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This supplement provides four appendices for the paper. Appendix A gives the proofs of Theo-
rems[IH2] Appendix B offers the proofs of Theorems[3H5} Appendix C lists some basic derivatives
results, and Appendix D provides some numerical evidences on spurious long memory phenom-
ena caused by the structural change. In what follows, we define the pseudo data u; = u_q,
Y =%_4 for —[Th] <t < -1, and uy = ugr—¢, Xy = Xor—¢ for T+ 1 <t < T + [Th| obtained

by the reflection method.

A Proofs of Theorems 1-2

Define v; = vech(y; — X — X1;/cr) and let

1 T+|Th|
Hl(l‘) :T I_ZLT}ZJ Kh(ZL’ — S/T)US,
T+|Th)]

Ih(x) = [f SZlZLThJ Ky(x —s/T) — 1|vech(X)
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| T | T
+ et [— Z Kp(x — s/T)vech(Xy5) — T Zvech(le)} :
s=1—|Th| s=1

and II3 = %Zstl vs. Then,

ThY2S =h'/?y [Ty (t/T) + T (t/T) — Ts]' [Ty (¢/T) + Ta(t/T) — 1]
£8) — 28 + S5 + S, (A1)

where

Sy = hl/? i L (t/T)Hy(t/T), Sy = h/? i I1, (t/T) s,

t=1 t=1
T T

Sy =h'?> Ty, Sy =h'*Y [200(t/T) + a(t/T) — 200s] Ty (t/T).
t=1 t=1

Next, let Xy, = (S0 + Su/cr)/?®2D,,. Under Hir,
U = Lipa 2t (A.2)

where z; is defined as in (2.6)). Particularly, v; = v, under Hy (i.e., 3y = 0),
where vy = Yg.2; is a stationary process, and Yo, is defined as in (2.5)).

Since X and ¥4, are bounded deterministic matrices, Assumption 2] implies

vy is a strictly stationary S-mixing process with mixing coefficients (A.3)

B(7) satisfying ZjQﬂ(j)‘;/(H‘s) < oo for some 0 < § < 1;
j=1

max B o ") < o0 (A.4)
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: ~1/4 ~1/4
Moreover, since ¢ — 0o, we have HEO / PPN / /cT” < 1. Hence,

(ZO + th/CT)1/2 :E(l)/4<[n + 261/221t261/2/CT)1/2Eé/4

1 __ _ 1
[t 5=y + 05 58

T
/2 LE—1/4E o4 O(i)
0 2cp ° 10 2
by Taylor’s expansion, and it entails
Et* — EO* = Et/CT, (A5>

where ¢, =[S /45,5, @ S0]/2 + [Zo @ S 80y /2 + O(1/ ).

In order to prove Theorems[l]and Theorem [2] (i)—(ii), Propositions
below are needed. These five propositions and their related lemmas are

all proved under H,7 with T"/2h*/* = O(cr), and Assumptions .

Proposition A.1. S;—B —, N(0,V), where B = h='/2tr(M)[ [ K*(z)dz],

M is defined in , and V is defined as in Theorem @
Proposition A.2. S, = 0,(1).

Proposition A.3. S3 = 0,(1).

1/2
Th Bl

p)
Cr

Proposition A.4. S5 —

= 0,(1), where B, is defined as in Theorem

2

Proposition A.5. M — M = 0,(h'/?), where M is defined in .
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PRrROOF OF PROPOSITION [A.1l Note that

T+|Th)| T+|Th)]

s Wzt IR IRIC
2[2 (] [
m (3, S W+ 3 OKCE)
| 1°W+iz§f>f(<z;>v4 k()]

1 2 o (t—5
T2h3/2 ZK Utvt =T T2h3/2 ;K ( Th )U Us

~+

r

T
2 t—s , 1 t—s t—
e S () K i S k(0
s#t s#r,s£LrF£L
1 T+|Th)| f—s , T+|Th f— g
+T2h3/22[( YSIRED DT C=0 TN SRS P =
t=1  s=1—|Th| s=T+1 s=1—|Th| s=T+1
T+|Th)|

2

2l 2+ 2 () [T

By Lemmas [A.THA 4] below,

Sl — Bl — BQ = 5142 + 0p(1). (A6)

Next, we have that )% E(vovg,,;) = tr(M), which entails that By +
By = B. Therefore, the conclusion holds by (A.6) and Lemma below.

]

/
) V Uy

P )
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Lemma A.1. Sj; = 0,(1).
Lemma A.2. Si5 — By = 0,(1), where By = h™'?[E(vjvo)] [ K*(z)dx
Lemma A.3. Si3 = 0,(1).

Lemma A.4. Siy — By = Sia2 + 0,(1), where Siaa is defined as in

below, and By = h™'?[3°2) E(vg,vorss)] [ K*(x)dx
Lemma A.5. Si5 = 0,(1).
Lemma A.6. Sis = 0,(1).

Lemma A.7. Sy —, N(0,V).

PROOF OF LEMMA . By , E(S11) = O(357) = o(1) and

Var(SH)
K40) K40) —
= T4h3> ZVar(vgvt) + T423) Z Cov(vyvy, vivg)
1 1 T
= / /
_O(T3h3) + O<T4h3) ; Cov (vjuy, vgvs)
1 1
:O<T3h3> + O<T4h3> x
T t-1 T
Z Cov(vjvy, vi_jvy—j) +Z Cov(vjvg, vy veaj) | - (AT)
t=1 j=1 t=1 j=1

By (A.4) and Davydov’s inequality (Davydov, (1968),

|Cov(vjvr, vy o)l < CBE T [vivillogrsy [V s0es | s,
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< OB(5)" (A8)

for some & € (0,1) and all ¢ > 1. Hence, 3. _, Z;;ll |Cov(vivy, vi_jv—j)| +

EtT=1 ZJT:_f |Cov(vyvy, 7}7/&+jvt+j>| < CZthl Z] 1 B /040 = O(T) by (A-3).

Together with (A.7), it follows that Var(Si1) = O(4) = o(1). Now, we

can conclude Si; = 0,(1) by Chebyshev’s inequality. O

Proor OF LEMMA [A.2] By the symmetry of K(-), we can write

512 = W ZST:1(A1S + Ags), where
s—1 . T—s .
= [ Juree and 2= [ S22 ( ) ot
j=1 7=1
By (A.2) and ., we have v; = 3, (Xo.) tvor = (I, + €25, /cr)ve and
Vv, = V)00 + V€ X, Vot /O
+ Vs Don €500t/ CT + Vg X €564 50, Vot [ Co, (A.9)

where v is stationary with mean zero by Assumption 2|

SlnceThZT 1K2( =) = fOK2 z)dz+0(7:) and = TlJKQ(

#)

h[fol xK?(z)dz] + O(#), by the boundedness of ¢, and ., (A.9) and the

stationarity of vy, it is not hard to see
s—1

E(512) E 1: 2?2;:3728 - K ( . ) ZKQ( . >
s= Jj=
T-1

> S (- 2]

s=1 j=1
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:%[Tih 2 (1 - %)K2<Izh>] * O<ch1Ll/2> + O( 2;1/2>
=B+ O(Tfj?’/?) O + O(CT;w) + O<c%Tll/2> = Bi.

