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Abstract: We study the accelerated failure time model with a cure fraction via

kernel-based nonparametric maximum likelihood estimation. An EM algorithm is

developed to calculate the estimates for both the regression parameters and the

unknown error density, in which a kernel-smoothed conditional profile likelihood is

maximized in the M-step. We show that with a proper choice of the kernel band-

width parameter, the resulting estimates are consistent and asymptotically normal.

The asymptotic covariance matrix can be consistently estimated by inverting the

empirical Fisher information matrix obtained from the profile likelihood using the

EM algorithm. Numerical examples are used to illustrate the finite-sample perfor-

mance of the proposed estimates.
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1. Introduction

In some medical studies, of cancer or AIDS for example, it is often ob-
served that a substantial proportion of study subjects never experience the event
of interest and are thus treated as cured or nonsusceptible subjects. A num-
ber of survival models with a cure rate have been proposed in the literature
for analyzing such data. One commonly used modeling approach considers a
two-component mixture model that assumes that the underlying population is a
mixture of susceptible and nonsusceptible subjects. Various parametric mixture
cure models have been studied. For example, Berkson and Gage (1952) consid-
ered the exponential-logistic mixture, and Farewell (1982, 1986) considered the
Weibull-logistic mixture for survival data with a cure fraction.

More recently, semiparametric mixture cure models have attracted much
attention. Kuk and Chen (1992) proposed the so-called proportional hazards
cure model in which the proportional hazards model (Cox (1972)) is used for
survival times of susceptible subjects, while the logistic regression is used for
the cure fraction. They developed a Monte Carlo simulation-based algorithm for
conducting maximum marginal likelihood estimation. The proportional hazards
cure model was further studied by Peng and Dear (2000) and Sy and Taylor
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(2000) using a semiparametric EM algorithm. In addition, Fang, Li and Sun
(2005) and Lu (2008) studied nonparametric maximum likelihood estimation for
the proportional hazards cure model and derived the asymptotic properties of
the resulting estimates.

Other semiparametric mixture cure models have been studied in the litera-
ture. For example, Lu and Ying (2004) proposed a general class of transformation
cure models where the linear transformation model is used for failure times of
susceptible subjects. The authors developed a set of martingale representation-
based asymptotic unbiased estimating equations for parameter estimation, and
derived the large sample properties of the resulting estimators; however, the pro-
posed algorithm for solving the equations may fail to converge. Moreover, the
resulting estimators for the regression parameters are not efficient. In standard
survival data analysis when there is no cure fraction, the accelerated failure time
model (Kalbfleisch and Prentice (1980), Cox and Oakes (1984)) is a useful alter-
native to the proportional hazards model due to its direct physical interpretation
(Reid (1994)). In the presence of a nonsusceptible population, Li and Taylor
(2002) and Zhang and Peng (2007) considered the accelerated failure time mix-
ture cure model and proposed an EM-type algorithm for parameter estimation.
Instead of directly maximizing the conditional likelihood in the M-step, they em-
ployed different estimation methods. Specifically, Li and Taylor (2002) used an
M-estimator of Ritov (1990), while Zhang and Peng (2007) considered a modi-
fied Gehan-type weighted log-rank estimation. The theoretical properties of the
proposed estimates have not been studied. In addition, since both estimates do
not maximize the observed likelihood function they are not efficient, and classical
likelihood based methods cannot be applied here to obtain the variance of the
proposed estimates. They all use the bootstrap method to obtain the variance
estimates.

