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Abstract: Segmented line regression has been used in many applications, and the

problem of estimating the number of change-points in segmented line regression has

been discussed in Kim et al. (2000). This paper studies asymptotic properties of the

number of change-points selected by the permutation procedure of Kim et al. (2000).

This procedure is based on a sequential application of likelihood ratio type tests,

and controls the over-fitting probability by its design. In this paper we show that,

under some conditions, the number of change-points selected by the permutation

procedure is consistent. Via simulations, the permutation procedure is compared

with such information-based criterior as the Bayesian Information Criterion (BIC),

the Akaike Information Criterion (AIC), and Generalized Cross Validation (GCV).
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1. Introduction

The problem of model selection in linear regression has long been of interest
to both applied and theoretical statisticians. Much of the literature is concerned
with the problem of determining the ”best” subset of independent variables, and
Hocking (1976) summarizes various selection criteria that can be classified into
two major approaches: hypothesis testing and information criteria. Stepwise
selection procedures based on the hypothesis testing approach sequentially apply
classical F-tests that test whether some of the regression parameters are zero.
The other approach utilizes information criteria such as the Cp criterion (Mallows
(1973)), the Akaike information criterion (AIC; Akaike (1974)), and the Bayes
information criterion (BIC; Schwarz (1978)) to choose a best model from a set of
competing ones. These selection criteria are usually the sum of two measures: a
measure of the goodness-of-fit of a candidate model and a measure of penalty for
model complexity. As discussed in Burnham and Anderson (2002, Sec. 6.3), it is
known in the literature that AIC tends to over-fit the true model and that BIC is
consistent if there is a true model among the candidates. Zheng and Loh (1995)
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proposed a new consistent criterion that generalizes these well-known criteria in
the linear model case. Their criterion chooses the model dimension, κ, among Mn

possible covariates as κ̂ = argmin0≤k≤Mn{RSS(k) + hn(k)σ̂2}, where RSS(k) is
the residual sum of squares for the model with the first k independent variables,
σ̂2 = RSS(Mn)/(n−Mn), and hn(k) is a non-decreasing penalty function. When
hn(k) = 2k or k lnn, we obtain the AIC or BIC, respectively, and Zheng and Loh
(1995) showed the consistency of κ̂ for the BIC, under some conditions on Mn and
hn(k). For additional details and recent developments in information theoretic
criteria, and also for other approaches including those based on cross validation
and Bootstrapping, see George (2000), Hastie, Tibshirani and Friedman (2001),
Rao and Wu (2001) and Miller (2002).

In the context of change-point problems, Yao (1988) proposed to use the
Schwarz criterion (BIC) to estimate the number of change-points in an indepen-
dent normal sequence, and established its weak consistency. Liu, Wu and Zidek
(1997) used a modified Schwartz criterion to estimate the number of change-
points in segmented multivariate regression. The approach of Liu et al. can be
applied to segmented linear models with or without the continuity constraints
at the change-points, and the estimated number of change-points is weakly con-
sistent under some conditions. For multiple structural change models, Bai and
Perron (1998, 2003) proposed a sequential method to estimate the number of
change-points, studied asymptotic properties of the least square estimate, and
compared its performance with those based on other criteria. Recently, Tiwari,
Cronin, Davies, Feuer, Yu and Chib (2005) developed Bayesian procedures to
select a segmented line regression model among a set of candidate models, and
compared its performance with the performance of the permutation procedure
of Kim, Fay, Feuer and Midthune (2000). Also in the context of multivariate
adaptive splines regression (MARS), Friedman (1991) used a selection criterion
based on generalized cross validation (GCV) to estimate the number of knots.

Kim et al. (2000) proposed a series of permutation tests to determine the
unknown number of change-points in segmented line regression; this tends to be
conservative, from the nature of hypothesis testing. In choosing a model between
the one with i change-points and the alternative with j change-points (i < j), the
model with i change-points is selected against the model with j change-points if

RSS(i) ≤ (1 + cn(i, j; α))RSS(j) = σ̂2
j hn(i, j), (1.1)

where σ̂2
j = RSS(j)/(n − 2j − 2) and cn(i, j;α) is a critical value obtained un-

der the null model with i change-points. The procedure of Kim et al. estimates
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cn(i, j; α), equivalently the p-value of the test, by using the permutation distribu-
tion of the test statistic, motivated by the non-conventional asymptotic behavior
of the test statistic, and sequentially conducts a series of permutation tests to a
conclusion. Although there is a similarity between the formulation of κ̂ of Zheng
and Loh (1995) and (1.1), they are not directly comparable since hn(i, j) in (1.1)
depends on the alternative model as well, and the procedure requires a series of
tests to be conducted sequentially.