Moreover, since 7 > K?() = O(1), we can show

1 < 1 <
Var(W E A15> :W E Var Als T4h3 E E COV AlsaAlr
s=1 s=1

s=1 s<r

<o [P

2 L\ 12
+ s [ZK2<TL}1>} |Cov (vivs, viv,.)]
=1
T-1T—s—1

—l—O(L) Z Z |Cov(vivs, vy, jVst)|
s=1 1

1 T— 1Tjs 1

() S 3 s

s=1 j=1

where the last inequality holds by 1) Similarly, Var(m ZST:1 AQS) =

0(1), which implies that Var(S15) = o(1) by the Cauchy-Schwarz inequality.

]

PROOF OF LEMMA . Define Wy (v, 1) = K (55 ) vjvs, where ), =

(vs, 77), and Wy(,-) : RHDE42)/2 o RAD(+2)/2 5 R i a symmetric

function. Then, Si3 = Tzhg/g ZKt\If (s, ).
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By the symmetry and boundedness of K(-), we have

) T t-1
[E(S13)] T2h3/2 ZZK<Th> (vvi—j)
t=1 j=1
T t—1
_T2h3/2 ZZ|E Ut'Ut ]
t=1 j=1
_C N gy 1
< 2 80) =0 g7 ) = 0(). (A.10)
j=1

where the last inequality holds by a similar argument as for (A.S)).

Moreover, since E[U; (s, z)] = 0 for any fixed 2 € ROFDO+2)/2 by

(A.3)—(A.4)) we have

16K2

(30,0

C 1/(1+9)
_T2h3 max [E|\P1(¢s,¢t )| 1+6)} Z]ﬁ )/

VaI'(Slg)

1
:0<T2h3) = o(1), (A.11)
where the inequality holds by Lemma A(ii) of Hjellvik et al. (1998), which

relies on some minor modifications for the proof of Lemma 1 in [Yoshihara

(1976). Hence, by (A.10)—(A.11)) it follows that Si3 = 0,(1). O]

PROOF OF LEMMA [A 4] Write
1 T

t—s t—s S—r
= a7 K () K ( )t
213/ S#;r# Th h TR )V

T T
—# ; [/K(x)K(m + %)d:p] viu, + O(ﬁ) ZU;UT

S#T

514
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Th1/2 > /K (w+ Th)dx]” v+ 0 (ﬁ)

281, +0 ( (A.12)

)
where the second equality holds since Th Zt Lt K (tT—)K (tT_—hs + %) =

[ K(z)K (z+ %) dx+ O(7) for any s and r, and the third equality holds

since ZST# viv, = O,(T) by a similar argument as for (A.10).

Next, we introduce a truncation lag pr such that

pr — 00, pr = o(Th), prh®? — oo and Z i?B(j) < Cppt.  (A.13)

Jj=pr

Denote Sy = {(s,7) : 1 < |s—7| <ppr, 1 <r #s<T}and Sy = {(s,7) :
pr<|s—r|<T,1<r#s<T}. Then,
Sta :L Z A, 00, + L Z Ag, 500, £ S + Suae, (A.14)
Tht/? 5 Tht/? s,
where Ag., = [ K(2)K (z + %5 ) da.
Furthermore, we re-write Sq4; as
St = /K2 dx] ! ZU/UT + ;ZAMSUQUT
Thi/2 . Thi/2
£S1411 + Sz, (A.15)
where Ay, = [ K(2)[K (z + ££) — K(2)]dz.

For Sy, B(Sun) = [ [ K*(2)de] [z 3oy B 300 (v +0,0,—5)]

via some simple calculations. Hence, by (A.2), (A.5)), the stationarity of z
p Y y 9 9 y ?
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and a similar argument as for (A.10]), we can show

1
E(SMll) :Bz + O(W) = BQ + 0(1). (A16>

Moreover, by defining @ (v5, ¢,.) = viv, — E(viv,), we have

Var(S1411) = [/KQ(a:)derLQh Z Z E(viv,uu) — E(viv,)E(v,u)

s,r€S1 k€S
~ [ [ ®@e] g 3 Bl v)malin i)
s,r€Sy k,lEST

where the third equality holds by Proposition A.4 in Hong et al.| (2017)), and
the fourth equality holds by (A.13)). Here, Proposition A.4 in Hong et al.
(2017) is valid due to some minor modifications for the proof of Lemma 1

in |Yoshihara| (1976)). By (A.16)-(A.17)), it follows that Sis11 = B + 0,(1).

For Si419, since |K(x + %h) — K(z)| < C+, a similar argument as for

Th>
(A.16) entails

C [ K(z)dr <~ & Jj , ,
B8] <CEEOE S S T B)| + B,

r=1 j=1
1 pPT . ' 1
~0(ggm L9900 7) = O(gm) =) (A19)

[s—|

Th 7

Moreover, since Ay, < C we have

‘Var(51412)‘ = )% Z Z Ayrs Ak [E(vivv0) — E(vive) E(v,v)]

s,r€S1 k€S
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k —
Z |SThT| | | ‘wl(wsawr>wl(¢k?wl)‘

s,r€Sy k,l€ST

C
< Tf]; "> Elw ()@ (v, )]

s,r€Sy k,l€ST

_T2

_ O(Tp?)i?’) — o(1), (A.19)

where (A.19) holds by a similar argument as for (A.17). Hence, by (A.18)—

(A.19), it follows that Sis12 = 0,(1). Now, the conclusion holds by (A.12)

and (A19)-(A15). 0

Proor oF LEMMA [A.5 By the Cauchy-Schwarz inequality, we only

need to prove

T 0 0

it :—T223/2 D K(tT_hS>vs]/[ 3 K(tT_hS)vs] — o)1),
t=1 s=1—|Th| s=1—|Th|
1 T T+|Th| s , T+|Th| PR
S5z =7a1,372 Z | Z K( )] [S_ZTH K )] =l

Since Sis deals with the left boundary while Sisp deals with the right
boundary, by symmetry, we only have to prove the result for Sis;.

