t around late 2008, and the sample ACFs of

each yrs,t decay slowly.

Next, we apply our generalized Hausman test pD to detect whether there is

any structural change in yt. Based on this data set, the value of pD is 4.2061, where
pD is computed as in Subsection 4.1, with Kpxq „ U . Moreover, the p-values of pD
using the asymptotic critical region (as for pDAC) and the bootstrapped critical

region (as for pDBC) are 0.0000 and 0.0060, respectively. Both methods convey

strong evidence that the structure of yt is changing over time.

Third, we fit yt using our semiparametric TVB model, which is estimated
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using the two-step estimation procedure in Subsection 3.3. The top panels of

Fig 3 plot the values of pΣrs,t (the (r, s)th element of pΣt), which are computed

as in Subsection 4.2. In view of pΣrs,t, we can see that the long-run component

Σt is not a constant matrix, and its value from late 2008 to early 2009 is much

higher than that of the other time period. This finding is reasonable, because

the subprime financial crisis happened in 2008–2009, and the (co-)variance of

IBM and MSFT tends to be higher during that period. Using the estimated

long-run component, the short-run component Gt in the TVB model is fit-

ted by the profiled QMLE with pA “

˜

0.7227p0.0109q ´0.0119p0.0177q

0.1057p0.0187q 0.6256p0.0279q

¸

and pB “

˜

0.5862p0.0241q 0.0755p0.0237q

´0.1962p0.0268q 0.6799p0.0295q

¸

, where the values in parentheses are the related

asymptotic standard errors. Furthermore, we apply the Wald test xW in (3.9) to

examine the two null hypotheses H 10 : A12,0 “ 0 and H20 : A12,0 “ B12,0 “ 0, and

the corresponding p-values are 0.5025 and 0.0013, respectively. Hence, we have

strong evidence to reject H20 , but not H 10. Consequently, we re-fit the short-run

component Gt using the profiled QMLE with pA “

˜

0.7212p0.0111q 0

0.1004p0.0186q 0.6274p0.0280q

¸

and pB “

˜

0.5896p0.0243q 0.0614p0.0234q

´0.1890p0.0267q 0.6802p0.0295q

¸

. To check the adequacy of our re-fitted

TVB model, we plot the first 100 sample ACFs of the residual series tpers,tu (de-

noted by ρrspjq for j “ 1, . . . , 100) in the three bottom panels of Fig 3, where

pers,t is the (r, s)th element of pet. From these three panels, we find that the con-

sidered ACFs have small values, in general, except that they exhibit relatively

large values at two or three large lags for the cases of pr, sq “ p1, 2q and p2, 2q.

This indicates that our re-fitted TVB model is largely adequate, although the

possible dependence within e12,t and e22,t could be captured by using high-order

or long-memory TVB models.

The conditional heterogeneous autoregressive (HAR) model proposed by

Corsi (2009) is used as a benchmark to study the univariate RCOV, because

it can capture the observed long-memory feature of the RCOV. As shown in

Fig 2, our considered RCOV matrix data also exhibit the long-memory feature,

and thus can be fitted by an alternative stationary HAR-type matrix time series

model:

yt “ G
1{2
t etG

1{2
t , (5.1)

Gt “ Ω`Apdqyt´1,dA
1
pdq `Apwqyt´1,wA

1
pwq `Apmqyt´1,mA

1
pmq,
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Figure 3. Top panels: pΣrs,t. Bottom panels: sample ACFs of ers,t.

where yt´1,d “ yt´1, yt´1,w “ p1{5q
ř5
i“1 yt´i, and yt´1,m “ p1{22q

ř22
i“1 yt´i

are the daily, weekly, and monthly averages, respectively, of RCOV matrices. To

obtain a fitted model (5.1) for our RCOV matrix data, we estimate the unknown

parameters in (5.1) by assuming et „ ν´1Wishartpν, Inq. To end this section, we
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Table 4. Forecast errors based on TVB and HAR models

l “ 1 l “ 5 l “ 10

Frobenius Spectral Frobenius Spectral Frobenius Spectral

TVB model 0.9137 0.8873 1.1978 1.1661 1.3437 1.3087

HAR model 0.9183 0.8900 1.2235 1.1859 1.3808 1.3353

compare the forecasting performance of our TVB model with this HAR model,

based on a rolling window procedure with window size equal to 1,000. Specifically,

we use the in-sample data tytu
T0

t“T0´999 to make an l-step-ahead forecast pyT0`l|T0

for the out-of-sample data point yT0`l, where T0 “ 1000, . . . , 1474 ´ l. For the

TVB model, pyT0`l|T0
is calculated as pyT0`l|T0

“ pΣ
1{2
T0

puT0`l|T0
pΣ

1{2
T0

, where pΣT0
is the

estimate of ΣT0
, and puT0`l|T0

is the forecast of uT0`l. For the HAR model, pyT0`l|T0

is calculated as pyT0`l|T0
“ pGT0`l|T0

, where pGT0`l|T0
is the forecast of GT0`l. Table

4 reports the average of forecast errors tpyT0`l|T0
´ yT0`lu in the Frobenius and

spectral norms for both models, where the forecasting horizon l is taken as 1, 5,

and 10, corresponding to daily, weekly, and biweekly forecasts. From this table,

we find that regardless of the forecasting horizon, the TVB model always has a

smaller forecast error than that of the HAR model. Moreover, applying the DM

test in Diebold and Mariano (2002) to our forecasting results, we find that the

p-value of the DM test is less than 0.001 in each case, implying that the TVB

model has significantly better forecasting accuracy than that of the HAR model.

This forecasting advantage of the TVB model over the HAR model may be the

result of its ability to take the structural change of yt into account.

6. Conclusion

We first provide a generalized Hausman test for detecting the structural

change in covariance matrix time series, and then derive its limiting distributions

under both null and local alternatives. As illustrated by simulations, matrix time

series data can exhibit spurious long-memory phenomena when the structure of

their underlying model changes. Our generalized Hausman test is motivated by

this, and is applicable without assuming any prior information on the structural

change alternative. This makes our test appealing, because there is no guarantee

that the structures of the matrix time series specified by the researcher provide

a correct description of reality.

We also propose a new semiparametric TVB model that simultaneously al-

lows for structural change and temporal dependence. Our TVB model is esti-

mated by a two-step estimation procedure, and the asymptotics of its related
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estimators are established. Because this two-step estimation procedure is valid

without specifying the form of the structural change or the distribution of the in-

novation, it has a wide application scope. By applying our generalized Hausman

test and TVB model to one RCOV matrix time series data set, we find strong

evidence that this RCOV matrix data set is undergoing a structural change over a

BEKK-type model during the examined period. Furthermore, its observed long-

memory phenomenon is well captured by the TVB model. Of course, it is possible

that the observed long-memory phenomenon in the RCOV data set is caused by

other mechanisms, such as the regime-switching mechanism. Hence, we feel that

studying the regime-switching matrix time series model is a promising direction

for future research. Finally, note that our methodology is for fixed-dimensional

covariance matrix time series. Extending our work to the high-dimensional set-

ting (see, e.g., Tao et al. (2011), Leng and Tang (2012), and Wang, Liu and Chen

(2019)) could be another promising direction for future research.

Supplementary Material

The Supplementary Material contains Appendices A, B, C, and D, where

Appendix A gives proofs of Theorems 1–2, Appendix B offers proofs of Theorems

3–5, Appendix C lists some basic derivatives results, and Appendix D provides

some numerical evidence of spurious long-memory phenomena caused by struc-

tural changes.
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