In this paper, we propose a kernel-based nonparametric maximum likeli-
hood estimation method for the accelerated failure time mixture cure model.
An EM algorithm is developed to implement the estimation. As opposed to the
methods of Li and Taylor (2002) and Zhang and Peng (2007), we maximize a
kernel-smoothed conditional profile likelihood in the M-step. The proposed ker-
nel estimation method is motivated by a recent work of Zeng and Lin (2007)
in efficient estimation for the accelerated failure time model without cure frac-
tion. We show that with a proper choice of the kernel bandwidth parameter,
the resulting estimates are consistent, asymptotically normal and efficient. In
addition, we propose an EM-aided numerical differentiation method to compute
individual profile likelihood scores, then estimate the limiting covariance matrix
by inverting the empirical Fisher information matrix obtained from them.
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2. Model and Estimation

Under the mixture modelling approach, a decomposition of the event time
is given by

T = ηT ∗ + (1 − η)∞, (2.1)

where T ∗ < ∞ denotes the failure time of a susceptible subject and η indicates, by
the value 1 or 0, whether the study subject is susceptible or not. The accelerated
failure time mixture cure model is specified by the following two terms:

log(T ∗) = β′Z + ε, (2.2)

P (η = 1|X,Z) =
exp(γ′X)

1 + exp(γ′X)
, (2.3)

where β, p-dimensional, and γ, q-dimensional, are unknown regression parameter
vectors of primary interest, and ε is the error term with a completely unspecified
continuous density function. The baseline covariates Z and X may share some
common components and X includes 1 so that γ contains the intercept term.
Furthermore, we assume that the censoring time C is independent of T ∗ and
η, conditional on Z and X. Define T̃ = min(T,C) and δ = I(T ≤ C). Then
the observations consist of (T̃i, δi, Zi, Xi), i = 1, . . . , n, independent copies of
(T̃ , δ, Z,X).

The observed likelihood function can be written as

Lo
n(θ, f) =

n∏
i=1

([
π(γ′Xi)e−β′Zif{eRi(β)}

]δi

×
[
1 − π(γ′Xi) + π(γ′Xi)S{eRi(β)}

]1−δi

)
, (2.4)

where θ = (β′, γ′)′, π(a) = exp(a)/{1 + exp(a)}, Ri(β) = log(T̃i) − β′Zi, and
f and S are, respectively, the density and survival functions of eε. The direct
maximization of (2.4) with respect to θ and f is quite intractable due to the
presence of a cure fraction. In addition, even when there is no cure fraction (i.e.
π ≡ 1), as discussed by Zeng and Lin (2007), the maximum of (2.4) does not
exist. Instead, they proposed to maximize a kernel-smoothed profile likelihood
function to obtain the estimates.

Here, we develop an EM algorithm to approximately maximize the observed
likelihood function Lo

n(θ, f), in which a kernel-smoothed conditional profile like-
lihood is used in the M-step. To be specific, we first introduce the complete
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likelihood

Lc
n(θ, f) =

n∏
i=1

{[
π(γ′Xi)e−β′Zif{eRi(β)}

]δiηi

×
({

1 − π(γ′Xi)
}1−ηi

[
π(γ′Xi)S{eRi(β)}

]ηi
)1−δi

}
. (2.5)

Write lon(θ, f) = (1/n) log{Lo
n(θ, f)} and lcn(θ, f) = (1/n) log{Lc

n(θ, f)}. Note
that δi = 1 implies ηi = 1. Then we have lcn(θ, f) = lcn,1(γ) + lcn,2(β, λ), where

lcn,1(γ) =
1
n

n∑
i=1

[ηi log{π(γ′Xi)} + (1 − ηi) log{1 − π(γ′Xi)}], (2.6)

lcn,2(β, λ) =
1
n

n∑
i=1

(
−δiβ

′Zi + δi log[λ{eRi(β)}] − ηiΛ{eRi(β)}
)

, (2.7)

with λ and Λ being the hazard and cumulative functions of eε, respectively.
In the E-step of the EM algorithm, we compute the conditional expectations

of lcn,1 and lcn,2 given the observed data and current parameter estimates. Let Oi

denote the observed data of the ith study subject and Ω̂[k] = (β̂[k], θ̂[k], λ̂[k]) be
the parameter estimates at the kth iteration. Then

l̃cn,1(γ) = E{lcn,1(γ)|O, Ω̂[k]}

=
1
n

n∑
i=1

[w[k]
i log{π(γ′Xi)} + (1 − w

[k]
i ) log{1 − π(γ′Xi)}], (2.8)

l̃cn,2(β, λ) = E{lcn,2(β, λ)|O, Ω̂[k]}

=
1
n

n∑
i=1

(
−δiβ

′Zi + δi log[λ{eRi(β)}] − w
[k]
i Λ{eRi(β)}

)
, (2.9)

where O = {Oi : i = 1, · · · , n} and

w
[k]
i = P (ηi = 1|Oi, Ω̂[k])