By the symmetry of K (-) and the fact that ys =y_, for |[Th| < s <0,

we have
T |Th] , - LTh _
—Z[Z<> TSR
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T |Th|

T2h3/2 ZZK(t—l—s— 1>K<t+77:h— 1>v;vr

t=1 s#r

A
=S1511 + Sis12-

Note that K(x) =0 for x > 1. Hence,

) |Th) HS
E|Sl511| < T2h3/2 Z Z ( ) Ell};vs| = O(hl/Q) — 0(1),
t=1 s=1

which implies that Si511 = 0,(1).

By the fact that

TZ}LJ% <t+5_ 1)K<t+r_ 1) :/K(i+x>K< +:c)da:+o( )
Th = Th Th Th ’
we can obtain

|Th)
Si512 = Th1/2 Z / T T (T_h + x)d:v +o(1 )}v;vr
. LThJ
=77 ;[A&,S + o(1)]vlv,,

where As,s = [ K(5 + 2)K (5 + x)dx.

By the similar arguments used in the proof of (A.11]), we can prove

CT?*h?
T2h

Var(Si512) < = O(h) = o(1),

which implies that Sis12 = 0,(1) by Chebyshev’s inequality. Hence, it

follows that Si51 = 0,(1). O
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Proor oF LEMMA [A.6l. Note that

T

516 T2h3/2z Z ZK<t_S> (tT_hr>“;“T

t=1 s=1—|Th] r=1
T T+|Th] T

T2h3/2z Z ZK<t_S> (Z;f)vgm

t=1 s=T+1 r=1

25161 + Si2-

By symmetry, we only need to prove that Sig; = 0,(1).
By the symmetry of K (-) and the fact that y, =y_, for |[Th] < s <0,

we can further decompose Sig; as

|Th| |Th| |Th)

St T%SﬂZZZK(HS 1>K< Thr>U;UT

t=1 s=1
\Th| | Th)
t+s—1 t—s\ ,
T2h3/2 Z ZK( )K< Th )“8”5
LThj | Th)
t+s t—r\
T2h3/2 ; Z ( >K< Th )”S”’“

A
= Sie11 + Sie12-

Then, we have

T*h*

— O(h'"?) = o(1),

which implies that Sig11 = 0,(1) by Markov’s inequality. Using the similar
arguments used in the proof of (A.11)), we can obtain that Var(Sig2) =

O(h) = o(1), and so Sie12 = 0,(1). Hence, it follows that Sig1 = 0,(1). O
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PrROOF OF LEMMA [A.7] First, by the symmetry of K(-), we have

TpTl

- T r—s ’
Slae = h1/2 Z Z /K Th )+K<x—i— Th )}dm}vsvr
r=1 s=r+pr+1
2 T—pT 1

== Z Z Az, VL0,

r=1 s=r+pr+1

By the boundedness of K (-), (A.13), and a similar argument as for (A.10]), it
follows that [ E(S142)| < Th1/2 ZT e Zs r4pr+1 |E(vgv,)] < hl% ZT

Jj=pr+1
|E(uvyi)| € 555 Y s BU) = O(smrz) = o(1).

Next, define Spi42 in the same way as Sy with v, replaced by vy;.

Then, since E(S142) = o(1), we have that E(Sp142) = o(1) and
Var(So142) = E(S§142) + 0(1), (A.20)

where

TpTl TpTl

E(S§.142) = Tgh > Z > Z AzrsAzip B (V5 v0, V01, V01)

r=1 s=r+pr+1 I=1 k=l4+pr+1

=Vi+Vo+ V54V (A.21)

with
T—pr—1
§ : 2 : /
1 T2h A37‘5 UOSUUTUOSUOT)’

r=1 s= 7"+pT+1
T— —pPT— 1

2 T2h Z Z Z AS’I‘SA?)T‘]CE(,UE)SUOTU[I)kUOT')J

r=1 s=r+pr+1k= r—i—pT—l—l k#s
T— PT— 17— PT— 1

Vs = T2h > Z AzrsQs15 B (vh5v0rv05v01),

r=1  I=1l#r s=max{r,l}+pr+1
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4
Vi= T2, Z Z Asrs Agig B (V5V0r Vo Vor) -
r=1  I=1l#r s=r+pr+1k=l+pr+1kss
Define §; = [K(z)K(z + 24 )dz. By and Lemmas

below, we can obtain

E(Sg,142> = V1* + VQ* + Vg* + V4*

T—pr—1 _ min{TprflfT:pT}
) !/
T2h E E 03 g Evec(vorvo, )
= j=pr+1 m=—min{T—ppr—1—r,pr}

min{T—j—rpr}
X Z Evec(Vor 45V yjam) | - (A.22)
m/=—min{T—j—r,pr}

Note that S g1 0= [ [ [ K(x)K (2 + )\)dx] dA + o(1) for all r, and
Vot = Mow2- By , it follows that E(S§,,,) = V 4 o(1). Hence, by
and Lemma A.4 in|Kim et al. (2011)), we have that So 142 —2 N(0,V).

Third, it only suffices to show that Sis2 — Sp142 = 0,(1). By , we

can get

TpTl

S1a2 — So,142 = h1/2 Z Z Asys

r=1 s=r+pr+1

/ -1 / -1 / -1 -1 2

Because ¢; and Y, are bounded, by using the similar argument as for

A.22)), we can prove that E(S14o — Sp142) = O(%) o(1), which implies

S1a2 — So.142 = 0,(1) by Chebyshev’s inequality. O
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Lemma A.8. V; = V" 4+ o(1), where

T—pr—1 T—r
4

Vl*:ﬁ Z Z 83 Evec(vg,4j00,, ;) Evec(vovg, ).

r=1  j=pr+1
Lemma A.9. V, = Vj + o(1), where

T—pr—2 T—r—1 min{T—r—j,pr}

Vi = T2h Z Z 52 Z |:EveC(UOT+j+m/U(I)T 1) Evec(vorvg,)

= j=pr+1 m/=1

+ EveC(UOvagTHJm,)'Evec(v()rv(')r)} :

Lemma A.10. V5 = V" + o(1), where

T—pr—2 T—r—1 min{T—pr—1-r,pr}

Vi = T2h Z Z (52 Z [Evec(UOTHv(’]Hj)’Evec(vOrvé)Hm)

= Jj=pr+1 m=1

+ Evec(vor4 Vg, ;) Evec(Vormv, )]

Lemma A.11. V, = V* + o(1), where

T—pr—2 T—r—1  min{T—ppr—1—rpr}

V:l T2h Z Z 62 Z EveC(UOTU6r+m + U0r+mv[l)r)/

r=1 j=pr+1 m=1
min{T—r—j,pr}
/ /
X E EVGC(Uor+j+m/U0r+j + UOT-&-j”Or-i—j—i-m’)’
m/=1

In the sequel, we only give the proof of Lemma [A.T1] since the proofs

of Lemmas [A-8HA .10 are similar and much easier.

