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Abstract: We first construct a new generalized Hausman test for detecting the
structural change in a multiplicative form of covariance matrix time series model.
This generalized Hausman test is asymptotically pivotal, and has nontrivial power in
detecting a broad class of alternatives. Moreover, we propose a new semiparametric
covariance matrix time series model. The proposed model has a time-varying long-
run component that takes the structural change into account, and a BEKK-type
short-run component that captures the temporal dependence. We propose a two-
step estimation procedure to estimate this semiparametric model, and establish the
asymptotics of the related estimators. Finally, the importance of the generalized
Hausman test and the semiparametric model is illustrated by means of simulations
and an application to realized covariance matrix data.
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1. Introduction

Matrix-variate observations are often encountered in statistical applications
with structured information. An important example is the realized covariance
(RCOV) matrix, which is calculated from intraday high-frequency returns and
enhances the prediction ability for the covariance matrix of the underlying mul-
tivariate process (see, e.g., Barndorff-Nielsen and Shephard| (2002, 2004 and
Andersen et al.|(2003)). Because modelling and forecasting a covariance matrix
are fundamental in asset pricing, portfolio selection, and risk management, it is
necessary to study the dynamics of the RCOV matrix.

The non-ignorable structured feature of the RCOV matrix is its positive
definiteness. To preserve this feature, many covariance matrix time series mod-
els have been proposed based on the Wishart or matrix-F innovation distribu-
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tion, which generates random positive-definite matrices automatically. Related

works in this direction include |Gouriéroux, Jasiak and Sufanal (2009)), |Golosnoy,
\Gribisch and Liesenfeld| (2012), [Yu, Li and Ng| (2017)), |Opschoor et al.| (2018)), and
many others. However, the aforementioned models all require stationarity, which

may be less reliable in view of the ubiquity of structural changes in applications;

see, for example, |Aue and Horvath| (2013)) for an overview. In the presence of a

structural change, conventional statistical methodologies could lead to a severe

deterioration in predictions (Pesaran and Timmermann (2004))). Furthermore,

sub-optimal long-memory models may be adopted to capture the spurious long-
memory phenomenon (Mikosch and Starica) (2004)); Starica and Granger] (2005)).
In this paper, we show that RCOV matrix data can also exhibit the spurious

long-memory phenomenon caused by a structural change. This indicates that
existing long-memory models (Corsi| (2009)); |Chiriac and Voev]| (2011))) for RCOV
matrix data should be used with caution, because they overlook the possibility

of spurious long memory. To circumvent the aforementioned dilemmas, a formal
test for detecting structural changes in matrix time series models is needed, but
has not been attempted before.

We propose a new generalized Hausman test for detecting a structural change
in a multiplicative formulation of the covariance matrix time series model. The
considered multiplicative testing model is a matrix generalization of the univari-
ate volatility model in and the multivariate one in Hafner and Linton|
, both of which allow for abrupt and smooth structural changes with an
unknown form, in the spirit of Robinson! (1989, |1991). The generalized Hausman

testing framework was first proposed by |Chen and Hong (2012), and then later
adopted and extended by Zhang and Wu (2012), |Chen| (2015)), Chen and Hong|
(2016), and [Fu and Hong (2019). To the best of our knowledge, our generalized
Hausman test is the first formal attempt to detect structural changes for matrix

time series models. Under suitable conditions, our test is shown to have a stan-
dard normal limiting null distribution, as well as nontrivial power in detecting a
broad class of abrupt and smooth local alternatives.

Testing for structural changes is a long-standing problem in the literature.
In addition to the generalized Hausman test, many other tests have been studied
for regression or univariate/multivariate time series models; see, for example, the
cumulative sum type tests in Brown, Durbin and Evans| (1975), [Hidalgo| (1995)),
and Xiao| (2008), |Aue et al.| (2009), and |Shao and Zhang| (2010)); the supremum
type tests in [Andrews| (1993)), Davis, Huang and Yao| (1995), Bai and Perron|
(1998)), Hansen| (2000)), and |Qu and Perron| (2007); and the Lagrange multiplier
tests in Lin and Terdsvirta (1994) and Amado and Terasvirtal (2008)). In this
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paper, we study the generalized Hausman test, because it has several appealing
advantages over other tests. First, it can detect both abrupt and smooth changes
without assuming a specified structural change alternative or knowing the type
of change. Clearly, it is important for the test to avoid such potential model mis-
specification. Second, it is asymptotically pivotal, and thus easy-to-implement.
Third, there is no need to trim the boundary region near the end points of the
sample period, allowing the test to detect changes that happen very early or very
late.

Once a structural change is indicated by our generalized Hausman test, it
is important to have a dynamic model to capture this change. For this pur-
pose, we propose a new semiparametric covariance matrix time series model.
Our semiparametric model has a multiplicative form, combining a time-varying
deterministic long-run component and a BEKK-type (Engle and Kroner| (1995))
short-run component. Hence, we call it the time-varying BEKK (TVB) model.
For this nonstationary TVB model, we propose a two-step estimation procedure.
Specifically, we first consider a kernel estimator for the long-run component. Sec-
ond, we estimate the unknown parameter vector of the BEKK-type short-run
component using a profiled quasi maximum likelihood estimator (QMLE). This
profiled QMLE is obtained by assuming that the model innovation follows the
Wishart distribution, and profiles out the unobserved long-run component by
using the kernel estimator in step one. The consistency of both the kernel esti-
mator and the profiled QMLE is established under conditions allowing for both
smooth and abrupt changes (at some finite points) in the long-run component,
and the asymptotic normality of both estimators is derived under some smooth-
ness conditions on the long-run component. To derive the asymptotics of the
profiled QMLE, we show that the involved kernel estimation effect from step one
is negligible. This requires nontrivial proof techniques, because the BEKK-type
process depends on all past unobserved lagged variables in our TVB model.

The remainder of the paper is organized as follows. Section 2 presents the
testing framework, proposes the test statistic, and derives the corresponding
asymptotic theory. Section 3 introduces the semiparametric TVB model and
studies its two-step estimation procedure. Simulations are given in Section 4,
and a real-data example is provided in Section 5. Concluding remarks are offered
in Section 6. Proofs are relegated to the Appendices, which can be found in the
Supplementary Material.

The following notation is used throughout the paper. For a matrix A of size
n x n, A;j is its (¢,7)th element, tr(A) is its trace, A’ is its transpose, det(A)

1/2

is its determinant, p(A) is its spectral radius, |A| = tr(A’A)"# is its Frobenius
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norm, vec(A) is a vector obtained by stacking all the columns of A, vech(A)
is a vector obtained by stacking all columns of the lower triangular part of A,
D, is the n? x n(n + 1)/2 duplication matrix defined by D,vech(A4) = vec(A),
D}t = (D! D,)"'D! is its generalized inverse, L, is the elimination matrix defined
by L,vec(A) = vech(A), and K, is the transposition-permutation matrix defined
by Kpnvec(A) = vec(A’). For a random variable &, ||, = (E|¢|F)V/* is its L*-
norm. In addtion, I, is the identity matrix of size n x n, 1(-) is the indicator
function, C is a universal constant, AQ B is the Kronecker product of two matrices
A and B, A®?2 = A® A, -, denotes convergence in distribution, and the range
of integration is [—1, 1], unless stated otherwise.