= δi + (1 − δi)
π(γ̂[k]′Xi)Ŝ[k]{eRi(β̂

[k])}
1 − π(γ̂[k]′Xi) + π(γ̂[k]′Xi)Ŝ[k]{eRi(β̂[k])}

. (2.10)

In the M-step, we maximize l̃cn,1(γ) with respect to γ, and maximize l̃cn,2(β, λ)
with respect to β and λ, respectively. The maximization of l̃cn,1(γ) can be easily
done using the Newton-Ralphson method. But for l̃cn,2(β, λ), following the dis-
cussion of Zeng and Lin (2007), we can show that it cannot achieve its maximum
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for finite β due to the lack of smoothness in the estimation of λ. To overcome this
difficulty, a smoothed estimate for λ needs to be introduced. As in Zeng and Lin
(2007), we start with a piece-wise constant hazard function and then study its
limits using a kernel smoother. To be specific, for all possible β’s in a bounded
set, we consider a compact interval [0, M ] containing all eRi(β)’s and partition
this interval into Jn equally spaced subintervals, 0 ≡ x0 < x1 < · · ·xJn ≡ M .
Then the piece-wise constant hazard function is written as

λ(x) =
Jn∑
j=1

cjI(x ∈ [xj−1, xj)), 0 ≤ x < M.

Thus, for any x, the cumulative hazard function can be represented as

Λ(x) =
Jn∑
j=1

cj(x − xj−1)I(xj−1 ≤ x < xj) +
M

Jn

Jn∑
j=1

cjI(x ≥ xj).

Plugging these functions into l̃cn,2(β, λ), for a fixed β, we maximize the resulting
likelihood function with respect to the cj ’s. The solution of cj can be obtained
from the score equation and has the closed form

ĉj =
∑n

i=1 δiI(xj−1 ≤ eRi(β) < xj)∑n
i=1 w

[k]
i [{eRi(β) − xj−1}I(xj−1 ≤ eRi(β) < xj) + I(eRi(β) ≥ xj)M/Jn]

.

After plugging the ĉj ’s into l̃cn,2(β, λ) and discarding some constants, we obtain
the conditional profile log-likelihood function

l̃pn,2(β) = − 1
n

n∑
i=1

δiβ
′Zi

+
Jn∑
j=1

{ 1
n

n∑
i=1

δiI(eRi(β) ∈ [xj−1, xj))
}
× log

{
Jn

nM

n∑
i=1

δiI(eRi(β) ∈ [xj−1, xj))

}

−
Jn∑
j=1

{ 1
n

n∑
i=1

δiI(eRi(β) ∈ [xj−1, xj))
}
×

log

{
Jn

nM

n∑
i=1

w
[k]
i {eRi(β)−xj−1}I(eRi(β) ∈ [xj−1, xj))+

1
n

n∑
i=1

w
[k]
i I(eRi(β)≥xj)

}
.

