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Abstract: We study the time-reversibility of multivariate linear processes, introduc-

ing a necessary and sufficient condition related to linear transforms of the multivari-

ate linear process. Conditions analogous to Cheng’s for univariate non-Gaussian

linear processes are also explored; these are in terms of the noise distribution and

the model parameters. The exploration results in an easily verifiable set of neces-

sary and sufficient conditions for a multivariate non-Gaussian linear process driven

by a univariate noise, leaving the case of multivariate noise as a challenging open

problem.

Key words and phrases: Moving average, multivariate linear process, time-rever-

sibility.

1. Introduction

Time reversibility is an important concept in statistical mechanics as well as

in stochastic processes. It has also direct relevance to statistical inference of time

series (e.g., Whittle (1963)) and deconvolution (e.g., Rosenblatt (2000)). If the

series is time reversible, then the projection forward in time is equivalent to the

projection backward in time. This has impact on orthogonalization operations,

such as Levinson-Durbin’s recursion, as can be seen in Whittle (1963). It is well

known that the equivalence holds for univariate Gaussian time series. However,

this need not be the case for a multivariate time series, even if it is Gaussian

(Whittle (1963)). Moreover, at a conceptual level, it is pertinent to have a

complete characterization of time reversible time series. The situation for a

univariate stationary linear time series is now completely solved (e.g., Cheng

(1999)). However, it is a curious fact that time reversibility for multivariate

non-Gaussian time series is, as far as we know, hardly studied in the literature.

A multivariate stationary discrete-time process {Xt; t = . . . ,−1, 0, 1, . . .} is

said to be time-reversible if, for any k = 1, 2, . . . and any k-tuple t1 < · · · < tk, the
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joint distribution of (Xt1 , . . . , Xtk) is the same as that of (X−t1 , . . . , X−tk). In the

univariate case, Weiss (1975) shows that the only time-reversible non-Gaussian

ARMA processes are sub-classes of pure moving average processes, and Findley

(1986), Hallin, Lefevre and Puri (1988), Breidt and Davis (1992) and Cheng

(1990, 1999) studied time-reversibility and related problems in the context of

general linear processes.

The following theorem on time-reversibility of univariate linear processes is

due to Cheng (1999).

Theorem 1.1. Let

Xt =
∞
∑

j=−∞

αjZt−j (1.1)

be a non-Gaussian linear process, where {Zt} is a sequence of independent and

identically distributed random variables with zero mean and finite variance, and

{αj} is a square-summable sequence of constants. Suppose the spectral density

f
X

(λ) of {Xt} satisfies

f
X

(λ) =
1

2π
|α(e−iλ)|2E(Z2

t ) 6= 0, λ ∈ [−π, π] (1.2)

almost everywhere, where α(e−iλ) =
∑∞

j=−∞ αje
−ijλ. Then {Xt} is time-rever-

sible if and only if the following conditions hold for some integer t0 and some

non-zero constant a:

(i) αt = aαt0−t for all t ∈ Z;

(ii) {Zt} and {aZt} have the same distribution.

Actually, from condition (i), a = ±1, and if {Zt} is not symmetrically dis-

tributed, a = 1.

In this paper, we study the time-reversibility of multivariate linear processes.

A necessary and sufficient condition is given in Section 2 in terms of the distri-

butions of multivariate linear transforms of a multivariate linear process. Condi-

tions analogous to those in Theorem 1.1 are studied in Section 3− we prove that

they are sufficient but not necessary conditions for a multivariate non-Gaussian

linear process to be time-reversible. A multivariate non-Gaussian linear process

driven by a univariate noise is studied in Section 4, and an easily verifiable set

of necessary and sufficient conditions for time-reversibility of such a process is

given.

It gives us great pleasure to offer this paper to honour Professor George Tiao,

because multivariate (also called multiple) time series is close to his heart.
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2. A Necessary and Sufficient Condition on Time-reversibility for

Multivariate Linear Processes

Let {Xt} be a stationary p-variate (p ≥ 1) linear process defined, in the

mean-squares sense, by

Xt =
∞
∑

j=−∞

AjZt−j , t ∈ Z, (2.1)

where the noise {Zt} is a sequence of i.i.d. q-variate (q ≥ 1) random vectors,

and {Aj} is a square-summable sequence of p × q matrices in the sense that
∑∞

j=−∞ AjA
′
j < ∞. Moreover, we assume that

E(Zt) = 0, E(ZtZ
′
t) = Σ > 0, (2.2)

where 0 is the zero-vector in R
q, and Σ > 0 stands for positive-definiteness.