2. Testing for Structural Changes
2.1. The testing model and hypotheses

Let y; € R™*" for t = 1,2,...,T be a positive-definite matrix-valued time
series. We consider the following data-generating process (DGP) for y;:

t
yi = 52w l? with &, = 2<T>, (2.1)

where ¥(x) is a deterministic bounded positive-definite matrix function with un-
known form on the interval [0, 1], and {u,}Z_, is a sequence of strictly stationary
positive definite random matrices with Fu; = I,,. In model , both the dy-
namic process u; and its parameter matrix 3; have unspecified forms, allowing the
structure of y; to change abruptly or smoothly. Our idea of using a time-varying
function ¥; to capture the structural change is motivated by the pioneering work
of [Robinson| (1989, |1991)) for the linear regression model with time-varying pa-
rameters. Here, we adopt a multiplicative form in model to maintain the
positive-definite feature of y;. Moreover, note that the possible nonstationarity
of y; in model is caused by the deterministic ;. This setting is in accor-
dance with the semiparametric model in Section 3, but does not allow ¥; to be
nonstationary driven by some unit root-type process. To study the unit root-type
nonstationarity of y;, one may refer to the testing and modelling methodologies
and their related technical treatments in Wang and Phillips (2012)) and (Chan and
Wang (2015).

In the literature, researchers tend to build parametric models for the RCOV
matrix by implicitly assuming the stationarity of y;, or equivalently, the con-
stancy of ¥;. However, changes are common, and tend to be the rule, rather
than the exception. It is well documented that ignoring structural changes can
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mislead conventional time series analysis procedures, resulting in erroneous con-
clusions (Pesaran and Timmermann| (2004)). This motivates us to propose a
formal structural change test for model . Our other motivation for the struc-
tural change test is triggered by the spurious long-memory phenomenon (see the
Supplementary Material for numerical evidence). However, this important aspect
has been overlooked in matrix time series applications. For instance, RCOV ma-
trix time series data often exhibit the long-memory phenomenon, and empirical
researchers usually apply long-memory models to fit RCOV matrix data (Corsi
(2009); |Chiriac and Voev| (2011)). We argue that these fitted long-memory mod-
els should be used with caution, because they do not consider the possibility
of spurious long-memory phenomena. Motivated by these arguments, the null
hypothesis of interest is
Hy: X =X for all ¢,

where X is a positive-definite constant matrix in R™*™. The alternative hypoth-
esis Hy is that Hj is false. Under Hjy, the structure of y; is unchanged over
time. Under Hi, 3 is a time-varying parameter matrix, and allows the structure
of y; to change smoothly or abruptly. Testing for structural changes has been
well studied for regression or conditional mean time series models; see [Fu and
Hong| (2019) and the references therein. For conditional variance models, most
efforts focus on GARCH models; see Berkes, Horvath and Kokoszkal (2004) and
Fryzlewicz and Rao (2014) for abrupt structural change alternatives, Amado and
Terasvirta) (2008]) for smooth structural change alternatives, and |(Chen and Hong
(2016) for both abrupt and smooth structural change alternatives. For multivari-
ate conditional variance models with an unknown form, related structural change
tests are absent. This is also true for our matrix model with n > 1.

2.2. Test statistic

We adopt the idea of the generalized Hausman test in|Chen and Hong (2012)
to propose a structural change test for model . Here, we need two estimators
of 3, where one estimator is always consistent and the other is consistent only
under Hg. Then, our new test measures the distance of these two estimators
under a certain norm to look for evidence of rejection.

Our first estimator of ¥; is chosen as

_ 1 &
E = Z y87
s=1

which is obviously efficient and consistent under Hy, but inconsistent under H;.

=l



792 JIANG ET AL.

To introduce our second estimator of ¥;, we simply consider the Nadaraya—
Watson estimator of ¥(x), z € [0, 1], given by

i(.%') _ Zzzl Kh(l' — S/T)YS
Soor Kl = 5/T)
(see, e.g., [Fan and Yao| (2008) for other choices of kernel estimator), where
Kp(-) = K(-/h)/h, K(-) is a kernel function, and h is the bandwidth. Because
(1T) S| Kp(x—s/T) = 1+ O(T~'h~1) by the integrability of K(-), it is more

convenient to consider an alternative estimator of ¥(x) given by

S(z) = ;im (az— ;>y (2.2)

Given that Fy; = ¥; in model (2.1)), we then take our second estimator of ¥; as
¥ =X(t/T).
A practical issue for X; is the edge effect in finite samples, that is, there is

insufficient information for the estimators at the extreme left and right ends of the
sample interval. To avoid such a problem, following |(Chen and Hong (2012)), we
consider the reflection method proposed by |Hall and Wehrly| (1991)) to generate
pseudo data y; = y_; for —[Th] < t < —1, and y; = yor—¢ for T + 1 <
t < T + [Th]. Using the reflection method, we make the boundary points act
similarly to those in the interior region [Th] <t < T — [Th], and modify S as

S@=g 3 Ki(r-g)v (2.3

for each t € {1,2,...,T}.

Another way to circumvent the edge effect is to use the local linear estimator
(Fan and Gijbels (1996))), for which the intercepts and slopes are estimated via
the weighted least squares. We feel that the arguments used in [Fu and Hong
(2019) still apply to the test statistic defined in , with some appropriate
modifications. However, using the local linear estimator complicates the estima-
tion theory for the proposed semiparametric model in Section 3. Hence, we focus
on the kernel (local constant) estimator, for brevity, and leave the investigation
of the local linear estimator for future research.

With the two estimators ¥ and f)t, we measure their distance in the Frobenius
norm (cumulatively over all ¢) by
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1 T
— > [vech(S; — 5)'vech(5, — ).
=1

'ﬂ

Formally, our test statistic is a standardized version of S , defined by

Th'2S - B

D="+
Vi/2

, (2.4)

where B = h*1/2tr(M\)[SK2(m)da:] Y = 2tr(M?) )S[S K (2)K (z + /\)dx]2d)\, and

7= % w(g)n
J==br
Here, k(-) is another kernel function, by is the truncated lag, and

T
~ A/ .
— Z vy, for j=0,1,...,07,
tfj+1

=

v’j =

Z Bppj0p,  for j=—1,-2,..., —br,
t 1—j

with 9y = vech(y; — X).

In , the factors B and V are the estimators of the mean and variance,
respectively, of Th'/ 25, Both of them depend on M , which is essentially the
estimator for the asymptotic variance of T~1/2 ZtT=1 vech(y; — Xo) (see Newey,
and West| (1987)); Andrews (1991))). Note that the test in /Chen and Hong (2012)
does not need to consider the corresponding long-run variance estimator, because
their assumed model error is a martingale difference sequence (m.d.s.). [Fu and
Hong| (2019) later relaxed this m.d.s. assumption with the help of instrumental
variables. In our model , we only require F(u; — I,) = 0 instead of the
m.d.s. assumption that E(u; — I,|Fi—1) = 0, where F; = o(ys, s < t) is the sigma
field generated by the information up to time ¢. Hence, our test statistic D is
robust to not only conditional heteroscedasticity and higher-order moments of
unknown form, as in |[Chen and Hong| (2012)), but also endogeneity, as in Fu and
Hong| (2019)).

2.3. Asymptotic theory

To study the limiting distribution of 13, the following four assumptions are
needed.
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Assumption 1. X(z) is bounded, positive-definite, and continuous, except at a
finite number of points on [0,1], such that for some constants 0 < ¢; < ¢, < 0,
e < infpefo ] | Z(@)] < supyepo g 12(@)] < e

Assumption 2. (i) vech(wy) is a strictly stationary B-mizing process with mizing
coefficients [(j) satisfying 23021 3285+ < o, for some 0 < § < 1; (i)
E [u '+ < o0,

Assumption 3. (i) K : [-1,1] — R" is symmetric about zero, bounded, and
twice continuously differentiable, with § K (x)dz =1 and §2"K (z)dz = C, < o,
forr =2; (i) h = c, T, for some 0 < A\ < 1/2 and 0 < ¢, < 0.

Assumption 4. (i) k : [-1,1] — RT is symmetric about zero, bounded, and
square integrable, with k(0) = 1; (i) by = T, where 0 < ¢ < 0 and \p/2 <
Ao < 1/2—=1/2)\p, for some 0 < A\, < 1/2.