Applying similar techniques as used by Zeng and Lin (2007), we can show
that as n → ∞, Jn → ∞ and Jn/n → 0, l̃pn,2(β) is asymptotically equivalent to
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the kernel-smoothed conditional profile log-likelihood function

l̃sn,2(β) = − 1
n

n∑
i=1

δi log(T̃i) +
1
n

n∑
i=1

δi log
[ 1
n

n∑
j=1

δjKh{Rj(β) − Ri(β)}
]

− 1
n

n∑
i=1

δi log
{ 1

n

n∑
j=1

w
[k]
j

∫ Rj(β)−Ri(β)

−∞
Kh(u)du

}
, (2.11)

where Kh(x) = K(x/h)/h is a kernel function with bandwidth h obtained from a
symmetric probability density function K(x). Since l̃sn,2(β) is a smooth function
of β, it can be easily maximized using the Newton-Ralphson or other gradient-
based algorithms. Let β̂[k+1] denote the maximizer of l̃sn,2(β). Then given β̂[k+1],
we estimate λ(x) by

λ̂[k+1](x) =
x−1

∑n
j=1 δjKh{Rj(β̂[k+1]) − log x}∑n

j=1 w
[k]
j

∫ Rj(β̂[k+1])−log x
−∞ Kh(u)du

, x > 0. (2.12)

In summary, the EM-algorithm is given as follows: Step 0. Set Ω ≡ (θ, λ) at
its initial estimate Ω̂[0]; Step 1. At the kth iteration, compute w

[k]
i , l̃cn,1(γ), and

l̃sn,2(β) based on the current estimates Ω̂[k]; Step 2. Compute updated estimates
γ̂[k+1] and β̂[k+1] by minimizing −l̃cn,1(γ) and −l̃sn,2(β) obtained from Step 1,
respectively, then compute the estimator λ̂[k+1](x) using (2.12); Step 3. Set
k = k + 1. Repeat Steps 1 and 2 until convergence.

For computational convenience, we choose the standard normal density func-
tion for the kernel K. In order to calculate w

[k]
i , we also need Ŝ[k], or equivalently

Λ̂[k] which can be obtained from λ̂[k] by numerical integration. For the stability
of the EM algorithm, we set Ŝ[k](x) = 0 for x > eR(L)(β̂

[k]), where R(L)(β̂[k]) is
the largest uncensored residual of n study subjects. Such a constraint has been
widely used in the estimation of semiparametric mixture cure models (Peng and
Dear (2000), Lu and Ying (2004), Zhang and Peng (2007), among others). The
choice of initial estimates Ω̂[0] and the kernel bandwidth h is discussed in detail
in Section 4.

3. Asymptotic Properties and Variance Estimation

Let θ0 = (β′
0, γ

′
0)

′ denote the true value of θ and λ0(x) be the true value
of λ(x). In addition, let θ̂ and λ̂(x) denote the estimates at convergence ob-
tained from the EM algorithm. We derive here the asymptotic properties of the
estimates (θ̂, Λ̂) and propose a EM-aided numerical differentiation method for
computing the variance of θ̂ based on profile likelihood scores.
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Theorem 3.1. Suppose that the regularity conditions (C1)−(C5) hold and that
h → 0 and nh2 → ∞. Then

sup
x∈[0,τ ]

|Λ̂n(x) − Λ0(x)| → 0 a.s. and ||θ̂n − θ0|| → 0 a.s..

Theorem 3.2. Suppose that the regularity conditions (C1)−(C5) hold and that
nh2m → 0 and nh6 → ∞. Then, as n → ∞, n1/2(θ̂ − θ0) converges in distribu-
tion to a mean-zero normal random vector with covariance matrix achieving the
semiparametric efficiency bound of θ0.

The proofs of the above theorems, along with their irregularity conditions,
are given in the Appendix, available at http://www.stat.sinica.edu.tw/
statistica.

Next, we derive the variance estimate of θ̂ obtained from the proposed EM
algorithm. The variance formula of Louis (1982) for parametric EM algorithms
is not really feasible here due to the infinite dimensional parameter λ(x) and the
kernel-smoothed conditional profile likelihood used in the M-step. An alternative
way to compute variance estimates is to invert the empirical Fisher information
matrix of the profile likelihood; this has been widely done in nonparametric
maximum likelihood estimation (Nielsen, Gill, Andersen and Sørensen (1992),
Murphy, Rossini and van der Vaart (1997), Zeng, Cai, and Shen (2006), among
others). Theoretical properties of the profile likelihood estimation have been
rigourously studied in Murphy and van der Vaart (2000). The empirical Fisher
information matrix of the profile likelihood usually does not have an analytical
form. Chen and Little (1999) proposed an EM-aided numerical differentiation
method for computing the second derivative of the log profile likelihood at the
maximum; the validity of the method has been established by the authors. Here
we adopt a modification of the method. To be specific, we used the EM-aided
numerical differentiation method to calculate the individual profile likelihood
scores at the maximum, then obtain the empirical Fisher information matrix of
the profile likelihood based on these scores. This modified approach can ensure
that the resulting information matrix is positively definite.