Proor or LEMMA |A.11] By noting that

/ / . / i / /
UosVor Vo Vo1 = VgsVor Vo Vok = T (VoV0r Vo Vok)
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= tr(vorv) 0,y ) = vec(vorvg,) vec(vg,vy,),
(A.23)

we can re-write

TpTl

Vi= T2h Z Z Z 83150316 Evec (v, vp, ) vee(vorvp, )

r#£l  s=r+pr+1k= l+pT+1 k+#s
T— —pPT— 1

:TQh Z Z Z 3031 Evec(vo,vy, ) Evec(vorvy,)

r#l  s=r+pr+1 k=l+pr+1, k;«és
T—pr—1

T2 h Z Z Z 537‘853”6

r#l s=r4+pr+1 k=l+pr+1,k#s

X [Evec(vo,vy;) vec(vopvg,) — Evec(vorvy,) Evec(vorvg,)]

2V + Vo
First, we consider V}; by splitting it into four parts:
Vin = Vi + Vi + Vg + Vi, (A.24)
where Vjy; are defined according to the following constraints on the indexes:

Vin :0<r =1 <ppr,0<|s—k| <pp; Vi |r — 1| > pr,0 < |s — k| < pr;

‘Q1220<|T—l|§pT,|S—/€|>pT; ‘/414 |7‘—l|>pT,|s—k:|>pT

For Vj11, some calculations lead to

TpTl

4
Vi =72 Z Evec(vg,vy,) Z Z 0375311 Ve (vorv, )

rl=1 s=r+pr+1 k=l+pr+1
0<|7‘7l|§pT 0<|k—s|<pr
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4 T—pr—2min{T—pr—1—r,pr}
/ N/
:T_ § E EveC(UOTUOT-i-m + UOT-HHUOT)
r=1 m=1

T—1 min{T—s,pr}

/ /
X g E Evec(Vostm Vg + V0sU0sqm)

s=r+pr+1 m/=1
3 —r—+c
X/K(J}) x—i——dx/K Th”“”)dx
T—pr—2 min{T—pr—1-rpr}
!/ / /
T2 E : E : EVGC(UOTUOT—i-m + UOT-HTLUOT)
T h
m=1
T—r—1 mln{T r—j,pr}
/ /
X E E EVeC(U0r+j+m’U0r+j+U0r+j“0r+g‘+m')
j=pr+1

]+ mm/
X/K($) T+ das/K Th )dm,

where ¢ 8 m —m/', m+m/, —m —m’ or —m +m’.
Since |¢mms| < 2pr, it follows that [ K (x ‘K( +j+;—”g”“)—K(az+Tlh)‘ <
Spr . Then, by the fact that = [ K(2)K(z + 7 )dr < oo and a similar

argument as for (A.8)), we can show

T—pr—2min{T—pr—1-rpr}

‘/411 _T2h Z mz_l EVGC(’UOT’U()T_H” + U0r+m1}6r)/
T—r—1 mln{T*T*J}pT}
X Z Z Evec(vor+j+m/v(l)r+j + UOT+jU(I)T+j+m’)
Jj=pr+1 m/=1
KK (ot 7y )]+ 0(F7)
x[/ (x) x+Th dr| +0 Th
=V +o(1), (A.25)

where the last equality holds by (A.13)).
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For V19, we can show

T—pT—l
4

T T
]\/412|:’ﬁ Z Evec(vorvg,) Z Z 8375031 Evec(vorvg,)
rl=1

= s=r+pr+1 k=l+pr+1
Ir—l[>pr 0<|k—s|<pr

T2pp—2T—pp—1-—r
=77 ‘ E E Evec(Vor Vg, iy + Vor4m¥,)
r=1 m=pr+1
T—1 min{T—s,pr}

/ /
X g E EV€C<U03+m’ UOS + UOSUOerm/)

s=r+pr+1 m/=1

s—r—i—cmm
X/K(x) :E+— d:v/K Th )daz‘

T— 2pT 2T— —pT— 1—r
E / / /
=72 VeC<U0TUOT+m + U0T+mUO7')
T h
m=pr+1
T-1 min{T—s,;pr}

/ !/
X E E ‘Evec(voerm/vos + V05 Vs 1m?)

s=r+pr+1 m/=1
T—2pr—2T—pr—1—r — min{T—s,pr}
6/(1+5 1\8/(1+6)
< 2 2 0 > 2. Am)
m=pr+1 s=r+pr+1
C T? hl/?
ST2‘hp_:r’ B <pTh3/2> = o(b),

where the first inequality holds by the integrability of K(-), the second
inequality holds by a similar argument as for , and the third inequality
holds by Assumption [2[i) and (A.13). Hence, Vi12 = o(1). Similarly, we
can prove that V3 = o(1) and Vyy = o(1). By —, it follows

that V33 = V" 4+ o(1). By (A.13) and the similar argument as for (A.17]),

we can show that Vi = o(1), and hence the conclusion holds. O
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PROOF OF PROPOSITION [A.2 Write

T+|Th| T
—t
52 T2h1/2ZZK< Th )UUT T2h1/22[ Z Z ]ZK< )UUT
t=1 s,r=1 t=1 s=1-|Th| s=T+1
1 1 1 s—t
— > KO + eTae > KO + eTaYe > K (% )
t=1 t#r t#s
T T
1 s—=1\ , 1 s—=1\ ,
+ o 2K ( Th Jolen + E 2 K ( Th Joles
t#£s t#£s,s7£r,r#t

T T T+|Th] T

+#i i ZK<ST_h )UUT TQhI/QZ Z ZK<

t=1 s=1—|Th| r=1 t=1 s=T+1 r=1
7

£ 5%
i=1

By Lemmas [A.1HA.3, So; =

)v Uy

%SH = 0P<1) and Sz = #(0)513 = OP(l).

For Sy, we can show that E(Sy) = O(z77z) = o(1) by using a similar

proof as for Lemma [A.3] Moreover, by Lemma A(ii) of Hjellvik et al.

(1998), it entails that Var(Ss) = O(7;) = o(1), which implies Sx = 0,(1)

by Chebyshev’s inequality. For Sy, by using a similar proof as for Lemma

A.2, we can show that |E(Sy)| = O(h'/?) + O(%) + O(hclg/z) = o(1) and

Var(Sss) = O(£) = o(1), leading to Sos = 0,(1). For Sa;, we write it as

Sos = h - S3s. Then, by a similar argument as for Si4 in (A.12]), we have
Sis = 0,(1), and so Sas = 0,(1).