Assumption 1 is sufficient to guarantee that Y (z) is integrable on [0, 1] up
to any finite order, and when n = 1, similar conditions have been used in |Cav-
aliere and Taylor| (2007), Xu and Phillips (2008)), Zhu (2019)), and many others.
Assumptions 2-4 are in line with |Fu and Hong (2019). Assumption 2(i) re-
quires some sufficient technical conditions on u;. The stationarity condition for
u; might be restrictive under some circumstances. Future research may apply
the techniques in [Zhang and Wu (2012) and Vogt| (2015) to relieve this condi-
tion. The [-mixing condition is widely adopted in the literature. As shown in
Proposition 1 below, Assumption 2(i) holds when u; follows model , with
p(Ag + By) < 1. Assumption 2(ii) imposes a higher moment condition on u; so
that the limit of M under Hj (denoted by M) exists and some mixing inequalities
can be applied, where

M = S04 Zop b, (2.5)
with S, = (2¢/%)82D,,, and
o0
Zyp= Y, E(zz_) (2.6)
j=—00

with z; = vech(u; — I,,). Assumption 3(i) holds for commonly used kernels, such
as the uniform, Epanechnikov, and truncated Gaussian kernels, among many
others. Assumption 3(ii) requires that h converges to zero at a slower rate than
T-1/2. Assumption 4(i) allows for Bartlett, Parzen, and Tukey—Hanning kernels
or the truncated quadratic-spectral (QS) kernel, where the truncated QS kernel
is defined by restricting the domain of the QS kernel to [—1, 1]. Assumption 4(ii)
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gives a sufficient technical condition on by to ensure the consistency of M under
the null, and was adopted in [Hong, Wang and Wang| (2017) and Fu and Hong
(2019).

Now, we are ready to give the limiting null distribution of D.

Theorem 1. Suppose Assumptions 1-4 hold. Then, under Hy,
73—»5 N(0,1) as T — oo.

Let ¢, be the a-upper percentile of N(0,1). Because a large value of D
indicates a rejection of Hy, we set the critical region of our test as

D > cq, (2.7)

which has an asymptotic significance level «, by Theorem 1.

To compute 25, we need to select two kernel functions K and k, the bandwidth
h, and the truncated lag by. As demonstrated in our numerical studies, the choice
of K seems less sensitive, and a simple rule-of-thumb of h = T—1/5 /v/12, as in [Fu
and Hong (2019), works well. Here, the constant 1/4/12 is the standard deviation
of a uniform distribution on [0, 1], which can be viewed as the limiting distribution
of the grid points t/T, for t = 1,2,...,T. Typically, one would expect that the
constant ¢; in h = ¢, T~5 should depend on the structure of the underlying
process y; and the smoothness of ¥(z). In the framework of estimation, ¢, can
be optimally chosen by minimizing the integrated mean square error (Robinson
(1989)). However, the chosen ¢;, may not be optimal for the test, as pointed out
by Hong, Wang and Wang| (2017). In general, to obtain the optimal bandwidth
for ZS, we may need higher-order Edgeworth expansions for the finite-sample
distribution of 25, and we leave this interesting topic for future work.

To select the kernel function k and the truncated lag bp, we use the method
in |Andrews (1991) so that the mean and variance of ThY/ 28 can be estimated
precisely. Specifically, we consider the truncated QS kernel for k& with by =
1.3221(xT)"/5, where 7 is a function of the unknown spectral density matrix of
vech(y: — Xo). We use the truncated QS kernel, because its related long-run
variance estimator is close to the one based on the QS kernel for large b7, and
Andrews (1991) has shown that the QS kernel with the preceding choice of by is
optimal under the asymptotic truncated mean squared error optimality criterion.
In practice, one can estimate m by 7 using preliminary information. For instance,
we can take T = min(7y, T2) with the upper bound 7; = 1600, as suggested by
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Lima and Xiao| (2010), and

n(n+1)/2 NN Wi ~ 9y n(n+1)/2 N g~d
Ry = 2 4(1 + ¢a¢’t\z) (¢a +Zﬁa) Ua/ (1+ wi) Oq (2.8)
a=1 (1= ¢a)®(1 + ¢3) =1 (1= ¢a)*

(see (6.5) in |Andrews| (1991))), where (&E(ZJZQ) is the least squares estimator of
(¢, 1) in the ARMA(1,1) model ¥, ; = ¢¥o ;1 +¥Ta—1+Tas, 04 is the estimator
of Var(74,), and 7, ; is ath element of vech(y; —X). Our numerical studies below
show that this choice of T performs well in finite samples.

Next, we study the power behavior of our test D under the local alternative

by
Hir: S = S0 + =2 for all ¢,
cr
where ¥1; = X1(¢/T), the deterministic matrix function ¥;(x) satisfies the con-
ditions for ¥(x) in Assumption 1, and

1 1

Vech(le(ac))/d:ch0 vech(X1(x))dz > 0.

1
B - f vech(Sy () vech(S1 (z))dz — J
0 0
Note that S using the Frobenius norm can be viewed as an La-type statistic, and
its convergence rate in Theorem 1 is Th'/2. This implies that the local rate ¢p
should have the order O((Th'/?)'/2) = O(T*/2h'/*) to ensure the nontrivial local
power of D.

Theorem 2. Suppose Assumptions 1-3, 4(i) hold, and Assumption 4(ii) holds
with A\p/2 < Xy < 1/2 — A\, for some 0 < A\, < 1/3. Under Hyp, as T — o0,

(i) if TY?hV*Jep — 0, then D -, N(0,1);
(ii) if TV2hY4 Jep — ¢ € (0,0), then D =z N(2Byy, 1);
(i) if T1/2h1/4/cT — o0, then D — 0 in probability;
where By, = Bi/V/V > 0, with V = 2tr(M?2) § [ § K(2)K (z + A\)dz] dA.

The above theorem implies that D has nontrivial power against local alter-
natives with decay rate TV/2h1/4; it has no power if ¢p is faster than TV/2p1/4,
and it is consistent if ¢p is slower than TY/2hY/4. The local rate TY2hY/4 is only
slightly slower than the parametric local rate T%/2 as h — 0. For example, if
hocT—Y5, then TY2hY4cT9/20 is close to TY2. The same local rate TY2pY/4 is
also considered in [Hardle and Mammen| (1993)), Chen and Hong (2012)), Fu and
Hong| (2019)), and many others.
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Moreover, the modification of Assumption 4(ii) is tailored to give a sufficient
technical condition on by to ensure the consistency of M for Theorem 2(1)—(ii)
(see Proposition A.5 in the Supplementary Material). Here, the commonly used
bandwidth hocT—1/% is still allowed under the conditions in Theorem 2.

3. A Semiparametric Matrix Model
3.1. Model specification

Once the null hypothesis Hy is rejected by the test statistic 75, a semipara-
metric matrix model with an appropriate specification for u; is needed to model
y¢. Here, we model u; by

w = G %e,Gy? (3.1)
with Gy = I, — Ap Ay — BoB|, + Aoui—1Aj + BoGi—1 By,

where G; € F;_1 has the first-order BEKK specification in |[Engle and Kroner
(1995) with EG; = I,,, and {e;}]_, is a sequence of independent and identically
distributed (i.i.d.) positive-definite random innovation matrices with Fe; = I,,.
With minor modifications, our work can be easily extended to the case where G
has a higher-order mean-targeted BEKK specification, which is not considered
below for ease of presentation.