When p = q = 1, {Xt} reduces to a univariate linear process defined by (1.1). In

this paper, whenever p + q > 2, we call {Xt} a multivariate linear process. Note

that we have not assumed p = q (Cf. Hannan (1970, p.14).) Further, although

our discussion will be conducted for the most part without any restriction as to

whether p ≥ q or p ≤ q, it is the former case that is the more relevant in many

practical situations.

Now, even if a multivariate linear process is marginally time-reversible, it

may not be jointly time-reversible. The following is a simple counter-example.

Example 2.1. Suppose that {Xt = (Ut, Vt)
′} is a bivariate moving average

time series, where Ut = εt + αεt−1 + εt−2, Vt = ηt + βηt−1 + βηt−2 + ηt−3 are

two univariate moving average processes, {εt} and {ηt} are two sequences of

i.i.d. random variables, with Cov (εt, ηt) = γ 6= 0, and εt is independent of ηs

whenever t 6= s. Noting that Cov (U1, V2) = (β + αβ + 1)γ and Cov (U2, V1) =

(α +β)γ, we may conclude that {Xt} is not jointly time-reversible although it is

marginally so.

As far as time-reversibility of linear processes is concerned, there is another

fundamental difference between the univariate case and the p-variate (p > 1) case.

In the former instance any stationary Gaussian linear process is time-reversible,

but in the latter this is generally not true.

In fact, the following theorem on time-reversibility of multivariate Gaussian

linear processes is obvious.

Theorem 2.2. Let {Xt} be a p-variate (p ≥ 1) Gaussian linear process, and

Γ(j) = E(XtX
′
t−j), j ∈ Z, be the auto-covariance matrices of {Xt}. Then {Xt}

is time-reversible if and only if Γ(j) is symmetric for all j ∈ Z.
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Remark 2.3. For any integer p ≥ 1, Whittle (1963) has developed the ‘forward’

and ‘backward’ equations in the Levinson-Durbin recursion, which are identical

for the time reversible case.

One way to exploit existing results on the time-reversibility of univariate

linear processes is to consider linear combinations of components of a multivariate

linear process.

Theorem 2.4. A p-variate (p > 1) linear process {Xt, t ∈ Z} defined by (2.1)

is time-reversible if and only if for any integer n, any p-dimensional vectors

l1, . . . , ln, and any {t1, . . . , tn} ⊂ Z, t1 < · · · < tn, U = (l′1Xt1 , . . . , l
′
nXtn)′ has

the same distribution as V = (l′1X−t1 , . . . , l
′
nX−tn)′.

Proof. Let

ϕ
X+

(s1, . . . , sn) = E[exp{i(X′
t1
s1 + · · · + X′

tn
sn)}], (2.3)

ϕ
X−

(s1, . . . , sn) = E[exp{i(X′
−t1

s1 + · · · + X′
−tn

sn)}] (2.4)

be the characteristic functions of (np)-dimensional random vectors (X ′
t1

, . . .,

X′
tn)′ and (X′

−t1
, . . . ,X′

−tn)′, respectively, where s1, . . . , sn are n p-dimensional

vectors. Similarly, let ϕ
U
(s1, . . . , sn) = E[exp{i(X′

t1
l1s1 + · · · + X′

tn
lnsn)}] and

ϕ
V
(s1, . . . , sn) = E[exp{i(X′

−t1
l1s1+ · · ·+X′

−tn lnsn)}] be the characteristic func-

tions of n-dimensional random vectors U and V respectively, where s1, . . . , sn

are n scalars.

Now we can easily see that while l1, . . . , ln take values over the p-dimensional

real space, so do s1, . . . , sn. This fact completes the proof of the theorem.

3. A Sufficient Condition for Time-reversibility of Multivariate Linear

Processes

Henceforth, we consider only non-Gaussian time series unless specified oth-

erwise.

