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Abstract: An important aspect of mixture modeling is the selection of the number

of mixture components. In this paper, we discuss the Bayes factor as a selection
tool. The discussion will focus on two aspects: computation of the Bayes factor and

prior sensitivity. For the computation, we propose a variant of Chib’s estimator

that accounts for the non-identifiability of the mixture components. To reduce

the prior sensitivity of the Bayes factor, we propose to extend the model with a

hyperprior. We further discuss the use of posterior predictive checks for examining

the fit of the model. The ideas are illustrated by means of a psychiatric diagnosis

example.
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1. Introduction

The specification of a mixture model involves the selection of the number of
components. This selection procedure can be performed in one of several ways.
A possible strategy is to perform goodness-of-fit tests based on a likelihood ratio
or Pearson chi-square statistic, and to extend the model until a reasonable fit
is obtained. Another strategy is to compare alternative models by means of
summary numbers including various information criteria. A summary number
which may be singled out for its clarity is the Bayes factor (e.g., Berger and
Sellke (1987); Kass and Raftery (1995)). A reason for computing the Bayes factor
rather than performing a goodness-of-fit test is that the Bayes factor is based
on weighing the alternative models by the posterior evidence in favor of each of
them. Such evidence is not measured by the p-value of a goodness-of-fit test.
A small p-value represents some evidence against a null hypothesis (Casella and
Berger (1987); Berger and Sellke, (1987)), but a large p-value does not represent
evidence in favor of the null. A second reason for computing the Bayes factor is
that it can be used when comparing nonnested models. This makes the Bayes
factor especially suitable for use in constrained mixture models where alternative
models are nonnested (Clogg and Goodman (1984)).
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Despite these advantages, model selection procedures based on a summary
number like the Bayes factor may be criticized for not addressing the issue of
model fit. Hence, we run the risk of selecting from a set of badly fitting alterna-
tives. Goodness-of-fit tests, on the other hand, tell us whether a selected model
is consistent with the observed data and, if none of the alternatives fits, stimu-
lates us to search for new, better fitting models. Bayes factors and goodness-of-fit
tests may therefore be applied simultaneously albeit for different purposes, model
selection and examination of model fit.

In the present paper we discuss the Bayes factor as a model selection criterion
used in combination with goodness-of-fit tests. The proposed model specification
strategy is to formulate new models if the existing models have a bad fit, and to
compare the new models with the initially selected model by means of the Bayes
factor. The simultaneous use of goodness-of-fit tests and the Bayes factor helps
us to arrive at a model which not only has a high posterior probability of being
correct but also has a reasonable fit.

In the discussion of the Bayes factor, we address its computation and the
choice of the prior. For the computation, we present a variant of Chib’s estimator
(1995). Chib’s method is based on the Gibbs output and is especially suitable for
mixture models. Yet, as noted by Neal (1999), we must modify Chib’s estimator
slightly. The posterior of a mixture model with Q components has Q! modes
due to permutability of the component labels, of which usually only a few are
covered by the simulated posterior output. The reason for this is that the Gibbs
sampler method mixes well within one of the modes but does not always mix well
between the modes. Neal (1999) suggested inducing mixing between the modes
by extending the Gibbs cycle with a relabeling transition for the mixture com-
ponents. However, he also noted that this yields an estimator that is expensive
to compute when the number of components is large. In this paper, we present a
variant of Chib’s estimator that accounts for the non-identifiability of the modes
and is computationally less expensive than the modification proposed by Neal
(1999).

The remainder of the paper is divided into five sections. After formalizing
the mixture model (Section 2), the computation of the Bayes factor is discussed
and the estimation methods are compared in a simulation study (Section 3). The
choice of the prior is discussed in Section 4. In order to have a prior that is not
contradicted by the given data set, we present a hierarchical Bayes procedure for
estimating the hyperparameters of the prior distribution. Some goodness-of-fit
tests are presented in Section 5. The replicated data to construct a reference
distribution for the test quantities under the null are obtained from the posterior
predictive distribution (Rubin (1984), Gelman, Meng and Stern (1996), Meng
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(1994)). Section 6 contains some concluding remarks. The points made in the
paper are illustrated by fitting a mixture model to psychiatric judgement data
(Van Mechelen and de Boeck (1989)).

2. Mixture Model

For sake of generality, we use a multivariate setting in which the scores of
N units on J variables are arranged in an N × J matrix X. The i-th row
of X is denoted by Xi = (xi1, . . . , xiJ). A mixture model for this type of
data assumes a latent partition of the units into Q classes, each class being
characterized by some component density. The class membership of unit i is
represented by the unobservable variable Zi = (zi1, . . . , ziQ) the q-th element
of which is 1 if unit i is member of class q, and is 0 otherwise. Because the
membership of unit i is unknown, the likelihood of Xi is a mixture of the com-
ponent densities. In particular, if we denote the vector of mixing probabilities
by λ = (λ1, . . . , λQ)t and the other model parameters by π, the likelihood of
Xi is p(Xi|π,λ) =

∑Q
q=1 λqp(Xi|π, ziq = 1). The posterior distribution of the

model parameters θ = (λ′,π′)′ can be computed using chained data augmenta-
tion (Diebolt and Robert (1994); Rubin and Stern (1994)), alternately drawing
from p(θ|Z,X) and p(Z|θ,X).