Our aim in this paper is to study asymptotic properties of the number of
change-points selected by the permutation procedure, and to compare the permu-
tation procedure with information-based-criteria. In Section 2, we review asymp-
totic results in segmented line regression. In Section 3, we review the permutation
procedure of Kim et al. (2000) and we prove that the number of change-points
selected by the permutation procedure converges to the true number of change-
points as the sample size increases. Section 4 discusses some generalizations of
the main results in Section 3, including their extension to multiple regression
and modified significance levels. In Section 5, we review some information-based
criteria such as BIC, AIC and GCV, and these criteria are compared to the per-
mutation procedure via simulations. Concluding remarks are made in Section 6.

2. Review of Asymptotic Results in Segmented Line Regression

Consider the segmented line regression model, yi = β0 + β1xi + δ1(xi −
τ1)+ + · · ·+ δκ(xi − τκ)+ + εi, where τj ’s (j = 1, . . . , κ) are the unknown change-
points, βj ’s (j = 0, 1) and δj ’s (j = 1, . . . , κ) are the regression parameters, and
a+ = a for a > 0 and 0 otherwise. We assume that the y′is are independently
distributed with constant variance σ2

0. When κ is known, say k0, asymptotic prop-
erties of the least square estimates of (βT , τT ) = (β0, β1, δ1, . . . , δk0 , τ1, . . . , τk0)
are studied in Feder (1975) in great detail. Under some conditions about the
mean functions associated with design points x1, . . . , xn, Feder showed the con-
sistency of β̂ and τ̂ , and proved the asymptotic normality of these estimators.
Feder (1975) considered only one predictor variable, but allowed a general mean
function µ(x) =

∑k0+1
k=1 fk(x)I[τk−1,τk)(x), where IA(x) = 1 if x ∈ A and 0

otherwise, with τ0 = −∞, τk0+1 = ∞. To prove the consistency and asymp-
totic normality of the estimators, Feder (1975) removed observations in a small
neighborhood of the true change-points to generate the pseudo-sample, and es-
tablished the consistency and asymptotic normality of the estimators based on
the pseudo-sample under some conditions on the mean functions. Then, the
asymptotic equivalence between the pseudo-sample estimators and the full sam-
ple estimators was established to obtain the desired results. Special applica-
tions of Feder’s results are found in Hinkley (1971) and Hus̆ková (1998). For
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k0 = 1, Hinkley (1971) studied asymptotic behavior of the maximum likeli-
hood estimators under normal theory, and provided the asymptotic variances of
the estimated regression slopes and τ̂1. Hus̆ková (1998) considered a two-phase
segmented line regression model with zero slope in the first phase and equally
spaced design points, finding the asymptotic distribution of β̂, the estimated
slope of the second phase, and of τ̂1. Liu, Wu and Zidek (1997) considered a
multiple regression model with p independent variables, one of which was the
partitioning variable associated with the change-points. There the main goal
was to prove the consistency of κ̂L which is based on a modified BIC defined as
κ̂L = argmin0≤k≤M

{
ln[RSS(k)/(n − p∗)] + p∗c0(ln n)2+δ0/n

}
, for some c0 > 0,

δ0 > 0 and a pre-determined value M, where RSS(k) is the residual sum of
squares for the model with k change-points, and p∗ = (k +1)p+ k. The criterion
of Liu et al. uses a stronger penalty than that of Yao (1988), and this is justified
for non-Gaussian models.