Note that

|Th) |Th| T

S26 = TzhmZZZKCJFS >ST

t=1 s=1 r=1
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|Th| | Th) |Th] [Th] [Th) T
K t+3 t—I—S 1 ’
= 2o o K (T e g D K (S e
t=1 s=1 r=1 t=1 s=1 r=|Th|+1

£ So61 + Soga-

Here, the similar arguments used in Lemma indicate that Sy = 0,(1).

Next, since

LTh)

Thz (t+8_1>—/0 K(:L"—f—ﬁ)ds—f—o()

we have

5262:%/2% i [/01K<x+ﬁ)ds+o(l)]v;vT.

Hence, Davydov’s inequality implies | ESy| < Ch%? = o(1). Furthermore,
by Lemma A(ii) of Hjellvik et al.| (1998), Var(Sas2) = O(L x T?h) = O(h?),
this implies that Sss2 = 0,(1) by Chebyshev’s inequality. Hence Sas = 0,(1),
and similarly, So7 = 0,(1).

Now, we can conclude that Sy = 0,(1). O

PROOF OF PROPOSITION [A.3] Write S3 = S3; + Ss2, where S3; =

h1/2 o h1/2 T ’ . - h2 o
T o= 11)51)5 and 332 = 77 st VgVt Since 531 = KQ—(O)SH and 532 =

K(O) 1999, we have S3; = o(1) and S3z = o(1), which imply S3 = 0,(1). O

PROOF OF PROPOSITION [A.4] Write Sy = 2541 + Si2 — 2543, where

Sy o= W2 T (#/T) Ty(t/T), Sig = B2 Ty(t/T)Ty(t/T), and
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Sys = W2 ST TITIL(¢/T).
) T+|Th T+|Th
Since sup (1) |% ZSLEL%M Kh(:);—s/T)—l‘ = O(TL) and Sup 1] 7 Zs i{&hj

Kyp(z —s/T) = O(1), we have

| T .
sup ||[TIa(¢/T) || Ssup‘f E Kh< T ) - IH‘VeCh(EO)H
¢ ¢
s=1—|Th|
1 T+|Th| PR
—1 —1
+cr sngT _I_ELThJ Kh< T )Vech(Els) +O(c)

<0 ((Th)*l + c;)

by the boundedness of X and 1 (-). Hence, sup, 7 ZtT:l (52 IHa(t/T)|| =

O((Th)™* + ¢3'). Furthermore, since

T+|Th)|

Su=h'? Y~

s=1—|Th|

r,,\

%Zi: () et/

0 T+|Th|

e[y 203 (s

—|Th] s=T+1

)H2 t/T)
2841 + Sag + Saiz.

By (A.23)), Assumption [2, and Davydov’s inequality, it follows that

+ Qh; ; E{v; [Tih ; K(tT—h> (t/T)]
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T T-s

o4 ) oll s ) S

s=1 j=1

:0(7;—;) +o(1) = o).

By Chebyshev’s inequality, we have that Sy = 0,(1). Similarly, Sy2 =
0p(1) and Sy13 = 0,(1), implying that Sy = 0,(1). Using the similar argu-

ments, we also have that Sy3 = 0,(1).

Next, it suffices to show that Sy, = T}C‘;/QBI +0(1). Let
T

T+|Th|

Iy () = [% SZlZL:ThJ K, (as - %) - 1] vech(Xy),
T+|Th|

HQQ(I‘) |:1]; Z Kh (l’ — T)VeCh 213 Zvech 213 ]
s=1—|Th|

Then, Sia = Sia1 + Saz2 + Sia3, Where

Sy = 2 Zﬂzz t/T) Ty (t/T),

T =1

T
Siza =h'/?Y Ty (t/T) Tar (/T),

t=1

22 - > o (t/T) s (t/T).

t=1

8423 -

Note that sup, ||[Ily1(z)|| = O(Z:) and sup, |Il2(z)|| = O(1). Hence,
|S422’ < O( h3/2) = 0(1) and |S423| S O(ﬁ) == O(]_)

Moreover, by letting 1 = % Zthl Y and Xy = T ZZJFILT(%}ZJ (tT—)le,
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we have
B1/2 T . B . B
5421 :C_2 VeCh(Elt — 21),V6Ch(21t — 21)
T =1
R1/2 T . . . .
:g VeCh(Elt — Zl + th — Elt)lvech(Elt — 21 + th — th)
t=1

£8S4911 + Saziz + S4213,

where
BL/2 T . .
54211 :—2 VeCh(Elt — Zl)lVeCh(th — 21),
‘r
ont/2 I _ _
Sa212 = C?F Z vech (3 — Zﬁ’vech(th — Y1),
t=1
B1/2 T i .
84213 :C—2 VeCh(th — 21t>,V€Ch(21t — th)-
T =1

It follows easily that Sy = %Bl + o(1). Since ¥y, Xy, and ¥ all are
T
bounded and |31, — ¥14|| = o(1) except for at most [27h] points, we can

show that Sio10 = O(Thgm) = o(1) and Syo13 = O(Th;m) = o(1). Therefore,

T ‘T
it follows that Sy = T?;/QBZ + o(1). This completes the proof. O
T

PROOF OF PROPOSITION [A.5| Since M — M = (M — M)+ (M — M),
it suffices to show that M — M = 0,(h/?) and M—M= 0,(h'/?), where
M is defined in the same way as M in 1} with v; replaced by v;. By

Lemmas below, the conclusion follows. O

Lemma A.12. M — M = o,(h'/?).
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Lemma A.13. M — M = o,(h"/?).
PROOF OF LEMMA (A.12| Denote ', ; = Evgﬂvt. Then, we have

\E(M — M) :‘E]\N/[— S+ Y FW—M‘

j=—o00 j=—00

S‘EM— i T, +) i Fw-—M‘.
j=—00 j=—00

First, we can show

‘E]\A/[/— i Ty,

j=—o00

j;TM ) 1‘]FUJ|+ 3 Ir.l

|7|>br
<C $° b ro(d) <of)

where the second inequality holds by Lipschitz condition and the fact that
> ljisby Fogl < C/br for large by, and the last inequality holds by Davy-
dov’s inequality and Assumption 2]

Second, we have

) Z I M‘ :‘ Z Zt+j*EZt+jZ£ZQ* - EO*EZH-jZ;E()*

j=—oc j==oc

< Z ’Et*Ezt+]2t2t* ZO*Ezt—F]thO*

j=—00
C < 1
<o 2 || =0 ().

where we have used the fact that sup, [Xu — 20| = O(1/cr) by (A.5)).