3. Model Selection

3.1. Definition of the Bayes factor

Suppose we have models M1 and M2. The Bayes factor is formally defined

as the ratio of the posterior odds to the prior odds: BF12 =
[p(M1|X)/p(M2|X)]

[p(M1)/p(M2)]
.

We see that if the prior model probabilities are equal, then BF12 is larger than
1 if M1 has a higher posterior probability. For computational purposes, it is
more convenient to write the Bayes factor as the ratio of marginal likelihoods:
BF12 = p(X|M1)/p(X |M2). In the following, the computation of the marginal
likelihood will be discussed in detail.

3.2. Computation of the marginal likelihood

The marginal likelihood of model M can be expressed as

p(X|M) =
∫
p(X |θ,M)p(θ|M)dθ. (1)

We have to approximate the integral in (1). Common approximation methods
like importance sampling are effective when the posterior is unimodal, as noted
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by DiCiccio, Kass, Raftery and Wasserman (1997). However, the posterior dis-
tribution generally has (at least) Q! modes because the value of the posterior
density function is invariant to a permutation of the class labels.

A simulation-based method that works better for multimodal posterior den-
sities has been proposed by Chib (1995). Chib’s estimator is based on the identity

p(X) =
p(X|θ∗)p(θ∗)

p(θ∗|X)
, (2)

which holds for any θ∗. Conditioning on M is omitted in (2) to retain short
expressions. The prior probability p(θ∗) and the likelihood value p(X |θ∗) can
be directly computed. The posterior probability p(θ∗|X) can be estimated from
the Gibbs output by

p̂I(θ∗|X) =
1
T

T∑
t=1

p(θ∗|X,Z(t)), (3)

where Z(t) is the t-th draw from p(Z|X) (Gelfand and Smith (1990)) and θ∗ is a
chosen parameter vector that lies in one of the Q! modal regions. For θ∗, we may
choose one of the Q! posterior modes. A rough approximation of the mode will
usually suffice. Substituting (3) in (2) yields p̂I(X) = p(X|θ∗)p(θ∗)/p̂I(θ∗|X).
In order for the estimator p̂I(X) to be correct, the Markov chain {(θ(t),Z(t)); t =
1, . . . , T} has to explore all Q! modal regions that exist because of the non-
identifiability of the mixture component labels. Neal (1999) noted that the prob-
ability of switching from one modal region to one of the other Q! − 1 modal
regions may be very small in which case it is likely that some of the modes re-
main unexplored. An obvious way to handle this mixing problem is to include
constraints on the model parameters. However, as noted by Celeux, Hurn and
Robert (2000), these constraints have an influence on the performance of the sam-
pler and may jeopardize the posterior inference. Neal (1999) suggested extending
the Gibbs sampling scheme with relabeling transitions. He added, however, that
this modification works satisfactorily only if the number of mixture components
is small. Otherwise, the Markov chain will stay most of the time in the neigh-
borhood of one of the relabelings of θ∗ rather than near θ∗ itself (if the number
of components is 5, we already have 5! = 120 modes) and will therefore be an
inefficient estimator of p(θ∗|X).

To illustrate the implementation of Neal’s relabeling transitions, suppose
that we have a model with two components (Q = 2). We start with a Gibbs
chain {Z(t); t = 1, . . . , T} in which labeling transitions have not been included.
After having sampled this chain, we switch zi1(t) and zi2(t) for i = 1, . . . , N
and t = 1, . . . , T , yielding chain {Z ′

(t); t = 1, . . . , T}. Neal’s modification of
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Chib’s estimator can then be defined as the average of {p(θ∗|X,Z(t)); t odd}
and {p(θ∗|X ,Z ′

(t)); t even}. This estimator will be denoted as p̂II(θ∗|X). We
can also use different transition schemes as long as fifty percent of the values are
based on draws from {Z(t); t = 1, . . . , T} and fifty percent are based on draws
from {Z ′

(t); t = 1, . . . , T}.
Instead of using subchains, we also obtain a correct estimator of the posterior

probability p(θ∗|X) if we use all draws from {Z(t); t = 1, . . . , T} and {Z ′
(t); t =

1, . . . , T}. We formulate a generalization of the latter estimator for a model with
Q components (Q ≥ 2). If the number of components is Q, we can perform Q!−1
different reorderings of the original chain. Each of these reorderings is obtained
by performing a different permutation of the mixture component indices of ziq(t);
the sth reordering (s = 2, . . . , Q!) will be denoted as {Zs(t); t = 1, . . . , T}.
The original Gibbs chain corresponds to s = 1. The estimator of p(θ∗|X) now
becomes

p̂III(θ∗|X) =
1

Q!T

Q!∑
s=1

T∑
t=1

p(θ∗|X,Zs(t)).