3. Permutation Test and Its Asymptotic Properties

3.1. Permutation test

Suppose that we have n-pairs of observations (x1, y1), . . . , (xn, yn), and con-
sider the model,

E(y|x) = β0 + β1x + δ1(x − τ1)+ + · · · + δκ(x − τκ)+,

with the unknown number of change-points, κ, and the change-points, τj ’s (j =
1, . . . , κ). We assume that the y′is are independently distributed with constant
variance. The problem of fitting the model with a given value of κ has been
discussed in Kim et al. (2000), where Lerman’s grid search (1980) is used to fit a
segmented line regression model, and the permutation test is used to see if there
is enough evidence to select a model with a larger number of change-points than
the one in the null hypothesis. The permutation procedure begins by testing
the hypotheses H0 : κ = 0 versus H1 : κ = M, where M is a predetermined
maximum number of change-points. If the null hypothesis is rejected, we test
H0 : κ = 1 versus H1 : κ = M . Otherwise, we test the null hypothesis κ = 0
against the alternative hypothesis that κ = M − 1. We repeat this process until
we test the null hypothesis of κ = i against the alternative of κ = i + 1 for
some 0 ≤ i < M, and we denote the selected number of change-points as κ̂,

where κ̂ = i + 1 if we reject the null hypothesis in the last test, and κ̂ = i

otherwise. Kim et al. (2000) proposed to use α0/M as a significance level at
each stage of the permutation tests, arguing that the sequential application of
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the proposed tests would maintain the overall significance level under α0 and
control the over-fitting probability, since P (κ̂ > k∗|κ = k∗) ≤ (1 − k∗/M)α0

for k∗ = 0, . . . ,M − 1. Through simulation studies, they also indicated that the
under-fitting probability, P (κ̂ < k∗|κ = k∗), would be small if the procedure is
powerful enough. In this paper, our goal is to prove that κ̂ is consistent under
conditions similar to those of Liu, Wu and Zidek (1997), Zheng and Loh (1995),
and Feder (1975).

3.2. Asymptotic properties

First, we note that the procedure of Kim et al. (2000) estimates κ as j when
we reject j of the null hypotheses and do not reject M − j of the null hypotheses
in conducting the M tests sequentially; also that there are Rj =

(
M
j

)
sequences

of such M tests where the j rejections and M − j acceptances can occur. So,

P (κ̂ = j|κ = k∗) =
Rj∑
r=1

P (Ej,r|κ = k∗),

where Ej,r is the r-th event where the j rejections and M − j acceptances of the
null hypotheses are observed. For notational simplicity, we denote the significance
level of the individual permutation test α0/M as α. Let Ak0,k1;α denote the event
that H0 : κ = k0 is not rejected at level α against H1 : κ = k1, while Rk0,k1;α

denotes the event that H0 : κ = k0 is rejected at level α in favor of H1 : κ = k1.
Then we note that for a given value of k∗ and j < k∗, Ej,r occurs when Ak0,k∗;α

occurs for some k0 = 0, . . . , j, and furthermore Ak0,k∗;α occurs dk0 times where
dk0 = dM,j,k∗(k0) =

(Lk0
−1

k0

)(M−Lk0
j−k0

)
for Lk0 = M − (k∗ − k0) + 1. For example,

with M = 4, k∗ = 4 and j = 2, Figure 1 shows that Rj = 6:

E2,1 = R0,4;α ∩ R1,4;α ∩A2,4;α ∩ A2,3;α,

E2,2 = R0,4;α ∩ A1,4;α ∩ R1,3;α ∩ A2,3;α,

E2,3 = R0,4;α ∩ A1,4;α ∩ A1,3;α ∩ R1,2;α,

E2,4 = A0,4;α ∩ R0,3;α ∩ R1,3;α ∩ A2,3;α,

E2,5 = A0,4;α ∩ R0,3;α ∩ A1,3;α ∩ R1,2;α,

E2,6 = A0,4;α ∩ A0,3;α ∩ A0,2;α ∩ R1,2;α,

where the events Ak0,k∗;α (k0 = 0, 1, 2) are denoted in bold, and d0 =
(
0
0

)(
3
2

)
= 3,

d1 =
(
1
1

)(
2
1

)
= 2, and d2 =

(
2
2

)(
1
0

)
= 1. In Figure 1, Rk0,k1;α and Ak0,k1;α are

denoted as Rk0,k1 and Ak0,k1 for notational simplicity.
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Figure 1. Permutation tests with M0 = 0 and M = 4.