Hence, it follows that E(M — M) = o(h'/?).
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Third, by a similar argument as for 1' we can show that Var(M )=
O(bT) and then the result follows by Chebyshev’s inequality and Assump-

tion M. O]

PROOF OF LEMMA . Write M — M = M + M,, where M; =
Z]T 01 k( ) Zt (0 —vvy_;) and My = Zj;l_(T—l) k(#)% Zf:l—j
(V401 — verj0t)-

It suffices to prove that M; = o,(h'/?), since the proof of M, is similar.
Write My = My + Myp + Mz, where My = ZT ! k(bT) Zt ]H(vt
v) (@ — o)y My = 570 k(L) X0 (@ — vj), and My =

%Z?:_Ol k(#) ZtT:jH(i)\t — vy)v;_;. Here, we note that under Hr,
1T
Uy — vy = -7 Z vs + vech (X /e + Xy /er) (A.26)
s=1

for any ¢, hence it follows that

sup 7 = o] = OP(%) +0(%>. (A.27)

For My, by (A.27), Assumptions [3{ii) and [4ii), and the fact that

LTl k(L) = O(l), we have

by £~j=0 br

| M| <‘ ( )’SUPH Z U — vy) (V- —j — U— g) H

§0<b%) ’ sup H i (f)\t — /Ut)(i)\t—j — Utfj)IH

t=j+1

<O(by) x op(% + %)
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o3 -0(%)

For M, by (A.26) and Assumptions [3(ii) and [4[(ii), the boundedness

of 3, and ¥4(-), and the fact that L~ S7 1 k(L) = O(1), we have

br £=j=0 "\br
| M| SO(%) sup H i V(U — Vi)'
7 =
by T 1<~ v 1 T
cof) el 5 o]+ 2w -
I =i s=1 T J =i
<o(7) [0+ 0,()]
“o( e+ o) =)
Similarly, || My3]| < 0,(h'/?), and hence M, = o,(h'/?). O

PrOOF OF THEOREM [1} Under Hj (i.e., £1(z) = 0), B, = 0. Hence,

the conclusion holds by (2.4)), (A.1)), and Propositions A5 O

PROOF OF THEOREM [2[(i)—(ii). The conclusion holds directly by (2.4),
(A.1)), Propositions and the facts that when cp = ¢TV/2h'/4) S, =

By + 0,(1); and when TY2h1/* = o(er), Sy = 0,(1). O

PROOF OF THEOREM (iii). When ¢y = o(T2h'/4), we consider
three cases: (1) ¢! (Th)Y? < o0; (2) er(Th)™Y? — 0 but crh'/? — oo; (3)
cr = O(h_1/2).

Case (1). Since crh'/? — o0, a detailed investigation indicates that the
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proofs of Propositions still hold. Moreover, under the assumption

that h=Y/2¢;'by — 0, we can show that Proposition holds. Using the

fact that Sy = TICZW B, + O,(1) while %21/2 — 00, it follows that D — oo in
T

T

probability.
Case (2). As for Case (1), Propositions hold. Next, it is easy to

see that Th'/2S = O, Th1/2 l§ O,(h~%/?), and VY = 0,(1). Since Lk —
p

T

/

00, we can see that D=0 ( ) implying that D — oo in probability.

Case (3). It is easy to see that S; — 2S5, + S3 = O,(Th'/?) and S; —

2S5 + S3 > 0. Furthermore, by noting that

Sy = h*/? ETJ 1T, (t/T) Ty (t/T) 4 h'/? ET: I, (t/T) Ty (t/T)

t=1 t=1
T
— W2 " 2lls(t/T) Ta(t/T),
t=1
we can easily show

W2 I (t/T)Ta(t/T) = Oy (T'?h),

t=1

W25 L (HT)TL(t/T) = O (T];l ” ) ,

t=1 T

h/? ETJ I3(t/T)' Ty (t/T) = O,(T"?h).

t=1

Hence, Th'/28 is at least of order O,(Th3/?) by the fact that ¢y = O(h~Y/2).
Since B = O,(h1/2) = 0,(Th*?) and V = 0,(1), it follows that D — oo in

probability. O
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B Proofs of Theorems 3-5

Let B(z) = CoX"(x)/2, Vi(z) = S(x)Y2(u, — 1,)S(2)Y2, and S(z) =
T ZtTJrlLTLhTJh n(x —1t/T)%;. The technical lemma below plays a key role in

our proof.

Lemma B.1. Suppose Assumptions[1}[3(i) and[5{d hold, and L(u) is twice
continuously differentiable on [0,1]. Then, almost surely,
: 3 h
(i) sup,epo,y || 2(@)=S(2) =% S 2 Kala—t/T)Vi(t/T)=h*B(x)|| =
O(7:) +o(h?);

(i) if conditions in Theorem [{] hold, then almost surely,

] T+|Th] log T
Ssu — K x—1 T V xXr = O )
el Tt—lz: w(@ =t/ T)Vi(z) ( Th)

=1-|Th|

T+|Th]

1 log Th

Sup |7 Y. Ealz —t/T)[Vi(x) = Vi(t/T)]|| = O( gT )
z€[0,1] =1-|Th]

Proor oF LEMMA [B.1] (i) Recall u, = u_y, ¥y = ¥, for —[Th] <

t < —1,and w, = ugy_y, Xy = Yoy, for T+ 1 <t < T + [Th]. Note that

T+|Th)| T+|Th|

S -2 =g > Ka(e— gD+ Y Ka(r— )5 - 2]
t 1—|Th| t=1—|Th]
+a) [+ Tghj K, x—%) —1]
t=1—|Th)

The proof of (i) is standard by using Taylor’s expansion and the approxi-
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mation of integrals.
(ii) Using the fact that ||X(z) — X¢|| < C1(|z —t/T| < h), it suffices to
show

log T
sup ||[Ti(x)|| = O .
meMH (@)l =0/ —=7-)

Our proofs below follow the similar arguments as in Masry| (1996)), Hansen

2008)) and [Vogt| (2012)). Let ¢; = (log T)*? and write
( g g

T+|Th)

= 3 Ka(r— 2 VTV T > T oer)
t 1—|Th|
T+|Th)|

S Ko = o ViDLV T)] < TVoer)

t=1—|Th|

1

=Ti1(z) + Ti2(2).
First, we consider 7;1(x). Let s > 2. Then,

> PVit/T)|| > t°¢;) < Zt_lc;sEHW(t/T)HQS < CE||ut||252t Ler® < 0.
t=1

Hence, by Borel-Cantelli Lemma, for 7 sufficiently large, [|[Vi(t/T)] <

TYs¢p for t < T. That is, T11(z) = 0 almost surely.