The above estimator is computationally intensive for large Q. In the fol-
lowing, we present a simulation-consistent estimator based on a stratification
principle (Cochran (1977, p.87)). This estimator is based on the original Gibbs
output {Z1(t); t = 1, . . . , T} and a smaller number of systematic draws from
output where the mixture components indices have been permuted. The reason
for distinguishing the non-permuted and permuted output is that the values of
p(θ∗|Zs(t)) for the non-permuted output tend to be more variable than the values
based on the permuted output (which are generally small as θ∗ is computed from
the non-permuted output). We estimate p(θ∗|X) by

p̂V(θ∗|X) =
1
Q!

p̂I(θ∗|X) +
Q!− 1
Q!

p̂IV(θ∗|X),

where p̂I(θ∗|X) is based on the non-permuted output and p̂IV(θ∗|X) is based on
the permuted output. Estimator p̂I(θ∗|X) is defined in (3) and

p̂IV(θ∗|X) =
1

(Q!− 1)T2

Q!∑
s=2

T2∑
t=1

p(θ∗|X ,Zs(tT/T2)).

Substituting p̂V(θ∗|X) into (2) yields an estimator for the marginal likelihood
which will be denoted by p̂V(X).

3.3. Simulation example: mixture of two normals

To illustrate the need for modifying Chib’s original estimator in case of
bad mixing, we conducted a simulation study in which the original estimator
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p̂I(θ∗|X) is compared to Neal’s estimator p̂II(θ∗|X) and to the stratified sam-
pling estimators. We postulated a mixture model with two normal components:
xi ∼ λN(µ1, 1) + (1 − λ)N(µ2, 1), i = 1, . . . , N . For λ, we took a standard uni-
form prior and for µ1 and µ2, we took normal priors with mean zero and variance
100.

We simulated data sets of size 20 where the first 6 draws of each data set
were taken from N(−δ, 1) and the next 14 draws were from N(δ, 1). The design
factor δ was set equal to 0, 1 and 2, and for each value of λ, 100 data sets were
simulated. For each data set, we computed p̂I(x), p̂II(x), p̂III(x), and p̂V(x) with
T2/T = 0.5, and p̂V(x) with T2/T = 0.1. Regarding posterior simulation, we
took a burn-in period of 10,000 draws and stored the subsequent 10,000 draws.
The parameter θ∗ was calculated as argmax(t){p(X |θ(t))p(θ(t))}.

To examine the effect of the chain length on the performance of the estima-
tors, we set T equal to 500, 1000, . . . , 10, 000. The performance of the estimators
was measured by the the mean squared deviation MSD =

∑100
r=1(log p̂(r)(x) −

log p(x))2/100, where p̂(r) is an estimate of the marginal likelihood p(x) for the
r-th data set. Since p(x) is unknown, we estimated it by p̂III(x) using 100,000
new draws from the posterior. This number is sufficiently large to yield a very
accurate approximation of the true marginal likelihood.
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Figure 1. Square root of the mean squared deviation from the log marginal
likelihood as a function of T . The estimators are log p̂I(x)(· · ·), log p̂II(x)(�),
log p̂III(x) (—) , log p̂V(x) with T2/T = 0.5(�), and log p̂V(x) with T2/T =
0.1(+).

If δ equals 0, all observations are drawn from the same distribution and we
have a perfect mixing situation. We see from Figure 1 that p̂I(x) is the least
efficient estimator. The estimators p̂II(x), p̂III(x), and p̂V(x) with T2/T = 0.5
perform similarly and slightly better than p̂V(x) with T2/T = 0.1. A possible
reason for the relatively weak performance of p̂I(x) is that, although we have
a perfect mixing situation, the permutable modes do not have to be covered
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equally well by the posterior output. If δ equals 1, the two modes do not mix
perfectly and the original estimator p̂I(x) is much less efficient than the other
estimators when T is small. If δ equals 2, only one of the two permutable modes
is explored and p̂I(x) and the other estimators do not tend to the same value if
T tends to 10,000. To summarize, modifying p̂I(x) may improve the efficiency of
the estimator also when the modes mix well.