Then, for j < k∗,

P (κ̂ = j|κ = k∗) =
Rj∑
r=1

P (Ej,r |κ = k∗) ≤
j∑

k0=0

dk0P (Ak0,k∗;α |κ = k∗). (3.1)

Similarly, we note that for j > k∗, Ej,r occurs when Rk∗,k1;α occurs for some k1 =
j, . . . ,M , and furthermore Rk∗,k1;α occurs dk1 times where dk1 = dM,j,k∗(k1) =(Lk1

−1

k∗

)(M−Lk1
j−k∗−1

)
for Lk1 = M − (k1 − k∗) + 1. Thus, for j > k∗,

P (κ̂ = j|κ = k∗) =
Rj∑
r=1

P (Ej,r |κ = k∗) ≤
M∑

k1=j

dk1P (Rk∗,k1;α |κ = k∗). (3.2)

In order to show that κ̂ is consistent, or that the right hand sides of the above
inequalities converge to zero as n goes to infinity, we need some technical condi-
tions that provide the consistency of the estimators under the true model with
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k∗ change-points. These include the conditions that the δi’s (i = 1, . . . , k∗), are
big enough and/or the number of observations between [τ̂i, τ̂i+1) (i = 0, . . . , k∗)
is large enough. In this section, we first consider the case where M is fixed, and
then we discuss the case where M depends on n. In order to avoid a lengthy
introduction of notations and assumptions, and also since our main interest is on
the analysis of cancer rates measured annually, we focus on the case with fixed
independent variable, x, as in Assumption 4.1’ of Liu, Wu and Zidek (1997).
Note that the random x case can be handled by using an assumption similar to
Assumption 4.1 of Liu, Wu and Zidek (1997).

Assumption 3.2.1.

(A1) n−1
∑n

i=1(1, xi)(1, xi)T I(τ∗
j −∆,τ∗

j ](xi) and n−1
∑n

i=1(1, xi)(1, xi)T I(τ∗
j ,τ∗

j +∆]

(xi) converge to positive definite real matrices for ∆ ∈ (0, min1≤j≤k∗(τ∗
j+1−

τ∗
j )/4).

(A2) The εi are independent and identically distributed with mean zero and
variance σ2

0, and for some constants B0 and T0 in (0,∞), E(etεi) ≤ eB0t2

for all |t| ≤ T0.

Theorem 3.2.1. Suppose that Assumption 3.2.1 is satisfied and that M is fixed.
Then κ̂ converges to k∗ in probability as n → ∞.

See Appendix A at http://www.stat.sinica.edu.tw/statistica for the
proof.

In the remaining part of this section, we consider the case where M increases
as n increases, as in Zheng and Loh (1995). When we allow M to depend on n,
M = Mn, (A1) in Assumption 3.2.1 is not always satisfied, the significance level
of each individual test depends on M , and the result on c in Lemma A.1 need
not be satisfied. In this case, we assume conditions motivated by Feder (1975).
Feder obtained the consistency and asymptotic normality of the estimators un-
der technical assumptions on the spacings of the x-variable, and on the mean
function, some of which can be simplified for a segmented line regression model
with equally spaced design points.

We first introduce some notation. Without loss of generality, suppose the xj ’s
are scaled so that xj ∈ [0, 1], τ0 = 0, and τk∗+1 = 1. For observed (x1, . . . , xn)T

and tk = (t1, . . . , ti, ti+1, . . . , tk)T for any given k, let

Xk(tk) =

1 x1 (x1 − t1)+ · · · (x1 − ti)+ (x1 − ti+1)+ · · · (x1 − tk)+
...

...
...

...
...

...
...

...
1 xn (xn − t1)+ · · · (xn − ti)+ (xn − ti+1)+ · · · (xn − tk)+



http://www.stat.sinica.edu.tw/statistica
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and Hk(tk) = Xk(tk)(XT
k (tk)Xk(tk))−1XT

k (tk). For i = 0, . . . , k, let Xi(tk) de-
note the matrix composed of the first i + 2 columns of Xk(tk) and Hi(tk) =
Xi(tk)(XT

i (tk)Xi(tk))−1XT
i (tk). For a true model with k∗ change-points at

τ k∗ = (τ1, . . . , τk∗)T and β∗ = (β0, β1, δ1, . . . , δk∗)T , we define µ∗ = µ(τ k∗) =
E[y|κ = k∗] = Xk∗(τ k∗)β∗ and ηi =µ∗T (I−Hi(τ k∗))µ∗, where y=(y1, . . . , yn)T .