From now on, we call model with u; ~ the time-varying BEKK
(TVB) model. Clearly, as a special case, the TVB model becomes stationary
when X, = X, for all £. In the TVB model, y, has a nonparametric long-run
component ¥; and a parametric short-run component Gy, which jointly specify
the dynamic structure of y; with Fy; = ¥; and E(y|Fi-1) = Z%/QGtE%/Q. The
idea of using a combination of nonparametric and parametric components was
first proposed by [Feng (2004]) for the univariate volatility model. The idea has
since become popular for describing the dynamics of univariate volatility (see,
e.g., [Engle and Rangel (2008]); Xu and Phillips| (2008); Chen and Hong| (2012);
Zhu (2019); Zhang et al. (2020)); Jiang, Li and Zhu (2021)) and multivariate
volatility (see, e.g., Hafner and Linton| (2010)); Patilea and Raissi (2010); Amado
and Terasvirtal (2014)). The TVB model can thus be viewed as a matrix general-
ization of the model in Feng| (2004). Furthermore, under some suitable conditions,
the TVB model could be approximated by a family of locally stationary processes
(Dahlhaus (1997))), meaning that y; is close to a stationary process y:(s), for t/T
in a small neighborhood of s.
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3.2. Probabilistic properties

In this subsection, we first study the stationarity of model (3.1). Let Ay =
LHA?QDH and By = Lnt)QDn. By Theorem 2.1 in [Zhou et al.| (2022)), we have
the following proposition, which gives the stationarity and moment properties of

Ug.

Proposition 1. Suppose (i) e; admits a density F,, which is absolutely continu-
ous w.r.t. the Lebesque measure; (ii) the point I, is in the interior of the support
of Fe; (iii) E |e¢]| < oo. Then, uy is strictly stationary and geometrically ergodic
with E |ug| < oo if and only if p(Ag + Bp) < 1.

Note that if uy is geometrically ergodic, it is also f-mixing with exponential decay.
Hence, if p(Ao + By) < 1, y; is f-mixing with exponential decay by Proposition
1 and the boundedness of ¥(x). If we do not require F |u;| < o0, we may use
a milder condition than p(Ag + By) < 1 to ensure that y; is S-mixing with
exponential decay; see, for example, Hafner and Preminger| (2009).

Next, we study the moments of y; when u; ~ . Let u; = vech(uy).
By rearranging the terms, u; admits a vector moving average (VMA) structure:
uy = vech(l,,) + ;2 ®iri—i, where &g = I,,, ®; = (Ao + Bo)" ' A and r; =
E(ug|Fi—1) — ut is an m.d.s. By using this VMA representation, we can get
the cross-covariance of u; and yy; the details are straightforward, and are hence
omitted.

Proposition 2. Suppose u; is strictly stationary, with EHutH2 < . Then,
. g 2

(i) E(zz]_ ) = S0 @i B(rrf) @ (ii) E(waw) ;) = Ln(S)%)**DaE(z2] )

D), (21/2-)®2L' where z is defined as in (2.6), and wy = vech(y; — Xy).

t—7g n’
3.3. Model estimation

Let ¢ = (vec(A)’,vec(B)')' € I'y be the unknown parameter in model (3.1)),
and ¢g = (vec(Ap)’, vec(By)') € T'y be its true value, where I'y is the parameter
space. In this subsection, we use a two-step estimation procedure to estimate the
nonparametric function ¥(z) and the unknown parameter ¢.

Our procedure first estimates 3 (z) by f)(x) in . To study the asymptotic
property of f](x), two technical assumptions are needed.

Assumption 5. w; is strictly stationary and ergodic, with E Hu,gH2 < 0.
Assumption 6. h = ¢, T, for some 1/5 < A\, <1 and 0 < ¢j, < 0.

Assumption 5 gives some regularity conditions on u;, which imply that u; is
B-mixing with exponential decay by Proposition 1. Assumption 6 requires that
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h converges to zero at a slower rate than 7', and is weaker than Assumption
3(ii).
Let o(z) = vech(X(z)), 6(x) = vech(X(z)), b(z) = Ca(d%0(x)/02?)/2, and

Vy(z) = [JKQ(x)dx]Ln[Z(x)1/2]®2DnZOOD;[2(::;)1/2]@21:;.

Using this notation, the asymptotics of f](x) are given in the following theorem.

Theorem 3. Suppose Assumptions 1, 3(i), and 5-6 hold. Then, for any x €
(0,1),

(i) 5(x) — (1/2)[o(xz—) + o(xz+)] in probability as T — oo, where o(x—) =
limzy, 0(Z) and o(x+) = limg |, 0(Z);

(i) furthermore, if ¥(x) is twice continuously differentiable on (0,1), then
VTh(G(x) — o(z) — h*b(z)) —2 N(0,Vy(x)) as T — oo.

Remark 1. At continuous points, Theorem 3 shows that f)(:v) always converges
to X(z), and its asymptotic normality further holds under some smoothness con-
ditions on ¥ (z). At discontinuous points, the consistency of f](x) fails, but this
has no impact on the asymptotics of the estimator of ¢; see Theorem 4 and
Remark 3 below.

Based on fl(x), we estimate 3 by 5y = fl(t/T) With this plug-in estimate
>, our procedure next estimates ¢ via a profiled quasi maximum likelihood
estimator (QMLE). Specifically, we write the parametric G; as

Gi(¢) = I, — AA' — BB' + Au;_1 A" + BG1_1(¢)B’, (3.2)

fort = 1,...,T. Let v = (¢/,v)". By assuming that e, ~ v~'Wishart(v, I,)
with degrees of freedom v > n, the negative log-likelihood function (ignoring
constants) of {y;}I_; is

T

Lr(y) = v ) Uye, () +

t=1 t

1=

T
c(ye,v) = v (o) + Z c(ye,v), (3.3)
=1

Il
—

where Q4(¢) = 3/2Gy(6)22, U(y, Q) = tr(QLy) + log det (), and

V+17i>

c(y,v) = —(v—n—1)logdet(y) + vnlog(2) + 2 Z logF( — nvlog(v).
i=1
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Here, v can be viewed as a nuisance parameter, because our main interest is
to estimate ¢. We consider the Wishart log-likelihood function in the estima-
tion for two reasons. First, the covariance matrix estimator based on Gaussian
observations is Wishart distributed. Second, like the Gaussian QMLE for the
BEKK volatility model (Engle and Kroner| (1995)); Jiang, Li and Zhu/ (2021))), the
Wishart profiled QMLE of ¢y dose not require any distributional assumption on
e; for its asymptotics.

Owing to the unobservable ¥; and uy, the calculation of Lp(7) is infeasi-
ble. To circumvent this difficulty, we have to replace ¥; and u; by f]t and U,
respectively, where U; = flt_ Y 2yt§]t_ 12 Consequently, we consider the following
profiled log-likelihood function:

T T T
LT(,Y) = Z E yt: Qt Z yt7 = VgT Z yt7 7 (34)
t=1 t=1 t=1
where Oy (¢) = S/2Gy(¢)S1* and
Gi(¢) = I, — AA' — BB' + Ali,_1A' + BG,_1(¢)B, (3.5)
for t =1,...,T, with given initial values éo(gb) and U .
Let 4 = (¢/,7)’ be the minimizer of Ly (7), that is,
~ = argmin ET(’Y), (3.6)

vyell

where I' = T'y x I, and T, is a compact subset of {v : v > n}. Interestingly, we
can see that the calculation of ¢ is irrelevant to v, leading to

¢ = argminzﬂ(gb). (3.7)
¢el’y

Although ngﬁ is defined by assuming e; ~ v~ !Wishart(v, I,), the consistency and
asymptotic normality of gg hold for any distribution of e; with Fe; = I, (see
Theorem 4 below). Hence, we call gg the profiled QMLE of ¢g.

To study the asymptotics of q3, we need three addtional assumptions:

Assumption 7. (i) det(Ag) # 0; (ii) p(A+ B) < 1; (i) if Gi(¢) = Gi(¢o)
(almost surely) for any ¢, po € L'y, then ¢ = ¢y.

Assumption 8. I'y is a compact subset of R2" | and ¢g is an interior point of
Ly.