3.4. The choice of T2

To gain insight into the efficiency of p̂V(θ∗|X) as a function of T2, let us
consider the situation in which the modal regions mix well. Then the values
of probabilities p(θ∗|X ,Zs(t)) tend to be of similar magnitude in the permuted
and non-permuted output (and consequently, an estimator based on either the
permuted or non-permuted output works fine). If we further assume that the
probabilities {p(θ∗|X,Zs(t)); s = 1, . . . , Q!; t = 1, . . . , T} are independent, then
the simulation standard errors of p̂I(θ∗|X) and p̂IV(θ∗|X) tend to be similar if an
equal number of draws are taken from the permuted and non-permuted output
(that is, T = (Q!−1)T2). If the number of draws are not equal (T 
= (Q!−1)T2),
we have, approximately,

s.e.2[p̂I(θ∗|X)]
s.e.2[p̂IV(θ∗|X)]

=
(Q!− 1)T2

T
. (4)

Under the independence assumption, the simulation standard error of
p̂V(θ∗|X) is approximately

s.e.2[p̂V(θ∗|X)] ≈ 1
Q!2

s.e.2[p̂I(θ∗|X)] +
(Q!− 1)2

Q!2
s.e.2[p̂IV(θ∗|X)]. (5)

If we substitute (4) into (5), we obtain

s.e.2[p̂V(θ∗|X)] ≈ 1 + (Q!− 1)T/T2

Q!2
s.e.2[p̂I(θ∗|X)]. (6)

From (6), it follows that if T2 ≈ T/(Q! + 1), then the estimator p̂V(θ∗|X) has
the same simulation standard error as Chib’s estimator p̂I(θ∗|X).

If the modes do not mix well, we have two strata since the values of prob-
abilities p(θ∗|X ,Zs(t)) tend to be smaller in the permuted output than in the
non-permuted output. Consequently, the values in the permuted output tend to
be less variable than the values in the non-permuted output. Under the inde-
pendence assumption, the most efficient stratification estimator then has a value
of T2/T smaller than 1/(Q! + 1) (Cochran (1977, p.98)). For practical modeling,
the value of 1/(Q! + 1) can be used as an upper bound for the ratio T2/T .
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3.5. Example: latent class modeling

We consider data, collected by Van Mechelen and De Boeck (1989), that con-
sist of 0-1 judgements made by an experienced psychiatrist about the presence
of 23 psychiatric symptoms on 30 patients (N = 30, J = 23). A 0 was scored
if the symptom was absent, and 1 if present (see Table 1). We assume that the
dependencies in the symptom patterns are captured by Q mixture components,
each patient a member of a single patient category. We postulate a latent class
model (Lazarsfeld and Henry (1968); Goodman (1974)), meaning that the condi-
tional likelihood of the q-th component or class, p(Xi|π, ziq = 1) (see Section 2),
is the product of 23 independent Bernoulli distributions, one for each symptom.
We choose a Dirichlet(1, . . . , 1) prior distribution for the mixture probabilities
λ and independent Beta(α,α) prior distributions for the component dependent
symptom probabilities in π: {πj|q; j = 1, . . . , J ; q = 1, . . . , Q}. We set α equal to
0.5, 1 and 2.

Table 1. Dichotomous judgements (x present, . absent) about the occurrence
of 23 symptoms in 30 patients. Symptoms and patients have been arranged
in increasing order of symptom occurrence.

Symptom label Patients
disorientation ...........................x..
obsession/compulsion ...x..........................
memory impairment ..................x........x..
lack of emotion .............x...............x
antisocial impulses or acts ....x.............xx..........
speech disorganization .......................x...x.x
overt anger .....x.........x.........x....
grandiosity ...........x..x.....x..x......
drug abuse x...x..........x..........x...
alcohol abuse .....x............xx.....x.x..
retardation ..................x..xx....x.x
belligerence/negativism ............x.....xxx.....x...
somatic concerns ..x......xx.....x.........x.xx
suspicion/ideas of persecution .............xxx.......xx...xx
hallucinations/delusions .............xxx.......xx...xx
agitation/excitement .....x......x.xx.......xxx..x.
suicide .x....xxx..xx...xx...xx.....xx
anxiety .xxx..xxxxxx...x.x..xxx.xxx..x
social isolation x......xx.xxxx..xx.xxxx.x.xxxx
inappropriate affect or behaviour ...xx.x..x....xxxx.xxxxxxxxxxx
depression xxx...xxxxxxxx..xx.xxxx..xx.xx
leisure time impairment ..xxxxxxxxxxxxx.xxxxxxxxxxxx.x
daily routine impairment ..xxxxxxxxxxxxx.xxxxxxxxxxxxxx
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We estimated models with one to five latent classes. Regarding posterior sim-
ulation, we simulated ten chains with independent starting values and a burn-in
period of 10,000 draws per chain, and we stored the subsequent 100,000 observa-
tions. This number was sufficient to achieve convergence in the sense that