Write lcn,1(γ)=
∑n

i=1 lcn,1i(γ) and lcn,2(β, λ)=
∑n

i=1 lcn,2i(β, λ). Define lcn,i(θ, λ)
= lcn,1i(γ) + lcn,2i(β, λ), i = 1, . . . , n. Perturb the jth component of θ̂ by a small
amount d, denoted as θ∗j . Fix the jth component θj of θ at θ∗j and run the
proposed EM algorithm to compute the estimates for all other parameters. Let
θ∗[−j] denote the resulting estimate for the parameters in θ except for θj , and
λ∗

[−j] denote the resulting estimate for λ. Following the suggestion of Chen and

Little (1999), we use two-sided perturbation, i.e., θ∗1j = θ̂j + d and θ∗2j = θ̂j − d.
Correspondingly, we have the estimates (θ∗1[−j], λ

∗1
[−j]) and (θ∗2[−j], λ

∗2
[−j]). Then the

jth component of the profile likelihood score for the ith study subject is

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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Spl
ij = [EΩ=Ω∗1

j
{lcn,i(Ω

∗1
j )|Oi} − EΩ=Ω∗2

j
{lcn,i(Ω

∗2
j )|Oi}](2d)−1,

where the two expectations are taken with respect to ηi given the observed data
Oi and the estimates Ω∗1

j = (θ∗1j , θ∗1[−j], λ
∗1
[−j]) and Ω∗2

j = (θ∗2j , θ∗2[−j], λ
∗2
[−j]), respec-

tively. Define Spl
i = (Spl

i1, . . . , S
pl
i,p+q)

′. The empirical Fisher information matrix

of the profile likelihood can be obtained as Î =
∑n

i=1 Spl
i (Spl

i )′.

4. Numerical Studies

4.1. Simulations

We examine here the finite sample performance of the proposed estimates.
Event times T were generated from the accelerated failure time cure model de-
fined in (2.2) and (2.3). A binary covariate Z was generated from a Bernoulli
distribution with success probability 0.5. We set X = (1, Z). The error ε in (2.2)
was given by a0 + a1V , where a0, a1 were two constants and V was a random
variable generated from three scenarios: the extreme value distribution, the stan-
dard logistic distribution, and the standard normal distribution. The censoring
time C was generated from a uniform distribution on [0, a2], with a2 a constant.
The parameters were set as β0 = 1.0 and γ0 = (0.5,−0.5) or (1.0,−0.5), which
give approximately 43.9% and 32.3% overall cure fractions, respectively. The
constants a0, a1 and a2 were chosen to obtain the desired censoring proportions.
For example, when the error was from the extreme value distribution, we chose
a = (a0, a1, a2) = (−0.5, 0.5, 8), which gives approximately 50.5% censoring pro-
portion for the 43.9% cure fraction and 40.6% censoring proportion for the 32.3%
cure fraction. In each scenario, we conducted 500 runs of simulations with the
sample size n = 100.

For the bandwidth parameter h in the kernel-smoothed conditional profile
likelihood, we followed the suggestions of Zeng and Lin (2007) and used the opti-
mal bandwidths (Jones (1990), Jones and Sheather (1991)), (8

√
2/3)1/5σ1n

−1/5

and 41/3σ2n
−1/3, where σ1 is the sample standard deviation of the (log T̃−β̂′

1,lsZ)
for uncensored data with β̂1,ls the least square estimate of β using only uncen-
sored data, while σ2 was the sample standard deviation of the (log T̃ − β̂′

2,lsZ)
for all the data with β̂2,ls the corresponding least square estimate of β. We con-
sidered both bandwidths in the simulations and found the results comparable.
Thus, we only present the results using the first bandwidth here.