Assumption 3.2.2.

(C1) There are at least n/ lnn observations in each segment of [τ̂j , τ̂j+1) and so
of [τj , τj+1), for j = 0, . . . , k∗.

(C2) The εi are independently and identically distributed with E(εi) = 0, Var(εi)
= σ2

0, and E|εi|2(1+δ) < ∞ for some δ > 0.

(C3) lim supn Mn/n<1, and Mn is increasing slowly such that limn→∞ Mn/
√

η∗

= 0, where η∗ = µ∗T (1 − Hk∗−1(τ k∗))µ∗.

Theorem 3.2.2. If Assumption 3.2.2 holds, then κ̂ converges to k∗ in probability
as n → ∞.

See Appendix B at http://www.stat.sinica.edu.tw/statistica for the
proof.

Remark 1. If one starts the permutation procedure by testing H0 : κ = M0

versus H1 : κ = M for 0 < M0 < M , then Rj =
(
M−M0

j−M0

)
, Lk0 = (M − M0) −

(k∗ − k0) + 1, and dk0 =
(Lk0

−1

k0−M0

)(M−M0−Lk0
j−k0

)
in (3.1).

Remark 2. Note that conditions (A1) and (A2) in Assumption 3.2.1 are the
same ones as those used by Liu, Wu and Zidek (1997) to establish the consistency
of the number of change-points estimated by a modified BIC. For an equally
spaced x case, (A1) basically states that the number of observations in each
segment is proportional to n, which does not allow the possibility of M increasing
as a function of n. Sometimes in practice, however, it could be more reasonable
to increase M as n increases. For such a case, (C3) in Assumption 3.2.2 states
the condition on M as in Zheng and Loh (1995), and we use (C1) and (C2) for
the conditions on the independent variable x and the error variable ε, as in Feder
(1975).

4. Generalization

4.1. Multiple regression

In Section 3.2, we focused on the segmented line regression with one inde-
pendent variable in order to make the presentation simple and also to make a

http://www.stat.sinica.edu.tw/statistica
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direct connection to our previous work: Kim et al. (2000), and Joinpoint soft-
ware available at http://srab.cancer.gov/joinpoint/index.html. The main
results can be generalized to cases where we have more than one covariate, as in
Liu, Wu and Zidek (1997). As in Liu et al., we assume that there is a partition-
ing variable, say xd, among p independent variables, x1, . . . , xp, with which the
change-points are defined, and we consider condition (A1) of Assumption 3.2.1
in the context of matrices. See Assumptions 4.1 and 4.1’ in Liu et al. Then, it is
straightforward to generalize the results of Theorem 3.2.1.

4.2. Modified procedure

The idea behind using the significance level α0/M for each permutation
test is to control the over-fitting probability under α0. We make a modification
that produces a more powerful procedure. Let κ denote the true number of
change-point, κ̂ denote the number of change-points selected by the permutation
procedure, and consider the example in Figure 1 that starts with testing the null
hypothesis of zero change-points versus the alternative of M = 4 change-points.
With a significance level of αj(k0, k1) at the j-th stage (j = 1, . . . ,M) to test
the null hypothesis of k0 change-points versus the alternative hypothesis of k1

change-points, the procedure has the following property:

Pr(κ̂ > 0|κ = 0) ≤ α1(0,M) + α2(0,M − 1) + α3(0,M − 2) + · · · + αM (0, 1),

Pr(κ̂ > 1|κ = 1) ≤ α2(1,M) + α3(1,M − 1) + · · · + αM (1, 2),

Pr(κ̂ > 2|κ = 2) ≤ α3(2,M) + · · · + αM (2, 3),
...

Pr(κ̂ > M − 1|κ = M − 1) ≤ αM (M − 1,M).

If we like to bound these over-fitting probabilities by α, then we can assign
different values for each αj , for example

α1(0,M) = α2(0,M − 1) = α3(0,M − 2) = · · · = αM (0, 1) =
α0

M
,

α2(1,M) = α3(1,M − 1) = · · · = αM (1, 2) =
α0

M − 1
,

α3(2,M) = · · · = αM (2, 3) =
α0

M − 2
,

...