√
R̂

was smaller than 1.1 for all estimands of interest (Gelman and Rubin (1992)).
For θ∗, we chose argmax(t){p(X|θ(t))p(θ(t))} using only draws of the first chain.
For the other nine chains, the mixture components indices were relabeled. For
each chain separately, the relabeling was chosen to minimize the quadratic dis-
tance between the first draw θ(1) and θ∗ so that θ(1) and θ∗ come from the same
modal region. These ten chains were then treated as non-permuted output of the
Gibbs sampling procedure to distinguish them from the permuted output that
is needed as well when computing p̂V(θ∗|X). To study the robustness of the
marginal likelihood estimator with respect to T2, we set T2 equal to 0, 103, 104

and 105.
Figure 2 presents the values of the logarithm of the estimated marginal likeli-

hood p̂V(X) and the standard error of log p̂V(X) based on the variability among
the ten independent single-chain estimates of log p(θ∗|X). The patterns in Fig-
ure 2 are fairly constant across the panels where T2 = 103, 104, or 105. By
contrast, the patterns for the panel where T2 = 0 are a bit elevated if the number
of components is larger than two. To understand this result, we inspected the
Gibbs output and noticed that the components do not mix at all for the two
component model whereas they do mix (although not perfectly) for models with
more components. The estimate p̂V(X) with T2 = 0 differs from the unmodified
estimator p̂I(X) by a factor Q!. Since p̂I(X) overestimates the marginal likeli-
hood by a factor Q! if the modal regions do not mix at all (Neal (1999)), the use
of p̂V(X) is then appropriate even after setting T2 equal to 0.

Figure 2. Log marginal likelihoods (with error bars showing standard errors
from simulations) as a function of α and the number of classes, computed
using T = 106 and four choices of T2. The prior distributions are λ ∼
Dirichlet(1, . . . , 1); πj|q ∼ Beta(α, α).



432 JOHANNES BERKHOF, IVEN VAN MECHELEN AND ANDREW GELMAN

The standard errors are larger when T2 = 103 than when T2 = 0. To check
whether this is reasonable, we compared T2 to T/(Q! + 1). In Subsection 3.4, we
showed that the value of T/(Q! + 1) is an approximation to the value of T2 at
which p̂V(X) is at least as efficient as p̂I(X). The standard error obtained when
T2 = 0 is equal to the one of log p̂I(X), because then log p̂V(X) and log p̂I(X)
differ only by a constant term. For the three to five-class model, the values of
T/(Q! + 1) are 1.4 × 105, 4.0 × 104 and 8.3 × 103. Since these values are larger
than 103, we expected the standard errors for T2 = 103 to be larger than for
T2 = 0 as is indeed the case. In an analogous way, we compared the standard
errors obtained when T2 = 104 or 105 with the standard errors obtained when
T2=0. We found that the values of T/(Q! + 1) are not contradicted by Figure 2.

4. Choice of the Prior

4.1. Hierarchical prior

Figure 2 shows that the log marginal likelihood is rather sensitive to the
choice of the prior distribution. If the models are compared at α = 2, there is a
preference for the one class model. At α = 1, there is equal preference for the
two- or three-class model, while at α = 0.5 there is a preference for the three-class
model.

The prior sensitivity of the Bayes factor is well known (Kass and Raftery
(1995)) and demands a careful specification of the prior. A sensible approach is
to use informative priors that reflect prior information on the model parameters.
However, in practical modeling, prior information is not always available or is
too vague to rely on. In that case, choosing a diffuse prior for θ seems a quick
way out but this does not work satisfactorily: If the prior is very diffuse, the
value of p(θ∗) is nearly zero, and by (2), the marginal likelihood is then nearly
zero as well (Bartlett’s or Lindley’s paradox).

As outlined in the introduction, we propose a modeling strategy in which the
selected model is checked for consistency with the observed data and, if none of
the alternatives fits, we suggest a search for new, better-fitting models. Suppose
now that it is not likely that the given data set is generated under the assumed
prior distribution of the selected model. Then, a possible approach is to define a
hierarchical extension of the mixture model in which the hyperparameters α and
β are treated as unknown model parameters. This means that the α and β are
essentially estimated from the data, which seems sensible unless one has a strong
reason for favoring one of the specific choices of α and β. The underlying idea
is that, by estimating the hyperparameters, we compare models for which the
priors are at least not contradicted by the data. In the following, we illustrate
the hierarchical Bayes approach for the psychiatric diagnosis example. We also
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compare the prior and posterior for each model to check whether the hierarchical
approach is worth the effort.

4.2. Example (continued): hierarchical modeling

In Section 3.5, we assumed either a symmetric Beta(.5, .5), Beta(1, 1) or
Beta(2, 2) prior for all component dependent symptom probabilities πj|q. From
now on, we relax this assumption and postulate the same, possibly asymmetric,
Beta(α, β) prior for all symptom probabilities, with α and β being estimated
rather than fixed. We follow Gelman, Carlin, Stern and Rubin (1995) and choose
a diffuse hyperprior density for (α, β) that is uniform on ( α

α+β ,
1

(α+β)
1
2
), in the

range α/(α+ β)ε(0, 1) and 1/(α+ β)
1
2 ε(0, c), c > 0. The expression α/(α+ β) is

the mean of the Beta(α, β) distribution and 1/(α+β)
1
2 is a measure of dispersion

(Gelman et al. (1995, p.131)).
Posterior simulation consists of subsequently drawing from p(θ|X ,Z, α, β),

p(Z|X ,θ), and p(α, β|θ). Because the latter distribution does not have a known
form, we replace the last step of the Gibbs cycle by a Metropolis step. As a
jumping distribution, we choose a uniform symmetric distribution around the
current values of α/(α + β) and 1/(α + β)

1
2 .