Second, we consider Ty o(z). Let ar = I?T Cover the interval [0, 1]

with |h~taz'| +1 := N balls A; = {z : |z — 2;] < aph}. Then, for
r € A;, hHa — zj] < ar. Note that Assumption 3| ensures that for any
|21 — o] <6 <2,

[ K (2) — K(21)] < 0K (1)
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where K*(z) = C1(|z| < 2). Hence,

W () - w ()| s e (),

Th
Denote
1 T+|Th] ;
T - * _ 1/s
Tialz) = TZH K (2= = )Vt/ T L(Vit/D)|| < T cr).

Note that there exists a constant 0 < M < oo such that 1. ZtT:_'_lliz]_}}IthJ Kp(z—

AN < M and %ZtT:lETth Kj(x—£)||%]] < M. By triangular inequal-

ity, we obtain

sup [| 71z ()| < [ Tiz(a)|| + 1T (x) ]| + 2Mar,

TEA;

and hence,

P( sup [T a(2)| > 4MaT>

z€[0,1

<N max P(ITia(w;)| > Mar) + N max P(|Tia(e5)] > Mar),
1<jSN 1<j<N

By Theorem 2.1 in |Liebscher| (1996), the following statement holds: if
the triangular array {Z, r}]_, satisfies |Z, 7| < br uniformly with triangular

array c-mixing coefficient ar(k), then for Ty < T and € > 4Tybr, we have

T 2

€ T

P(‘ Z ‘>5><4e (— >+4— 7). (B.1

; BT = NPT AT TSy, + 3eTobr) | Ty ar(To), (B-1)
where St, = supg< ;<4 E( Zﬁ?ﬂ”ﬁj} Zt,T)Q-
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Recall that when t € [—|Th|,—1], Vi(¢t/T) = V_(—t/T); and when

€ [T+ 1,T+ [Th]], Vi(t/T) = Var—+(2 — t/T'). Hence,
[Th]
Tio(x Thz (x —t/T) + K(x +t/T)|Vi(t/T)1(|Va(t/T)|| < TY*cr)

T—|Th|
b S Ko - /TVi/ TV T)] < T'er)
t=|Th|+1
+% Z [K(x —t/T)+ K(z+t/T — 2)]V;(t/T)1(||V;:(¢/T)]] §T1/SCT)
t=T—[Th|+1
1 7
_T_h ZZt,T($)

Note that P(Hﬂ’g(ajj)H > MaT) = P(H S Zip(xy)| > MaTTh>, and
a straightforward extension of Theorem 1 in Hansen (2008) implies that
St, < CoTph for some constant 0 < Cy < oo. Hence, by letting e = MayTh,
bp =T"Ycpand Ty = b;la;l in , using the inequalities between mixing
coefficients that az(k) < a(k) < B(k), we have that for each z;,

M?logT

(st > Mar) < senp (- V28T
||71,2($])||> ar | = 2 €Xp 64Cy + 3M

) Oy DT,

by the fact that (k) < CpF for some p € (0,1) and C' > 0. Similarly, we

have that for each z;,

M?logT

P(ITiatall > Mar) < dew (= g5y

)+ Cp BT,

Hence, recall N = [h~ta;'| + 1,

log T
P( sup ||Tia(@)] > 4My /22

) < C[T 64CO+31\11/Th 1+,0_T°T2] L ()(T)-I—H(Q)(T).
cel0,]] Th
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2

M
Note that xM(T) < T'" @38 and 64001‘/[% > 2 with M sufficiently

large. Since p € (0,1), it follows that

i": kD) + P (t) < oo.

t=1

By Borel-Cantelli Lemma, the proof is completed. O

PROOF OF THEOREM [3| (i) Note that h — 0 when T is sufficiently
large. Hence, for any = € (0,1), we have that h < = < 1 — h, and
i(x) = %ZtT:l Ky <x — %)yt. By the similar arguments as for The-
orem 2 in Xu and Phillips (2008) and Assumption [3[(i), we have that
S(z) = S(z—) fi)l K(2)dz+X(a+) fif K(z)de = 1[S(z—)+5(2+)]. Next,

it suffices to show that for z € (0, 1),

Since vech(y; — %) = Ln(EtI/Q)‘X’?Dnzt, we have
1 — t a
E[T ZKh <a: — T)vech Vi — } [ Z (:c — —)Vech(}’t ¥t)
T
:i2 Z Kﬁ( — %) Evech(y; — ;) vech(y, — %)
T

T .
2 t+
+ E K, (x — —)Kh (x — T‘7>Evech(yt — %) vech(yiyj — Siys)
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C < EN e 1
T ) SIS s

by Davydov’s inequality, the stationarity of z;, and the fact that sup, || L, (X

1/2)

D,| < ooand £ S K(z— %) < co. Hence, it follows that (B.2) holds
by Chebyshev’s inequality.
(ii) Recall b(z) = vech(B(z)). Let v;(z) £ vech(V;(x)) = L,(X(x)"?)%2D,, 2.

By Lemma [B.1f(i), it follows that
VTh(G () =0 (x)—h2b(x)) = \/T_h% tzT;Kh(x—t/T) (o () 4o (t/T) =y ().
By the CLT for mixing process (sce [Hall and Heydd (2014)),
VT Z Ki(w = t/T)u(z) ~¢ N(0,V, (),
and by noting that ||X(z) — S(¢/T)|[1(|z — t/T| < h) = o(1), we have
\/ﬁ% i Kn(z — t/T)[vy(t/T) — vy(z)] = 0,(1).

Hence, Slutsky’s Theorem implies the result once we give the expression of

V,(z). Take pr as in (A.13). Then,
Var(\/ThlzT:Kh<x—i>z>
T T)™
1 a o(Tx Tx —s Tx —r ,
_ﬁgK( ) B+ hZK< )K (S ) B,

g S () K () Bt
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£ z,1 + ‘/2,2 + ‘/z,37

where S; and S, are defined as in . Note that ‘K(Tw L) — K (L) ‘ <
C’lr s‘ by Assumptlonl Since E(z2;_;) = O(p’) for some 0 < p < 1 by

Proposition [2[(i), we can show that V. 3 = o(1) and

1 T—1 min{r—1,pr} To—r
Vo= > > Kz( — >(Ezrz;+j + Bz 7))+ o(1)
r=1 j=1
T-1 pr

1 T —r
== Z K2< Th >(Ezrz;+j + Ezpyj2,.)

r=1 j=1
| proopr T —
_T_hz Z K?( - )(Ez, 2y s + Eznyj2))
r=2 j=r—1
—>[/K2(;c)d:c} Z E(2z2,_;),

j=—00,j#0

where we have used the fact that

ey e

7'2]7"—

p—z Z |Ez2, ;4 Bz 2] = o(1).
j=1

) (Bzr2py; + B2y jzy)

Since V.1 = [ [ K?(x)dx] E(z.2.) + o(1), it implies that V., + V.o + V.3 =

[ [ K*(2)dz] Zs + o(1), and hence the expression of V,(z) follows. O

To facilitate the proof of Theorem [ we will introduce some notations.