αM (M − 1,M) = α0.

This modification ensures higher power of the overall test, and the main results
in the previous section also hold.

http://srab.cancer.gov/joinpoint/index.html
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5. Other Criteria

The problem of determining the number of unknown change-points in seg-
mented line regression shares some similarity with the problem of determin-
ing linear model dimension in that one’s goal is to determine the dimension
of the regression matrix, but the regression matrix in segmented line regression
with unknown number of change-points includes unknown parameters. However,
information-based criteria can still be applied and Liu, Wu and Zidek (1997)
showed the consistency of the estimators obtained by the modified BIC. In the
context of spline regression, Friedman (1991) proposed multivariate adaptive re-
gression splines (MARS) that chooses the final model with the smallest GCV
value, GCV (k) = (1/n)

∑n
i=1(yi − µ̂k(xi))2/ (1 − C(k)/n)2 , where k is the num-

ber of basis functions, µ̂k is the regression mean value estimated under the model
with k basis functions, and C(k) is the cost complexity measure of a model con-
taining k basis functions.

Table 1 summarizes a simulation study to compare the modified permutation
test with the model selection procedures based on the BIC and GCV. From fur-
ther simulations it was found that the AIC over-estimates κ even further, these
results are not included. Since the simulation of the power of the permutation
test requires extensive computing, we use the efficient simulation method pro-
posed by Boos and Zhang (2000); the number of simulations and permutations
conducted are 1,600 and 319, respectively. In all the simulations we conducted,
we considered only equally spaced integer values of x, as in annually observed
cancer incidence and mortality rates, and the model parameters were selected
based on some data. We used two or three different values of σ0, the smaller
one in Cases 0-1 and 4-1 and the middle values in Cases 1-2, 2-2, 3-2, 5-2 and
6-2, representing the standard deviations of the incidence rates for the selected
sites. The other values of σ0 are chosen to study the behavior of the selection
procedures according to various effect sizes, δi/σ0. For the modified permutation
test, the overall significance levels were chosen to be 0.05 or 0.15; the proportions
of correct selections among the 1,600 simulated data sets are denoted in bold.

From the table, we observe that the criterion based on the GCV method
tends to considerably over-fit the number of unknown change-points, and the
permutation tests tend to be conservative. The permutation test with α = 0.05
shows the highest probability of correct selection when there is no change, or
when the minimum effect size, mini δi/σ0, and the number of observations in
each segment are reasonably large. See Cases 0-1, 0-2, 1-2, 1-3, 2-2, 2-3, 3-
1, 3-2 and 3-3. This indicates that the permutation test tends to pick up the
correct model more often when the amount of change is substantial, and the BIC
performs better when there are subtle changes, either with a relatively smaller
effect size or with a small number of observations in a segment, as in Cases 1-1,
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Table 1. Comparison of the permutation procedure, BIC and GCV

Perm (α = 0.05) Perm (α = 0.15) BIC GCV

Case 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0-1 0.955 0.027 0.012 0.006 0.899 0.051 0.028 0.022 0.890 0.073 0.028 0.009 0.712 0.157 0.084 0.047

0-2 0.969 0.020 0.008 0.003 0.911 0.050 0.024 0.016 0.906 0.071 0.019 0.004 0.711 0.156 0.086 0.047

1-1 0.241 0.728 0.025 0.006 0.116 0.794 0.058 0.032 0.082 0.817 0.082 0.019 0.025 0.717 0.183 0.075

1-2 · 0.963 0.029 0.008 · 0.909 0.058 0.033 · 0.879 0.096 0.024 · 0.700 0.208 0.092

1-3 · 0.954 0.033 0.013 · 0.893 0.067 0.040 · 0.848 0.117 0.036 · 0.663 0.219 0.118

2-1 0.698 0.271 0.025 0.006 0.526 0.392 0.057 0.025 0.463 0.456 0.071 0.011 0.233 0.524 0.179 0.064

2-2 0.088 0.871 0.032 0.009 0.035 0.859 0.076 0.031 0.022 0.853 0.105 0.020 0.005 0.714 0.199 0.082

2-3 · 0.959 0.030 0.011 · 0.877 0.072 0.051 · 0.848 0.114 0.038 · 0.659 0.220 0.121