We estimate the marginal likelihood from the Metropolis output. A general
framework for estimating the marginal likelihood from the Metropolis-Hastings
output is presented by Chib and Jeliazkov (2001). Here the estimator of the
marginal likelihood is still based on identity (2) where, as before, the posterior
probability p(θ∗|X) is estimated by stratified sampling from the Gibbs chain and
its reorderings. The estimators p̂I(θ∗|X) and p̂IV(θ∗|X) are defined as

p̂I(θ∗|X) =
1
T

T∑
t=1

p(θ∗|X,Z1(t), α(t), β(t)),

p̂IV(θ∗|X) =
1

(Q!− 1)T2

Q!∑
s=2

T2∑
t=1

p(θ∗|X ,Zs(tT/T2), α(tT/T2), β(tT/T2)).

The estimation of p(X) involves approximating the prior probability p(θ∗) which
cannot be directly computed anymore. We write p(θ∗) as

p(θ∗) =
∫ ∞

0

∫ ∞

max{0, 1
c2−α

}
p(θ∗|α, β)p(α, β)dβdα, (7)

and approximate the double integral by means of Laplace bridge sampling (Meng
and Wong (1996); diCiccio et al. (1997)) after having carried out the substitution
(u, v) = (log(α/β), log(α+ β)).
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We simulated ten independent chains, each with a burn-in period of 10,000
draws. We set the upper bound c for the value of 1/(α+β)

1
2 equal to 10, yielding

a sufficiently diffuse hyperprior. For the Metropolis step, we chose a symmetric
uniform jumping distribution. The acceptance rate was larger than 0.2 for all
models. We set T and T2 equal to 106 and 105 and approximated the integral (7)
using 50,000 draws from a normal approximation to the posterior density of (u, v).

The logarithms of the estimated marginal likelihood values were equal to
−346.9, −340.8, −335.8, −335.7 and −335.8 for the models with one to five
classes. The simulation standard error was never larger than 0.17. There is a
clear preference for models with at least three classes. There is no preference for
the three-, the four- or the five-class model, presumably because the number of
patients is too small to be able to draw a distinction between them. The model
selection results are different from the results in Section 3.5, in particular when
α and β are fixed at 1 or at 2. For the latter values of the hyperparameters, the
three-class model is not selected when compared to the two-class model. However,
in the hierarchical model, the Bayes factor of the three-class model versus the
two-class model is exp(−335.8)/ exp(−340.8) ≈ 150, which means that, under
equal prior model probabilities, the posterior probability of the three-class model
is 150 times higher than the posterior probability of the two-class model.

4.3. Example (continued): prior-posterior comparisons

In all non-hierarchical and hierarchical models under consideration, we have
a single beta prior for all conditional symptom probabilities. To examine whether
the priors are reasonable for the given data set, we constructed a histogram of a
posterior draw of the conditional symptom probabilities for each of the models
with at least two classes and plotted it together with the curve of a Beta(α, β)
density (for a similar check of a psychometric model, see Meulders, Gelman, Van
Mechelen and De Boeck (1998)). For the hierarchical model, we set the hyper-
parameters (α, β) equal to the posterior mode (α∗, β∗) (see Figure 3). We see
that the curves and the histograms are similarly shaped for the hierarchical prior,
which suggests that the Beta(α, β) prior is consistent with this aspect of the data.
This is not the case for all models with a non-hierarchical prior. In particular,
values near 0 are not well captured when assuming a symmetrical Beta(0.5, 0.5),
Beta(1, 1) or Beta(2, 2) prior. This supports our use of a hierarchical strategy.
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Figure 3. Histograms of a posterior draw of the conditional symptom prob-
abilities. The first three rows correspond to models with Beta(0.5, 0.5),
Beta(1, 1) and Beta(2, 2) priors for the symptom probabilities. These prior
densities are also drawn and rescaled in order to match with the histograms.
The last row corresponds to models where a hyperprior is assumed for α and
β; (α∗, β∗) is the posterior mode of (α, β).