Assumption 9. h = ¢, T, for some 1/4 < A\, < 1/2 and 0 < ¢ < 0.
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Assumption 7(i) rules out the deterministic situation of the BEKK process,
Assumption 7(ii) ensures the positive definiteness of G(¢), and Assumption 7(iii)
is standard for model identifiability; see |Engle and Kroner| (1995). Assumption 8
gives some regularity conditions for studying the model estimation. Assumption
9 is the key to deriving the asymptotics of qg A restricted h is required to
undersmooth the estimation of ¥; so that the impact of its bias on the asymptotics
of g’b\ can be neglected; see Hafner and Linton| (2010)), Jiang, Li and Zhu (2021),
and Remark 4 below for further discussion.

Let & =vec(er—1I,), pri zvec(ﬁGt/aqbi)’(Gt_l/Q)@Q, Nti zvec(Gt_l(ﬁGt/@qbi))/,
M} = E(u—; ® G '(0G1/04:)G; ), and

o0
Fy =) vec(B} ™" Ag) M}[I, ® By ' Ag).
j=1

Using this notation, define
Y(x) = (F — En)[Z(2) " @ T(x) 1),

2 2 . . . . 2 2 ., .
where F € R *™" ig a matrix with ith row Fj, and n; € R* *™ is a matrix
process with 7th row 7 ;; furthermore, define

Jso = E(pipy) and Qp, = N + ¥ + H + H', (3.8)

2 2 . . . . 2 2
where p; € R?*™ ™ is a matrix process with ith row p;;, and N e R?% *2n°
2 2 2 2 .
U e R2 X2 and H € R*™ *2™ are defined according to

vec(N) = E(p?Z)vec(Var(&)),

1
vee(¥) = [ | 0(a)2as] FE[(GYP* uee(Var(),

1
vec(H) = [L (T(:c) ® Ignz)d:c] [E0® Ign2]E[(th/2)®2 ® pt]vec(Var(ft)),

respectively, with =y = (1,2 — AO®2 — Bgﬁ)_l(lnz — B(C?Z).
Now, we give the consistency and asymptotic normality of ¢.

Theorem 4. Suppose Assumptions 1, 3(i), and 5-8 hold, and X(x) is twice
continuously differentiable at continuous points on (0,1). Then,

(i) $—> @o in probability as T — oo;

(i) furthermore, if ¥(z) is continuous everywhere on (0,1), E|lug|6(*2) < oo
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for some 6 > 0, and Assumption 6 is replaced by Assumption 9,
VT()— o) =2 N(0,Vy,) as T — oo,
where Vg, = J(;JlQ%J;Ol, and Jy, and Qg, are defined in (3.8).

Remark 2. When n = 1, $ is adaptive to the unknown form of ¥(z), because
its asymptotic variance is invariant regardless of the form of ¥(z). However,
when n > 1, ¢ is no longer adaptive because of the term T (z), unless ¥(z)/* ®
Y(z)"V* = 1, (e.g., X(z) = 7(x)I, with 7(z) > 0, for z € (0,1)). See also
the similar findings for the BEKK volatility model in |Jiang, Li and Zhu| (2021).
Therefore, when n > 1, if there exists cross-sectional dependence between any
two elements of y;, the estimation of 3; should affect the asymptotic distribution
of qg Note that when n = 1, ¥; represents only the scale of y;, and has no effect
on the dynamics of u;. This may be the reason for the adaptiveness of gg in this

univariate case.

Remark 3. To prove Theorem 4(ii), we need a higher smooth condition on ¥(x).
It is not clear whether this condition can be relieved to allow X(x) to have finite
discontinuous points. Numerically, the simulation studies in Section 4 show that
the asymptotic normality of ¢ in Theorem 4(ii) still holds when ¥ (z) has abrupt
changes. Theoretically, a new technique is required to modify Propositions B.5—
B.7 in the Supplementary Material. This kind of modification seems challenging,
and hence is left for future work.

Remark 4. To obtain the result in Theorem 4(ii), we need Assumption 9 for our
undersmoothing technlque which makes the bias from the first step nonpara-
metric estimator Et have a negligible effect on the asymptotics of gb Because

1/5 is excluded. To

of Assumption 9, the popular choice of bandwidth h = ¢, T~
relax Assumption 9, one may use bias correction and small bandwidth techniques
(see, e.g., Newey, Hsieh and Robins| (2004), |Aradillas-Lopez, Honoré and Powell
(2007), |Zhou and Wu| (2010), and |Cattaneo and Jansson| (2018])), which could
account for the bias effect from it on the asymptotics of qg How to derive the
asymptotics of gg based on the bias correction techniques is interesting and de-

serves future investigation.

In practice, we can estimate V¢O consistently by its sample version. Specifi-
cally, let Gy = Gy(8), 0Gy/0¢; = 0G1(8)/0¢s, & = Gy /*1,G; /% and define 7, p,
é\t accordingly. Based on these quantltles we compute the sample versions of Jy,
and M by J = (1/T) Y}y puy and M = (1/T) X7, 8—;®G; 1 (9G1/06:) Gy,
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respectively. To compute the sample version of Qg,, we first let
ot PO al/d . a-1/4
T(T) = (F T;%) X ®%, ",
where the ith row of F' is ﬁz given by

br
Fy =" vec(B'"'A)M[I, ® B A],

j=1

and by is defined in Assumption 4(ii). Based on ?(t/T), we next compute the
sample versions of N, ¥, and H by

. 1 &
vec(N) = Z[ﬁ?Q]VeC(VM(ft))a

T
vee(d) = {1{ > (L) et(L)] }@@M

3 S 0 e V)

t=1
vec( 1) - {; 3 () ] }:@% 3 ([ vec Vo),
t=1 t=1

respectively, where Vm) is the sample variance of {ft} Further, we compute
the sample version of g4, by @, where @ =U+H+H +N. Finally, we obtain
the sample version of Vj, as V.= jfléjfl.

Based on YA/, we can construct a Wald test statistic

o~

W =T(T¢ — ) (VL) {(Th — 1) (3.9)

to test the linear null hypothesis Hg : I'¢g = ¢, where I € R5*27* ig a constant
matrix with rank s, and ¢ € R®*! is a constant vector. Conventionally, we reject
this linear null hypothesis if W is larger than the upper-tailed critical value of
X3

It is also of interest to estimate the nuisance parameter v by U in , if we
have prior information that e; ~ v, Wishart(rp, I,). Because the calculations

of $ and 7 in 1D are independent, we can first obtain gg via 1} and then
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compute U by
v = argmin Ly (¢, v). (3.10)

The asymptotics of U are given as follows:

Theorem 5. Suppose e; ~ V61Wishart(ln, vy) and the conditions in Theorem 4
hold. Then,

(i) v — vy in probability as T — oo;

(it) NT(D—vy) =z N(0,2J,.1) as T — oo, where J,,, = (1/2) 37 ' ((vo + 1 — i)
/2) —n/vy, and Y(-) is the digamma function.

By some simple calculations, we can see that when e; ~ v 1Wishart(In, ),
the Cramér-Rao lower bound with respect to vy is 2.J,, . Interestingly, Theorem
5(ii) shows that v can attain the Cramér-Rao lower bound regardless of the
inclusion of the nonparametric part.

4. Simulation Studies

In this section, we assess the finite-sample performance of the generalized
Hausman test and the two-step estimation procedure by means of some simulation

experiments.