3-1 · 0.001 0.954 0.046 · · 0.859 0.141 · · 0.874 0.126 · · 0.764 0.236

3-2 · · 0.953 0.047 · · 0.861 0.139 · · 0.862 0.138 · · 0.735 0.265

3-3 · · 0.954 0.046 · · 0.856 0.144 · · 0.887 0.113 · · 0.795 0.205

4-1 · 0.747 0.226 0.027 · 0.545 0.359 0.096 · 0.456 0.472 0.072 · 0.232 0.579 0.189

4-2 · 0.073 0.880 0.047 · 0.028 0.833 0.139 · 0.017 0.853 0.130 · 0.007 0.733 0.260

5-1 · 0.144 0.053 0.803 · 0.052 0.022 0.926 · 0.055 0.031 0.914 · 0.014 0.021 0.966

5-2 · 0.001 0.001 0.998 · · 0.001 0.999 · · 0.001 0.999 · · · 1.000

5-3 · · · 1.000 · · · 1.000 · · · 1.000 · · · 1.000

6-1 · 0.408 0.162 0.430 · 0.209 0.131 0.660 · 0.232 0.172 0.596 · 0.081 0.149 0.770

6-2 · 0.001 0.004 0.996 · · 0.001 0.999 · 0.001 0.001 0.998 · · 0.001 0.999

6-3 · · · 1.000 · · · 1.000 · · · 1.000 · · · 1.000

where the model parameters for each case are as follows:

Case Cancer cite κ µ(x) σ

0-1
Hodgkins 0 1.1 − 0.003x

0.040

0-2 0.020

1-1 0.060

1-2 Brain/ONS 1 1.8 + 0.014x − 0.019(x − 13)+ 0.030

1-3 0.015

2-1 0.054

2-2 Kidney/RP 1 2.0 + 0.024x − 0.011(x − 15)+ 0.029

2-3 0.0145

3-1 0.020

3-2 Breast 2 4.1 − 0.003x + 0.039(x − 5)+ − 0.034(x − 12)+ 0.010

3-3 0.005

4-1 0.023

4-2
NonHodkins 2 2.4 + 0.036x − 0.020(x − 15)+ − 0.021(x − 20)+

0.0115

5-1 0.024

5-2 Colorectal 3 4.1+0.008x−0.026(x − 10)++0.030(x−20)+−0.042(x−23)+ 0.012

5-3 0.006

6-1 0.034

6-2 Corpus/Uterus 3 3.0−0.057x + 0.041(x−4)+ + 0.021(x−13)+−0.022(x−23)+ 0.017

6-3 0.0085

2-1, and 4-1. When we relax the overall over-fitting probability of α to 0.15,
it is observed that the performance of the permutation procedure is close to
that of the BIC method in most of cases, and with reasonable probabilities of
correct selection. That is, the over-fitting probability of the BIC method is
larger than 0.05 and less than 0.15 in all of Table 1, except for Cases 6-1, 6-2
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and 6-3 where over-fitting is not possible. Tiwari et al. (2005) observed similar
simulation results in comparing the performance of the BIC with that of the
permutation procedure. However, the BIC approach used in Tiwari et al. (2005)
is not directly comparable to the one used in this paper, since it was based on
regression coefficients estimated by the posterior modes, while the BIC is based
on the least squares estimates of the regression coefficients, here.

6. Concluding Remarks

In this paper, we examined the asymptotic efficiency of a permutation pro-
cedure in selecting the number of change-points in segmented line regression,
and compared its performance with those of the methods based on Bayesian
information criterion and the generalized cross validation. Although the prob-
lem of selecting the number of change-points involves a regression matrix with
some unknown parameters, which distinguishes the problem from the classical
regression model selection problem, we find that the large sample theory can
yield consistency of model selection procedures such as the BIC and the per-
mutation procedure. As indicated in a simulation study, BIC works better in
picking up small changes while the permutation procedure tends to be conser-
vative. Thus, for cancer rate analyses, where the goal is parsimonious models
rather than picking up all possible changes, this paper supports the application
of the permutation procedure and establishes its asymptotic accuracy. In situ-
ations where the implementation of the permutation procedure is not practical
due to computational limitations, BIC can be an appropriate method with an
over-fitting probability between 0.05 and 0.15 in cases similar to those considered
in Table 1.
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