5. Posterior Predictive Checking

5.1. Absolute and relative goodness-of-fit checks

As stated in the introduction, the Bayes factor does not solve the issue of
model fit, that is, it does not reveal whether the selected model could have plausi-
bly generated the observed data. Although, by adopting a hierarchical approach,
we confined ourselves to priors that are not contradicted by the given data set,
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the posterior may of course still be violated by the data. Since we would interpret
the results from badly and well-fitting models differently, it makes sense to per-
form goodness-of-fit checks in addition to selecting a model by means of the Bayes
factor. The goodness-of-fit model check is then used as a diagnostic tool which
may help us improve the specification of the model. The replicates are drawn
from the posterior predictive distribution, p(Xrep|X). From p(Xrep,θ,Z|X) ∝
p(Xrep|θ,Z)p(θ,Z|X) (Rubin (1984); Gelman, Meng and Stern (1996); Meng
(1994)), it follows that joint posterior draws (Xrep,θ,Z) are obtained by first
sampling (θ,Z) from p(θ,Z|X) and then Xrep from p(Xrep|θ,Z). The sampled
vectors from the joint posterior distribution are denoted by (Xrep

1 ,θ1,Z1), . . .,
(Xrep

R ,θR,ZR).
Various goodness-of-fit quantities may be considered, including relative quan-

tities such as a likelihood ratio test statistic in which the null model under con-
sideration is compared to an alternative model (Rubin and Stern (1994)). In
the following, we focus on absolute test quantities in which no alternative model
is specified. Such test quantities are useful when checking for instance for out-
liers, residual dependencies, or distributional violations. The test quantities or
discrepancy measures may also be functions of the model parameters and are
denoted as D(X,θ,Z). A summary idea of the magnitude of the discrepancy
can be obtained by comparing the posterior mean of D(Xrep,θ,Z) to the poste-
rior mean of D(X,θ,Z). Outlyingness can also be summarized by the exceeding
tail area probability, called posterior predictive p-value (Rubin (1984); Gelman,
Meng and Stern (1996); Meng (1994)). It may be noted that posterior predictive
checking using discrepancy measures tends to be conservative. Yet, modifications
of the discrepancies to overcome this problem may be considered (Berkhof, Van
Mechelen and Gelman (2002)).

5.2. Example (continued)

We illustrate posterior predictive checking in mixture models using the three-
class model for the psychiatric diagnosis data as the null model. The posterior
medians of the parameters of the model (computed after applying a Q!-means
type of clustering analysis to the Gibbs output, see Celeux, Hurn, and Robert
(2000)) are presented in Figure 4. Class 1 is associated with high probabili-
ties on the symptoms agitation/excitement, suspicion/ideas of persecution, and
hallucinations/delusions, being indicative of a psychosis syndrome. Class 2 is
associated with depression, anxiety, and suicide and can be interpreted as an
affective syndrome, while class 3 is associated primarily with alcohol abuse.
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Figure 4. Posterior medians and 50% posterior intervals for the probability
of each symptom being present, for each of the three classes. Each estimate
and interval is overlaid on a [0, 1] interval. Thus, for example, a patient in
class 3 has an approximate 20% chance of having “disorientation,” a nearly
0% chance of having “obsession/compulsion,” and so forth.
The estimated marginal frequencies of each of the three latent classes in the
population are (with 50% intervals): 23% (18%, 30%) for class 1, 58% (51%,
65%) for class 2, and 17% (12%, 23%) for class 3.

In a mixture model, each unit is assumed to be member of a single class.
The posterior distribution of (zi1, . . . , ziQ) expresses the uncertainty about the
membership of unit i. The posterior mean of (zi1, zi2, zi3) in the three-class model
for the psychiatric diagnosis data contains a value larger than 0.9 for 21 out of
30 patients. This shows that most but not all patients are well classified in the
three-class model.

In general, it is of interest to check whether the individual response patterns
are well-fitted by the distributions of the corresponding mixture components. If
this is not the case, the unit might belong to a component different from the
ones included in the model. To examine this, we defined the patient-specific
discrepancy measure D1i(X,θ,Z) =

∑Q
q=1

∑J
j=1 |xij − πj|q|Iziq=1. In Figure

5a, we plot the posterior mean of D1i(Xrep,θ,Z) against the posterior mean of
D1i(X ,θ,Z). It appears from this figure that none of the patients is poorly fitted
by the model, as the difference between the mean realized discrepancy value and
the mean discrepancy value predicted under the model is never larger than 2.0
(the latter value pertaining to patient 30). The posterior predictive p-values can
be read from plots D1i(Xrep,θ,Z) against D1i(X,θ,Z) (Gelman et al. (1995)).
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In Figure 2, such a plot, based on 1000 draws from the posterior predictive
distribution, is presented for patient 30. The posterior predictive p-value is the
percentage of draws above the diagonal line and equals 0.06, which implies that
the realized discrepancy of the data is somewhat higher than one might expect for
replications under the model. For the other 29 subjects, the posterior predictive
p-values are between 0.3 and 0.6. Although these model checking results do not
indicate a serious model violation, it may still be interesting to inspect the data
of patient 30 more closely. The posterior mean realized discrepancy turns out
to be relatively large because this patient has symptoms that are typical for a
psychosis syndrome but also symptoms that are typical for a depression. This
gives some support for the existence of a separate class of patients which have
both depressed and psychotic features.
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Figure 5. (a) Posterior predictive mean of D1i(Xrep,θ,Z) against posterior
mean of D1i(X ,θ,Z). (b) 1000 posterior simulations of (D1,30(Xrep,θ,Z),
D1,30(X,θ,Z)). Panel a shows that the discrepancy for patient 30 (having
the largest realized discrepancy value) is slightly higher than predicted under
the model; however, the p-value of .06 (that is, 6% of the dots are above the
diagonal line in panel b) indicates that the discrepancy could plausibly be
explained by chance.