In the proposed EM algorithm, we also need to obtain the initial estimate
Ω̂[0]. Here we chose the initial estimate for β as β̂[0] = β̂1,ls. For computing γ̂[0],
we considered a logistic regression of δ on X, i.e., we treated all the censored
subjects as cured at the initial step. For Ŝ[0](·), we used the Kaplan-Meier
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estimate based on the (T̃ e−(β̂[0])′Z , δ). In addition, we set Ŝ[0](x) = 0 for all the x

greater than the largest uncensored transformed time T̃ e−(β̂[0])′Z . We found that
the proposed initial estimates combined with the chosen bandwidth parameter
worked quite well in all our simulations and that the proposed EM algorithm
usually converged within 10 iterations. To compute the variance estimate of θ̂,
we used the proposed EM-aided numerical differentiation method discussed at
the end of the previous section. Following the suggestion of Chen and Little
(1999), we chose the perturbation d = α/n, with α a positive constant. We tried
different values of α in simulations, and found α = 2 gave reasonable variance
estimates for all the scenarios. The proposed EM algorithm and the EM-aided
numerical differentiation method were implemented in R, the code is available
from the author upon request. The simulation results are summarized in Table
2. For comparison, we also report the rank regression-based estimator of Zhang
and Peng (2007), denoted as ZP. We did not evaluate the variance of the ZP
estimators because of the heavy computational burden. The relative efficiency
(RE) of the ZP estimator compared with the proposed estimator was computed
as the ratio of sample variances of the two estimators with the ZP estimator
being a reference.

It is clear that the proposed estimates were unbiased in all the scenarios,
and the proposed variance estimates based on the EM-aided numerical differ-
entiation method matched the sample standard deviations of the parameter es-
timates reasonably well. Furthermore, the Wald-type 95% confidence intervals
had proper coverage probabilities. Under the extreme value error, the proposed
estimators were slightly less efficient than the ZP estimators. Under other error
distributions, the proposed estimators were generally more efficient than the ZP
estimators, especially for the short-term parameters β.

4.2. Application to breast cancer data

We applied the proposed method to a data set obtained from a breast cancer
study of 139 breast cancer patients who were randomly assigned to three treat-
ment groups (control, treatment A and treatment B). The endpoint of interest is
time to relapse or death. There were 95 censored and 44 uncensored among 139
patients. Besides the treatment assignment, four other covariates, namely clinical
stage I, pathological stage, histological stage, and number of lymph nodes were
recorded. The data set was first analyzed by Farewell (1986) using a Weibull-
logistic cure model. Kuk and Chen (1992) and Peng and Dear (2000) further
studied a subset of the data with three covariates: treatment assignment, clin-
ical stage I, and number of lymph nodes, using the proportional hazards cure
model. The number of lymph nodes was converted to a binary covariate indicat-
ing whether more than four lymph nodes had disease involvement.
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Table 2. Simulation results for accelerated failure time cure model.

Case I (γ01 = 0.5) Proposed ZP
Parameters Bias SD SE CP Bias SD RE

extreme value error
β0 0.017 0.220 0.220 0.938 0.015 0.197 1.247
γ01 0.020 0.322 0.335 0.960 0.012 0.305 1.112
γ02 0.026 0.466 0.479 0.942 0.030 0.452 1.064

logistic error
β0 0.018 0.138 0.158 0.964 0.013 0.154 0.801
γ01 0.012 0.314 0.322 0.960 0.016 0.316 0.988
γ02 0.023 0.462 0.465 0.950 0.021 0.470 0.965

normal error
β0 0.031 0.176 0.182 0.948 0.004 0.190 0.859
γ01 0.028 0.321 0.317 0.958 0.009 0.321 0.999
γ02 0.003 0.483 0.457 0.940 0.032 0.471 1.052