4.1. Study on the test

In this subsection, we examine the finite-sample performance of the gen-
eralized Hausman test D. We generate 1,000 replications of sample size T' =
500, 1000, 1500, 3000 from the following two DGPs:

DGP 1 : The TVB model with Ag = (8; 006> and By = ( 06 0 ) 7

: 5 0.1
DGP 2 : The TVB model with Ag = (82 004> and By — ( 0.5 0 ) 7

where the function ¥ (z) is designed as follows:
[No change] ¥ (z) = 215, (4.1)

[Diagonal smooth change] ¥(z) = (2 + :g)b, (4.2)

[Off diagonal smooth change] ¥(x) = 215 + (:g) <(i (1)) , (4.3)
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1
[Single abrupt change] ¥(z) = <2 + 1%1 <5 < x))]z, (4.4)
. r 1 4
[Multiple abrupt changes] £(z) = | 2 + El F<e<g I, (4.5)
with r = 1,...,10; and the error e; satisfies the following two distributions:

1
[Wishart distribution] e; ~ —Wishart(vy, I,),
0]

—n—1
[matrix-F distribution] e; ~ F(l/g, WIn> with I/(]; = (v10, ¥20),
V10
where we choose vy = 20 for DGP 1, 1y = 5 for DGP 2, and yg = (10, 6) for both
DGPs, and generate F(I/g, ((va0 —n — 1)/v19)I,) distributed e; by

-1
o= (2 LR,
10

with Ly ~ Wishart(vy9, I,) and R; ~ Wishart(va, I,,) (see [Konno| (1991)). Here,
the specification of ¥(x) in (4.1)) is used for the size study, and the specifications

of ¥(x) in (4.2)—(4.5) are used for the power study.

For each replication, we compute D according to the statements in Subsection
2.3. Specifically, we consider three choices of kernel function K (z):

[Uniform (U)] K () = %1(|az| <1),

[Epanechnikov (E)] K (z) = 2(1 —2H)1(|jz| < 1),

_ exp(—2?) — exp(—1/2)
er f(1/v/2)V2m — 2exp(—1/2)

and take the bandwidth h = (1/4/12)T~'/, where erf(-) is the error function.
We choose the kernel function k(z) to be

[Truncated Normal (TN)] K (x) 1(|z] < 1),

[Truncated QS (TQS)] k(z)

25 [sin(67r/5)

- . 1(|z] < 1),
12m222 | 67z /5 COS(GW:C/@] (I )

and the truncated lag by = 1.3221(77)Y/°, where 7 = min(1600,7) and 7y is
defined in . When the value of D falls into the critical region in , we
reject Hy at level a.

Because the size performance of D may be a bit sensitive to the choice of
h, we follow the suggestion in [Fu and Hong| (2019) to construct a bootstrapped
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critical region, and make decisions using the following moving block bootstrap
method:
1. Choose a block length l% such that l% — o0 and l%/T —0asT — o0;

2. Divide the original data into T'— £ + 1 blocks {Ht}T lr+l

{yta o 7yt+l?—1}7

, where =; =

3. Resample {Z }tT:_ll¥+1 with replacement to form the bootstrapped data
T l +1
{=f

4. Calculate D* based on the bootstrapped data in step 3;

5. Repeat steps 3-4 J times to get the bootstrapped test statistics {D* G-t
calculate the empirical 100(1 — «) sample percentile of {D;" }3.]:1 (denoted by

13;), and set the bootstrapped critical region as
D > D (4.6)

6. Reject Hp at level o« when the value of D falls into the critical region in
(9.

To implement this moving block method, we follow [Politis and White| (2004)
to take I = [(3/2)c3T|"3, where cp = tr( X0, k(j/br)|j|Tu ;) /tr(M), and
M and fv,j are defined as in . Currently, we are unable to provide the
consistency for the above bootstrap method, although our simulation results in-
dicate that it works well. This is because existing techniques for proving boot-
strap consistency in parametric models (see, e.g., Kunsch| (1989)) are not directly
transferrable to the case of a nonparametric kernel estimation.

Table 1 reports the sizes of 75, where DAC and DBC denote the results based
on the asymptotic critical region in and the bootstrapped critical region in
, respectively. From this table, we find that (i) when the sample size T is
small, DAC s undersized, but the size of DBC is more accurate; (ii) both DAC
and DBC have satisfactory size performance, regardless of the choice of K (z) and
the distribution of e;, when the sample size T' increases, and DBC has slightly
better size performance than ZSAO, especially at level 10%; and (iii) the size of
DBC ig slightly stable and close to the nominal level under both the Wishart and
the matrix-F distributions.

Next, we examine the power performance of D under the alternative settings
in . . As before, we consider both DAC and DBC. Their results at level
5% are reported in Fig1 for the data generated from DGP 1, where T' = 1500
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Table 1. Sizes of DAC and DBC at level a =5% and 10%.

e; ~Wishart e; ~matrix-F
2’5,40 ﬁBC ZSAC ﬁBC
T K(z) 5% 10% 5% 10% 5% 10% 5% 10%
DGP 1

500 U 0.025 0.045 0.026 0.083 0.038 0.073 0.068 0.115
E 0.020 0.042 0.045 0.090 0.024 0.038 0.036 0.065
TN 0.019 0.043 0.044 0.088 0.023 0.038 0.037 0.065
1,000 U 0.040 0.073 0.042 0.092 0.041 0.070 0.0561 0.105
E 0.042 0.060 0.051 0.092 0.022 0.043 0.036 0.077
TN 0.042 0.059 0.050 0.093 0.022 0.040 0.038 0.079
1,500 U 0.058 0.104 0.049 0.101 0.045 0.080 0.047 0.096
E 0.043 0.089 0.047 0.099 0.042 0.072 0.051 0.095
TN 0.041 0.087 0.046 0.101 0.042 0.074 0.052 0.098
3,000 U 0.055 0.101 0.042 0.102 0.049 0.080 0.048 0.097
E 0.053 0.094 0.045 0.105 0.045 0.079 0.045 0.094
TN 0.053 0.098 0.044 0.099 0.046 0.079 0.045 0.088

DGP 2
500 U 0.036 0.067 0.054 0.106 0.018 0.036 0.047 0.080
E 0.028 0.058 0.052 0.112 0.029 0.059 0.056 0.112
TN 0.027 0.056 0.053 0.110 0.026 0.061 0.059 0.112
1,000 U 0.052 0.095 0.049 0.103 0.031 0.056 0.036 0.088
E 0.031 0.065 0.042 0.089 0.025 0.060 0.041 0.089
TN 0.032 0.066 0.043 0.090 0.024 0.060 0.039 0.086
1,500 U 0.056 0.104 0.053 0.109 0.038 0.076 0.038 0.091
E 0.046 0.081 0.048 0.100 0.042 0.072 0.042 0.097
TN 0.047 0.079 0.052 0.105 0.035 0.065 0.043 0.095
3,000 U 0.047 0.083 0.039 0.089 0.043 0.084 0.042 0.087
E 0.0561 0.091 0.047 0.101 0.047 0.076 0.045 0.093
TN 0.052 0.090 0.048 0.097 0.046 0.077 0.045 0.083

and 3000, e, ~ Wishart, and D is calculated by choosing K (z) ~ U. The results
for other cases are similar, and hence are not reported. From Fig1, we find that
(i) DAC is slightly more powerful than DBC; (i) the power of DAC and DBC
always increases with r, as expected, and reaches one for large r; (iii) DAC and
DBC under the off-diagonal smooth (or multiple abrupt) change alternative are,
in general, more powerful than the diagonal smooth (or single abrupt) change
alternative for any fixed r.

Overall, DAC is better than DBC in terms of the power to detect both smooth
DBC DAC in terms of

and abrupt changes, while shows some advantage over
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Figure 1. Power across r for DAC (triangle “A” marker) and DBC (cross “x” marker)
when T' = 1500 (solid line) and 7" = 3000 (dotted line). The horizontal dashed line
corresponds to the level o = 5%.

size. Considering the trade-off between size accuracy and power enhancement,
we recommend considering the results of both D¢ and DBC in practice.