Prompted by the conditions for time-reversibility of the univariate linear

process in Theorem 1.1, obvious conditions on Aj’s and {Zt} in representation

(2.1) can be given as follows.

(SC) There exist some integer t0 and some non-zero q × q constant matrix

B such that the following conditions hold:

(i) At = At0−tB for all t ∈ Z;

(ii) {Zt} and {BZt} have the same distribution.

Condition (i) effectively imposes reflective symmetry of the coefficient matrices

about the time origin t0 and up to multiplication by a constant matrix. By (ii),

it is necessary that BΣB ′ = Σ, where Σ = E(ZtZ
′
t) > 0 is the covariance matrix
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of Zt. However, this does not imply that BB ′ = I, the q × q identity matrix.

Moreover, we have rank(B) = q, i.e., B is non-singular.

Example 3.1. Let {Xt} be a univariate linear process generated by a sequence

of i.i.d. symmetric bivariate random variables, {Zt = (εt, ηt)
′},

Xt = (1, 0)Zt + (0, 1)Zt−1 = εt + ηt−1, (3.1)

with Cov (εt, ηt) = γ 6= 0. (Note that if {εt} and {ηt} are independent, {Xt}

itself is time-reversible.) It is not difficult to check that {Xt} in Example 3.1

satisfies conditions (SC), with t0 = 1 and B =

(

0 1

1 0

)

.

Now consider the finite-dimensional characteristic functions ϕ+(u1, . . . , un)

= E[ exp{i(Xt1u1 + · · · + Xtnun)} and ϕ−(u1, . . . , un) = E[ exp{i(X−t1u1 + · · · +

X−tnun)}], where t1 < · · · < tn is any n-tuple of times, n = 1, 2, . . .. Actu-

ally if there is any couple (ti, ti+1) satisfying ti+1 − ti > 1, the n-dimensional

random vector (Xt1 , . . . , Xtn) can be divided into two independent sub-vectors

(Xt1 , . . . , Xti) and (Xti+1
, . . . , Xtn). A similar remark applies to the time-reversed

vector. Therefore, without loss of generality, we need only check the characteris-

tic function of the simple n-tuple (t1, . . . , tn) = (1, . . . , n).

By (3.1), we have ϕ+(u1, . . . , un) = ϕη(u1)ϕ(u1, u2) · · ·ϕ(un−1, un)ϕε(un),

and ϕ−(u1, . . . , un) = ϕε(u1)ϕ(u2, u1) · · ·ϕ(un, un−1)ϕη(un), where ϕε(·), ϕη(·)

and ϕ(·, ·) denote the characteristic functions of εt, ηt and (εt, ηt) respectively.

If ϕ(·, ·) is symmetric, then ϕε = ϕη, and therefore ϕ+ = ϕ−. So {Xt} is time-

reversible.

Example 3.2.(Elliptical symmetric distributions) As pointed out in Xia, Tong,

Li and Zhu (2002), for a second-order stationary time series {Yt}, if the random

vector X = (Yt−1, . . . , Yt−p)
′ has an elliptical symmetric distribution for all p,

then {Yt} is time-reversible. In fact, for a multivariate linear process defined by

(2.1), if the white noise Zt has an elliptical symmetric distribution, then it is

easy to find some non-zero matrix B such that condition (ii) of (SC) holds. For

such a matrix B, any multivariate linear processes with model parameters {Aj}

satisfying condition (i) of (SC) are time-reversible.

The following theorem shows that conditions (SC) are sufficient conditions

under which the multivariate linear process {Xt} in (2.1) is time-reversible.

Theorem 3.3. Let {Xt} be a multivariate linear process defined by (2.1) and

suppose that (SC) holds. Then {Xt} is time-reversible.

Proof. Let ϕ
X+

(s1, . . . , sn) and ϕ
X−

(s1, . . . , sn) be the characteristic functions

defined by (2.3) and (2.4) respectively, where s1, . . . , sn are n p-dimensional vec-
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tors. Then, by (SC), we have

ϕ
X−

(s1, . . . , sn) = E
(

exp
{

i
n
∑

k=1

X′
−tk

sk

})

= E
(

exp
{

i
n
∑

k=1

∞
∑

j=−∞

Z′
−tk−jA

′
jsk

})

= E
(

exp
{

i
n
∑

k=1

∞
∑

j=−∞

Z′
−tk−jB

′A′
t0−jsk

})

= E
(

exp
{

i
n
∑

k=1

∞
∑

l=−∞

Z′
−tk−t0+lB

′A′
lsk

})

.