Case II (γ01 = 1.0) Proposed ZP
extreme value error

β0 0.018 0.178 0.202 0.962 0.005 0.179 0.992
γ01 0.035 0.375 0.369 0.944 0.031 0.341 1.208
γ02 0.014 0.542 0.518 0.938 -0.008 0.503 1.163

logistic error
β0 0.015 0.127 0.142 0.970 0.007 0.143 0.790
γ01 0.035 0.344 0.356 0.966 0.037 0.349 0.971
γ02 -0.002 0.521 0.498 0.934 -0.008 0.536 0.946

normal error
β0 0.012 0.145 0.162 0.962 0.017 0.160 0.820
γ01 0.041 0.366 0.355 0.958 0.036 0.370 0.980
γ02 0.040 0.534 0.502 0.940 0.040 0.529 1.018

† SD, sample standard deviation of parameter estimates; SE, mean of esti-
mated standard errors; CP, coverage probability; RE, relative efficiency of
Zhang and Peng’s estimator (ZP) compared with the proposed estimator
(Proposed).

To check the proportional hazards assumption for the survival distribution
of susceptible subjects, we used the method of Zhang and Peng (2007). To be
specific, we plot in Figure 1 the logarithm of the estimated cumulative hazard
functions for the uncensored patients in the three treatment groups, respectively,
based on the Kaplan-Meier estimators of survival functions. Figure 1 shows
that the logarithm of cumulative hazard functions of the three treatment groups
clearly cross each other and thus the proportional hazards assumption is not
appropriate for this data set. Here, instead, we considered the accelerated fail-
ure time cure model for the same subset of the data and applied the proposed



EFFICIENT ESTIMATION FOR AFT CURE MODEL 671

Figure 1. Logarithm of the cumulative hazard functions for uncensored subjects.

Table 1. Analysis results for breast cancer data.

β̂ SE p-value γ̂ SE p-value
intercept 0.210 0.491 0.669
treatment A 1.113 0.434 0.010 −0.067 0.133 0.612
treatment B −0.107 0.421 0.800 −1.170 0.583 0.045
clinical stage I 1.350 0.562 0.016 −0.338 0.116 0.004
Lymph nodes −0.552 0.485 0.255 1.152 0.763 0.131

† SE, estimated standard error

kernel-smoothing-based profile likelihood method for parameters estimation. The
results are summarized in Table 1. Based on the results, we observe that com-
pared with the control group, treatment A has a significant beneficial effect on
the short-term survival of susceptible subjects while treatment B has a signifi-
cant beneficial effect on long-term survival, i.e. the cured fraction. In addition,
clinical stage I has significant effects on both the short-term and the long-term
survivals while the number of lymph nodes is not significant for either of them.
Our findings are generally in agreement with those obtained by Peng and Dear
(2000) using the proportional hazards cure model. Note that the interpretations
of short-term parameters (β’s) in the proportional hazards cure model and accel-
erated failure time cure model are different. In general, they show opposite signs
since one is for the hazard ratio and the other directly describes the log survival
time.
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5. Concluding Remarks

In this paper, we have developed a kernel-smoothing-based EM algorithm for
efficient estimation in the accelerated failure time cure model, and derived the
asymptotic properties for the resulting estimates. A convenient EM-aided nu-
merical differentiation method was also proposed for computing the variance esti-
mates. The mixture modeling approach is one of the commonly used methods for
formulating cure models. Another widely used approach is to consider bounded
cumulative hazard models (see Tsodikov (1998, 2001), Tsodikov, Ibrahim and
Yakovlev (2003), Zeng, Ying and Ibrahim (2006)). Such cure models may have
nice biological interpretations, but the short-term and long-term effects cannot
be naturally separated as in mixture cure models. It is of great interest to develop
some diagnostic tools for various types of cure models.
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