4.2. Study on the estimation

In this subsection, we assess the finite-sample performance of the profiled
QMLE ngb We generate 1,000 replications of sample size T' = 1500 and 3000 from
DGPs 1 and 2, where () is chosen as in and with » = 10. To compute
¢ in cach repetition, we estimate Y(x) by using K(z) ~ U, with a rule-of-thumb
bandwidth h = T—1/3/4/12. Here, we only consider the uniform kernel function
for K(z), because the results based on other choices of K(z) are similar. We
do not take hocT—Y5, as suggested by the conventional cross-validation method,
because it violates Assumption 9.

Tables 2 and 3 report the sample bias, sample empirical standard deviation
(ESD), and average asymptotic standard deviation (ASD) of 6 based on DGPs
1 and 2, respectively, where the ASD is calculated according to Theorem 4(ii).
From these two tables, we find that (i) the biases of gg are small in all considered
cases; (ii) regardless of the specification of ¥(x) and the distribution of e;, the
values of ESD and ASD are close to each other (especially for large T'); (iii) when
the sample size T increases, the values of ESD and ASD decrease as expected;
(iv) the values of ESD (or ASD) in the case of e, ~ Wishart are smaller than the
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Table 2. Estimation results for qAS based on DGP 1.

€ T Aq Ay Agp Az B Bo B Boy v
Panel A: X(z) ~ M with r = 10

Wishart 1,500 Bias -0.0055 0.0030 -0.0011 -0.0070 -0.0093 -0.0138 0.0102 -0.0090 0.1712
ESD 0.0172 0.0169 0.0185 0.0189 0.0259 0.0248 0.0285 0.0299 0.4229
ASD 0.0156 0.0176 0.0180 0.0187 0.0255 0.0244 0.0302 0.0279 0.4089
3,000 Bias -0.0021 0.0017 -0.0006 -0.0030 -0.0056 0.0080 0.0051 -0.0047 0.0504
ESD 0.0118 0.0118 0.0131 0.0133 0.0176 0.0166 0.0203 0.0199 0.2903
ASD 0.0110 0.0122 0.0126 0.0131 0.0176 0.0166 0.0206 0.0191 0.2886

matrix-F 1,500 Bias -0.0319 0.0009 0.0019 -0.0245 0.0096 -0.0102 0.0098 -0.0009 \
ESD 0.0315 0.0306 0.0306 0.0337 0.0436 0.0394 0.0412 0.0413
ASD 0.0296 0.0330 0.0324 0.0409 0.0425 0.0352 0.0384 0.0363
3,000 Bias -0.0228 0.0012 0.0029 -0.0169 0.0119 -0.0062 0.0028 0.0048
ESD 0.0229 0.0224 0.0224 0.0299 0.0315 0.0269 0.0297 0.0322
ASD 0.0250 0.0236 0.0168 0.0303 0.0309 0.0242 0.0266 0.0248

Panel B: X(z) ~ with 7 = 10

Wishart 1,500 Bias -0.040 0.0045 -0.0016 -0.0050 -0.0087 -0.0151 0.0124 -0.0670 0.1108
ESD 0.0172 0.0170 0.0186 0.0190 0.0259 0.0248 0.0287 0.0297 0.4212
ASD 0.0154 0.0176 0.0179 0.0187 0.0253 0.0240 0.0297 0.0273 0.4085
3,000 Bias -0.0011 0.0030 -0.0010 -0.0018 -0.0049 -0.0910 0.0067 0.0198 0.0530
ESD 0.0118 0.0118 0.0133 0.0133 0.0177 0.0166 0.0205 0.0198 0.2897
ASD 0.0109 0.0122 0.0125 0.0131 0.0175 0.0164 0.0203 0.0187 0.2880

matrix-F 1,500 Bias -0.0313 0.0012 0.0019 -0.0239 0.0099 -0.0103 0.0101 -0.0005 \
ESD 0.0314 0.0306 0.0306 0.0337 0.0436 0.0394 0.0412 0.0472
ASD 0.0195 0.0330 0.0224 0.0410 0.0424 0.0351 0.0382 0.0361
3,000 Bias -0.0225 0.0014 0.0029 -0.0166 0.0122 -0.0063 0.0030 0.0054
ESD 0.0230 0.0225 0.0224 0.0247 0.0314 0.0269 0.0298 0.0322
ASD 0.0156 0.0236 0.0173 0.0304 0.0308 0.0243 0.0265 0.0252

— = = =

— =

corresponding values of ESD (or ASD) in the case of e, ~ matrix-F, and this is
consistent with the fact that g’b\ is an efficient estimator when e; follows a Wishart
distribution. Note that when e; ~ Wishart, Tables 2 and 3 also give the results
for the estimate 7, which performs as well as <$

Overall, our profiled QMLE gg has good finite-sample performance in all
considered smooth and abrupt change specifications.

5. An Empirical Example

In this section, we revisit the RCOV matrix time series data on IBM Com-
mon Stock (IBM) and Microsoft Corporation (MSFT) in |Lunde, Shephard and
Sheppard (2016). This data set ranges from January 2006 to December 2011,
with 1,474 observations in total. Two flash crashes, on May 6, 2010, and August
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Table 3. Estimation results for qAS based on DGP 2.

€ T Aq Ay Agp Az B Bo B Boy v
Panel A: X(z) ~ M with r = 10

Wishart 1,500 Bias -0.0096 0.0055 -0.0012 -0.0111 -0.0492 0.0043 0.0264 -0.0411 0.0437
ESD 0.0271 0.0290 0.0306 0.0305 0.1003 0.1091 0.1119 0.0887 0.1090
ASD 0.0263 0.0282 0.0302 0.0293 0.0938 0.0891 0.0983 0.0850 0.1114
3,000 Bias -0.0044 0.0037 -0.0017 -0.0045 -0.0249 0.0037 0.0173 -0.0236 0.0225
ESD 0.0183 0.0201 0.0208 0.0207 0.0623 0.0619 0.0672 0.0581 0.0757
ASD 0.0184 0.0196 0.0211 0.0205 0.0617 0.0589 0.0653 0.0560 0.0784

matrix-F 1,500 Bias -0.0177 0.0062 -0.0037 -0.0182 -0.0686 0.0083 0.0460 -0.0509 \
ESD 0.0421 0.0396 0.0457 0.0438 0.1318 0.1463 0.1334 0.1311
ASD 0.0368 0.0369 0.0386 0.0428 0.1176 0.1195 0.1153 0.1028
3,000 Bias -0.0091 0.0037 -0.0022 -0.0091 -0.0360 0.0024 0.0233 -0.0252
ESD 0.0312 0.0284 0.0322 0.0319 0.0819 0.0749 0.0783 0.0783
ASD 0.0271 0.0270 0.0289 0.0318 0.0794 0.0732 0.0771 0.0693

Panel B: X(z) ~ with 7 = 10

Wishart 1,500 Bias -0.0075 0.0064 -0.0028 -0.0089 -0.0370 -0.0079 0.0219 -0.0290 0.0310
ESD 0.0273 0.0294 0.0312 0.0307 0.0998 0.1097 0.1145 0.0973 0.1090
ASD 0.0261 0.0279 0.0298 0.0291 0.0886 0.0838 0.0925 0.0797 0.1111
3,000 Bias -0.0029 0.0048 -0.0030 -0.0030 -0.0165 -0.0080 0.0141 -0.0129 0.0756
ESD 0.0184 0.0205 0.0213 0.0208 0.0629 0.0649 0.0689 0.0586 0.0756
ASD 0.0183 0.0195 0.0209 0.0204 0.0591 0.0560 0.0621 0.0529 0.0783

matrix-F 1,500 Bias -0.0162 0.0067 -0.0047 -0.0167 -0.0653 0.071 0.0467 -0.0488 \
ESD 0.0423 0.0398 0.0459 0.0439 0.1325 0.1488 0.1338 0.1343
ASD 0.0367 0.0368 0.0384 0.0428 0.1156 0.1065 0.1130 0.1006
3,000 Bias -0.0083 0.0051 -0.0028 -0.0085 -0.0349 -0.0063 0.0245 -0.0208
ESD 0.0314 0.0291 0.0323 0.0321 0.0842 0.0853 0.0808 0.0783
ASD 0.0274 0.0271 0.0282 0.0319 0.0781 0.0791 0.0757 0.0674

— = = =

— =

9, 2011, are replaced by the average of their nearest five preceding and following

1 474 . First, we plot {yys, t}l 474

matrices, respectively. Denote this data set by {y;},~
and the sample ACFs of y,s; in Fig2, where y,s; is the (r, s)th element of y;.
This figure shows a peak in all y,s; around late 2008, and the sample ACFs of
each y,s: decay slowly.