If we write {Yt} = {Z−t}, by (SC) we have {BYt}
d
= {Yt}

d
= {Zt}, where “

d
=”

stands for equality in distribution. Therefore,

ϕ
X−

(s1, . . . , sn) = E
(

exp
{

i
n
∑

k=1

∞
∑

l=−∞

Y′
tk+t0−lB

′A′
lsk

})

= E
(

exp
{

i
n
∑

k=1

∞
∑

l=−∞

Z′
tk+t0−lA

′
lsk

})

= E
(

exp
{

i
n
∑

k=1

∞
∑

l=−∞

Z′
tk−lA

′
lsk

})

= ϕ
X+

(s1, . . . , sn)

This completes the proof.

The condition (SC) is not necessary. Here is a counter-example.

Example 3.4. Suppose that {Xt = (X
(1)
t , X

(2)
t )′} is a bivariate moving average

time series defined by

Xt = Zt + A1Zt−1 + A2Zt−2, (3.2)

where {Zt = (Z
(1)
t , Z

(2)
t )′} is a sequence of i.i.d. random variables with {Z

(1)
t }

independent of {Z
(2)
t }, both having mean zero and finite variance. Let A1 =

(

1 0

0 0

)

and A2 =

(

0 0

0 1

)

. For convenience, we take A0 to be the identity matrix,

and all other Aj ’s to be zero.

Now, for any non-singular 2 × 2 matrix B, denote the rank of matrix Aj , or

equivalently AjB, by rj, j ∈ Z. Obviously, we have r0 = 2, r1 = r2 = 1, and

rj = 0 for all j < 0 or j > 2. If (SC) holds, by condition (i), it is necessary

that there exists some integer t0 such that rt = rt0−t for all t ∈ Z. Obviously,

this is impossible. Therefore, (SC) does not hold. However, {Xt} is still time-

reversible.
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Actually we can rewrite (3.2) as X
(1)
t = Z

(1)
t + Z

(1)
t−1, X

(2)
t = Z

(2)
t + Z

(2)
t−2. By

Theorem 1.1, it is obvious that {X
(1)
t } and {X

(2)
t } are both time-reversible. By

independence of {X
(1)
t } and {X

(2)
t }, {Xt} is jointly time-reversible.

4. Time-reversibility of a Multivariate Linear Process Driven by a

Univariate Noise of Multivariate Linear Processes

Throughout this section, we assume that

Xt =
∞
∑

j=−∞

mjZt−j , t ∈ Z, (4.1)

where {mj} is a sequence of square-summable p× 1 column vectors, and {Zt} is

a sequence of i.i.d. (scalar) random variables. The above process may be used to

model a panel of time series, which are interconnected through a common noise

source (e.g., Hjellvik and Tjøstheim (1999)). If p = 1, then {Xt} is a univariate

linear process as defined by (1.1).

We begin with the sufficient conditions (SC), which now simplify to the

following form.

(SC-UN) There exist some integer t0 and some non-zero constant a such

that the following conditions hold:

(i) mt = amt0−t;

(ii) {Zt} and {aZt} have the same distribution.

As before, condition (i) effectively imposes on the model parameters a reflective

symmetry about the time origin t0 up to a constant multiplier. Similar to the

univariate case in Theorem 1.1, we still have a = ±1.

Moreover, we can prove that conditions (SC-UN) are not only sufficient

but also necessary conditions for the time-reversibility of the multivariate linear

process defined by (4.1). We have the following theorem.

Theorem 4.1. Let {Xt} be a p-variate (p ≥ 1) non-Gaussian linear process

defined by (4.1), where the noise {Zt} is a sequence of i.i.d. random variables

with zero mean and finite variance. Suppose that the spectral density matrix or

spectrum of {Xt},

f(λ) =
1

2π

∞
∑

j=−∞

e−ijλΓ(j) = (fuv(λ))1≤u,v≤p, λ ∈ [−π, π], (4.2)

is positive-definite almost everywhere, where {Γ(j), j ∈ Z} is the auto-covariance

matrix function of {Xt}. Then {Xt} is time-reversible if and only if (SC-UN)

holds.
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Proof. We need only consider p > 1 and, after Theorem 3.3, we need only prove

necessity.