It is also interesting to check whether the postulated densities for the different
mixture components are contradicted by the data. In the latent class model,
we postulate a product of independent Bernoulli distributions for each mixture
component. The independence assumption can be tested separately for each
component by a posterior predictive check that uses only the information that
is contained in pairs of item scores. Test quantities that are based on pairs of
item scores have been proposed by Hoijtink (1998) and Reiser and Lin (1999).
By means of a simulation study, Reiser and Lin (1999) showed that when the
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number of subjects is small compared to the number of possible response patterns
(i.e., when the data are sparse), a test quantity based on pairs of item scores has
considerably more power than a test quantity based on the full response pattern.
In order to formulate class-specific discrepancy measures, we define frequency
njkq

ab which is the number of times that within class q, the values a and b are
scored on symptoms j and k. Note that the value of njkq

ab can be computed only
if the latent membership values are known. For class q, we use the discrepancy
measure D2q(X,θ,Z) =

∑J−1
j=1

∑J
k=j+1 p(n

jkq
11 , njkq

10 , njkq
01 , njkq

00 |π). The likelihood
p(njkq

11 , njkq
10 , njkq

01 , njkq
00 |π) is the density of the four response patterns for class

q, njkq
11 , njkq

01 , njkq
10 , and njkq

00 , as implied by the overall latent class model. The
posterior predictive p-values obtained for class 1, 2 and 3 are 0.43, 0.41 and
0.52, respectively. This shows that there is no evidence that the conditional
independence assumption is violated for any of the three classes.

6. Concluding Remarks

A distinction that is often drawn in statistical modeling is one between model
selection and assessment of model fit. As to the former, we discussed the common
Bayesian selection criterion, the Bayes factor, whereas for the latter we relied
on posterior predictive checks. We illustrated with our example analysis that
Bayes factors and posterior predictive checks can be meaningfully combined and
supplement each other with complementary information although they stem from
quite different research traditions.

When applying the Bayes factor, we had to deal with two statistical prob-
lems. The first problem is multimodality of the posterior, which typically occurs
in mixture models. We showed how the Bayes factor can be computed from
the Gibbs output by means of a modification of Chib’s (1995) method that ac-
counts for multimodality. Such a modification is required only when some modal
regions are not visited by the Gibbs sampler. We applied the modification of
Chib’s method to a latent class model but it can be applied to mixtures of other
types of distributions as well. It is also of interest to consider the same method
when exploring the posterior using a tempered annealing scheme (Neal (1996);
Celeux et al. (2000)). The second problem we had to deal with is prior sensi-
tivity. In general, it is well known that the Bayes factor may be prior sensitive,
even to changes in the prior distribution that essentially have no influence on
the posterior distribution. To account for prior sensitivity, several variants of the
Bayes factor have been proposed in the literature (for an overview, see Gelfand
and Dey (1994)). However, these variants cannot be calibrated in terms of evi-
dence in favor of either model. An alternative is to compute the Bayes factor for
a set of different prior distributions (Kass and Raftery (1995)). This approach
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forces us to define a class of “reasonable” models. For the latent class mod-
els considered when analyzing the psychiatric judgement data, reasonable prior
distributions for the symptom probabilities could be symmetric beta densities
with the hyperparameters set at values between 0 and 2. Yet the choice of the
hyperparameters is rather arbitrary and a change in the hyperparameters may
affect the Bayes factor considerably, as shown in the example. A hierarchical
extension of the latent class model was shown to provide a neat way out; such
an extension implies the choice of a prior that is not contradicted by the data,
which may further yield acceptable prior-posterior comparisons. The application
of such a hierarchical approach is not limited to the latent class case and may
be considered for any type of mixture model. In general, it seems sensible to use
priors that are not contradicted by the data.

Regarding posterior predictive checks, an unlimited number of test quantities
could be considered. As for the psychiatric diagnosis example, we focused on how
well the patients are classified to one of the syndrome classes and whether the
conditional independence assumption of the model holds. Different checks could
have been presented as well (see for instance, Hoijtink and Molenaar (1997)).
Our purpose was not to give an overview of possible posterior predictive checks
but to illustrate that posterior predictive checking is a usefool tool for examining
the fit of a mixture model to the data.
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