Next, we apply our generalized Hausman test D to detect whether there is
any structural change in y;. Based on this data set, the value of Dis 4. 2061, where
D is computed as in Subsection 4.1, with K (x) ~ U. Moreover, the p-values of D
using the asymptotic critical region (as for DAC) and the bootstrapped critical
region (as for ﬁBc) are 0.0000 and 0.0060, respectively. Both methods convey
strong evidence that the structure of y; is changing over time.

Third, we fit y; using our semiparametric TVB model, which is estimated
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using the two-step estimation procedure in Subsection 3.3. The top panels of
Fig3 plot the values of irs,t (the (r,s)th element of it), which are computed
as in Subsection 4.2. In view of f]rs,t, we can see that the long-run component
3 is not a constant matrix, and its value from late 2008 to early 2009 is much
higher than that of the other time period. This finding is reasonable, because
the subprime financial crisis happened in 2008-2009, and the (co-)variance of
IBM and MSFT tends to be higher during that period. Using the estimated
long-run component, the short-run component G; in the TVB model is fit-

ted by the profiled QMLE with A= 0-7227(0.0109) —0-01190.0177) and B =
0.1057(0.0187) 0.6256(0.0279)

0. 5862(0'0241) 0.0755(0'0237)
—0. 1962(0.0268) 0.6799(0'0295)

asymptotic standard errors. Furthermore, we apply the Wald test W in 1} to
examine the two null hypotheses Hj : Aj29 = 0 and H{ : A129 = B2 = 0, and

> , where the values in parentheses are the related

the corresponding p-values are 0.5025 and 0.0013, respectively. Hence, we have
strong evidence to reject H{/, but not H|. Consequently, we re-fit the short-run

~ 7212
component Gy using the profiled QMLE with A = 0-7212( 0111) 0
0‘1004(0.0186) 0'6274(0.0280)

0.5896/0.0243) 0.0614( 9234
—0.1890(0.0267) 0-68029.0295)
TVB model, we plot the first 100 sample ACF's of the residual series {€,5+} (de-
noted by pys(j) for j = 1,...,100) in the three bottom panels of Fig3, where
€5, is the (r, s)th element of €;. From these three panels, we find that the con-

and B = . To check the adequacy of our re-fitted

sidered ACFs have small values, in general, except that they exhibit relatively
large values at two or three large lags for the cases of (r,s) = (1,2) and (2,2).
This indicates that our re-fitted TVB model is largely adequate, although the
possible dependence within ej2; and ess; could be captured by using high-order
or long-memory TVB models.

The conditional heterogeneous autoregressive (HAR) model proposed by
Corsi (2009)) is used as a benchmark to study the univariate RCOV, because
it can capture the observed long-memory feature of the RCOV. As shown in
Fig2, our considered RCOV matrix data also exhibit the long-memory feature,
and thus can be fitted by an alternative stationary HAR-type matrix time series
model:

yvi = G%eG?, (5.1)
G = Q+ Ayi-1,4A() + Aw)Yi-1,0AL) + Aun)Ye-1,m Al
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Figure 3. Top panels: i]rs’t. Bottom panels: sample ACF's of e, +.

where yi 1.4 = Yi-1, Yirw = (1/5) X, yii, and ye1m = (1/22) 372, yio
are the daily, weekly, and monthly averages, respectively, of RCOV matrices. To
obtain a fitted model for our RCOV matrix data, we estimate the unknown
parameters in by assuming e; ~ v~ Wishart(v, I,,). To end this section, we
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Table 4. Forecast errors based on TVB and HAR models

=1 =5 =10

Frobenius  Spectral  Frobenius  Spectral  Frobenius  Spectral
TVB model  0.9137 0.8873 1.1978 1.1661 1.3437 1.3087
HAR model  0.9183 0.8900 1.2235 1.1859 1.3808 1.3353

compare the forecasting performance of our TVB model with this HAR model,
based on a rolling window procedure with window size equal to 1,000. Specifically,
we use the in-sample data {Yt}tTiTO_ggg to make an [-step-ahead forecast BA’TO+Z|T0
for the out-of-sample data point yr,4;, where Ty = 1000, ...,1474 —[. For the
TVB model, yr, 41, is calculated as y7, 17, = f)% 2ﬁTo+l|To f)lT{) % where fJTO is the
estimate of ¥, , and ﬁTo+l|’1:Q is the forecast Sf ur, ;- For the HAR model, y7, 17,
is calculated as S\’To+l|To = G1,4y1,, Where G, 41, is the forecast of G, ;. Table
4 reports the average of forecast errors {y7, 17, — y7,+1} in the Frobenius and
spectral norms for both models, where the forecasting horizon [ is taken as 1, 5,
and 10, corresponding to daily, weekly, and biweekly forecasts. From this table,
we find that regardless of the forecasting horizon, the TVB model always has a
smaller forecast error than that of the HAR model. Moreover, applying the DM
test in Diebold and Mariano| (2002) to our forecasting results, we find that the
p-value of the DM test is less than 0.001 in each case, implying that the TVB
model has significantly better forecasting accuracy than that of the HAR model.
This forecasting advantage of the TVB model over the HAR model may be the
result of its ability to take the structural change of y; into account.

6. Conclusion

We first provide a generalized Hausman test for detecting the structural
change in covariance matrix time series, and then derive its limiting distributions
under both null and local alternatives. As illustrated by simulations, matrix time
series data can exhibit spurious long-memory phenomena when the structure of
their underlying model changes. Our generalized Hausman test is motivated by
this, and is applicable without assuming any prior information on the structural
change alternative. This makes our test appealing, because there is no guarantee
that the structures of the matrix time series specified by the researcher provide
a correct description of reality.

We also propose a new semiparametric TVB model that simultaneously al-
lows for structural change and temporal dependence. Our TVB model is esti-
mated by a two-step estimation procedure, and the asymptotics of its related
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estimators are established. Because this two-step estimation procedure is valid
without specifying the form of the structural change or the distribution of the in-
novation, it has a wide application scope. By applying our generalized Hausman
test and TVB model to one RCOV matrix time series data set, we find strong
evidence that this RCOV matrix data set is undergoing a structural change over a
BEKK-type model during the examined period. Furthermore, its observed long-
memory phenomenon is well captured by the TVB model. Of course, it is possible
that the observed long-memory phenomenon in the RCOV data set is caused by
other mechanisms, such as the regime-switching mechanism. Hence, we feel that
studying the regime-switching matrix time series model is a promising direction
for future research. Finally, note that our methodology is for fixed-dimensional
covariance matrix time series. Extending our work to the high-dimensional set-
ting (see, e.g., Tao et al.|(2011), Leng and Tang| (2012), and Wang, Liu and Chen
(2019)) could be another promising direction for future research.

Supplementary Material

The Supplementary Material contains Appendices A, B, C, and D, where
Appendix A gives proofs of Theorems 1-2, Appendix B offers proofs of Theorems
3-5, Appendix C lists some basic derivatives results, and Appendix D provides
some numerical evidence of spurious long-memory phenomena caused by struc-
tural changes.
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