Suppose that {Xt} is time-reversible. Then, for any p-dimensional column

vector l ∈ R
p, the linear combination of {Xt},

l′Xt =
∞
∑

j=−∞

(l′mj)Zt−j =
∞
∑

j=−∞

αj(l)Zt−j , (4.3)

is time-reversible too, where {αj(l) = l′mj, j ∈ Z} is a sequence of scalar func-

tions of l ∈ R
p. Moreover, denote the auto-covariance function for the univariate

linear process {l′Xt} by {γj(l), j ∈ Z}. Then the spectral density of {l′Xt} is

f(λ) =
1

2π

∞
∑

j=−∞

e−ijλγj(l)

=
1

2π

∞
∑

j=−∞

e−ijλE(l′XtX
′
t−jl)

=
1

2π

∞
∑

j=−∞

e−ijλl′Γ(j)l

= l′f(λ)l, λ ∈ [−π, π].

By (4.2), f(λ) is positive almost everywhere for any non-zero l ∈ R
p.

In order to apply Theorem 1.1 to the univariate linear processes {l ′Xt}, we

have to show that l′X is non-Gaussian. However, this may not be true for all

l ∈ R
p. Consider the subset l(X) = {l ∈ R

p : {l′Xt} is Gaussian}. It is not

difficult to see that l(X) is a subspace of R
p. By the assumption that {Xt}

is non-Gaussian, l(X) 6= R
p and dim(l(X)) < p, where dim(l(X)) denotes the

dimension of the subspace l(X).

By Theorem 1.1, for each non-zero l ∈ R
p\l(X), there exist an integer t0(l)

and a non-zero constant a(l) such that

αt(l) = a(l)α
t0(l)−t

(l), {Zt}
d
= {a(l)Zt}. (4.4)

Actually by the second equality in (4.4), a(l) is a constant function of l which

may take values ±1. Without loss of generality, we assume that a(l) ≡ 1. Then,

we may re-write conditions (4.4) as follows. For each non-zero l ∈ R
p\l(X), there

exists an integer t0(l), not necessarily unique, such that

αt(l) − α
t0(l)−t

(l) = l′(mt −m
t0(l)−t

) = 0, ∀ t ∈ Z. (4.5)

For each l ∈ R
p\l(X), define

T0(l) = {t0(l) ∈ Z : t0(l) satisfies equation (4.5)} ⊂ Z.
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Now, consider the map l ∈ R
p\l(X) 7−→ T0(l) ⊂ Z. Moreover, define l(j),

j ∈ Z, by l(j) = {l ∈ R
p\l(X) : j ∈ T0(l)}. For each j ∈ Z, l(j) is a subset of

R
p\l(X). Obviously, we have

⋃∞
j=−∞ l(j) = R

p\l(X). Therefore,

l(X) ∪
(

∞
⋃

j=−∞

sp{l(j)}
)

= R
p, (4.6)

where sp{· · ·} denotes the space generated by {· · ·}. It is well known that any

union of a countable number of subspaces of R
p each with dimension less than p

is a subset of R
p, but not equal to R

p. Therefore, (4.6), together with the fact

that dim(l(X)) < p, implies that there exists at least one integer j0 such that

sp{l(j0)} = R
p.

Finally, consider the subset l(j0). By the definition of T0(l), we have l(j0) =

{l ∈ R
p : l′(mt−mj0−t) = 0 for all t ∈ Z}. It is easy to check that l(j0) is actually

a linear space. Therefore, we have l(j0) = sp{l(j0)} = R
p. Or equivalently,

l′(mt − mj0−t) = 0 for all l ∈ R
p and t ∈ Z. Hence, mt − mj0−t has to be the

zero-vector, i.e., mt = mj0−t for all t ∈ Z. This completes the proof.

5. Some Concluding Comments

For the general case of q > 1, the issue of necessary and sufficient conditions

for time reversibility remains a challenging open problem. It is clear that the

invariance of the distribution of Z under some group action has an important

role to play.
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