Denote

0(8) 2 Uye, %(0)) = tr(Gy H(d)uy) + log det (S, °Go(0)2%).
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Recall the definitions of G,(¢), Gi(¢), Zr(¢) and .Z(¢) in (3.2)—(3.5). We

similarly define

T
L(0) =3 _U(9) with 0(9) = tr(Gu(9) ™) +log det(S;*Go(9)5,"),
i (B.3)
where Gy(¢) is defined in the same way as Gy(¢) in (3.5) with {u,}Z,
replaced by {u;}L,.
In addition, we need Lemma herein, which is useful throughout
the proof of Theorem [4 Specifically, Lemma[B.2](i)-(ii) provide some useful
results for ¥(z) allowing for finite discontinuous points, and Lemma [B.2[(ii)-

(iv) give some useful results for everywhere continuous X(x). Let

[logT ~
K/T = j%h + Sup(Et Et) and At £ u; — Ug, (B4>

where &, = S(¢/T).

Lemma B.2. Suppose Assumptions 1], [J(i) and [5H8 hold. If B(z) is twice
continuously differentiable at continuous points on (0,1), then almost surely,
(i) S(x)72 = S(a) 72 = J5(@) (@) — S(2))S(2) " + O(kF)
holds uniformly for all x, and consequently,
(ii) A, — 1/2 tE 1/2 Zt—1/2yt2t—1/2 + O(kr)ys
If 3(x) is twice continuously differentiable everywhere on x € (0,1),

(iii) S(x) 712 = T(a) 7 = §2(0) M (E (@) — E(2))S(x) ¥ + O(kF)
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holds uniformly for all x, and consequently,

(iv) Ay = _%215_3/4(it—zt)2;3/4ytzt_l/2_%215_1/23’13215_3/4(it—zt)2;3/4+

Proor oF LEMMA [B.2] We only prove (iii)-(vi), since the proofs of
(i)-(ii) are similar.
(iii) Since X(x) is continuous everywhere on (0,1), then by Taylor’s

expansion, it follows easily that sup,(X; — ;) = O(1/Th), and hence

Kp = O(\/ l(;%T). (B.5)

Moreover, since 3(z) = $(z)/2[I,4+(z) " V2(E(z) - (z)) S (z) V2] S(2) /2,

we have

Sa) 2 =) + S() T AS() - S(@)) ) )
=) L — 5 2(0) (S e) — D)D) S ) 4 0(s3)

=) — 23(a) VHE() - D) S) Y+ O,

where the second equality holds by Taylor’s expansion of (I,, + ¢)~*/2 for a

n X n matrix €, and the fact that

log T’
Th

sup
z€[0,1]

S(z) — Z(m)HQ - o

by Lemma
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(iv) By using the result in (iii), it is straightforward to see

A =5 =2 Py P e Py (B - )

+ (57 =y (57— e

1 3/4.a _ _
_ 5275 3/4(Zt _y)s; 3/4Yt2t 1/2
1__ _3/4, _
=55 S S - 205+ Oy
This completes all of the proofs. n

PROOF OF THEOREM [4[i). The conclusion holds by Theorem 4.1.1 in

Amemiya, (1985) and the Propositions below. ]
Proposition B.1. ¢ is the unique minimizer of E,(¢) for ¢ € ®.
Proposition B.2. sup,cq |77 Z1r(¢) — El(¢)] = 0,(1).

Proposition B.3. sup,cq |T‘1.,?T(¢) — T‘lz(gbﬂ = 0,(1).
Proposition B.4. sup g T L (6) — T % ()] = 0,(1)

PrROOF OF PROPOSITION [B.1] First, we can show that Gi(¢) is a
symmetric positive definite matrix for ¢ € ® by Assumption (ii). Second,

we have

Ely(¢) — Eli(¢o)

=Etr(Q 1 (¢)y:) + Flogdet[Q(¢)] — Elogdet[Q(do)] — n
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=Elog det[Gy ! (¢0)G(9)] + Etr(G (0)Gy* (¢0) E(er Fio)Gy (¢0)) —
=Elog det[G L (¢0)Gi(¢)] + Etr(G; (¢)Gi(¢0)) — n

:Ezn:—log)\ﬁ—/\i—l,

=1

where \;,i = 1,---,n are the n eigenvalues of G} *(¢)Gi(¢). Using the
inequality z—1—log(z) > 0 for z > 0, we can obtain that El;(¢)—El;(¢pg) >
0, and the equality holds if and only if \; = 1, i.e., Gi(¢) = Gi(¢o) a.s.,
which implies ¢ = ¢ by Assumption [7{iii). Hence, we have shown that ¢

is the unique minimizer of E¢(¢). O

PROOF OF PROPOSITION [B.2] By Theorem 3.1 in [Ling and McAleer
(2003)), it suffices to show that E'supyeq [|€:(0)]| < oo.

Under Assumption[f] Elog det(Gy(¢)) = E Y"1 log[\i(Gi(¢))] < EX"1, Mi(Ge(9)) =
Etr(Gi(¢)) for all ¢ € @, where \;(Gi(¢)) > 0,i=1,--- ,n are the n eigen-
values of Gy(¢). Hence, E[log det(G(¢))]T < co. Obviously, Eflog det(G(¢))]” <
Supyeq (— log det(l,,—AA'—=BB’),0) < oo, which follows that £ sup,cq | log det(Gy(¢))] <
oo. Since Y; is bounded, it implies that Fsup,cq [logdet(€2:(¢))| < oo.

It remains to show that Esup,cq tr(Q:(¢) 'y:) < co. Since Gi(¢) is
positive definite by Assumption (ii), its eigenvalues are positive, and then

by using the compactness of the parameter space and the Wielandt-Hoffman
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theorem, we have

€

1<I<T $ed
for some constant Apimo > 0. Hence, supyeq [|Gi(¢) || < 0o, which implies

SUPyeq ||2(0) || < oo by the boundedness of ;. By Holder’s inequality

and Assumptions 1] and [5] it follows that

1/2
Esuptr((9)"ye) < Esup |0(6) | Iyell < C(Esup (o) |* Ellyell” ) < oo.
peP peD ped

This completes the proof. n

PRrROOF OF PROPOSITION [B.3] It suffices to prove
(1) 4 Sy suPgeq [t1(Go(0) 1T — Gul9) ™'w)| = 0,(1);
(i) & ST supyeq |log det Gi(3)Gi(6) 1| = 0,(1);
(iii) % Zthl SUPyeq | log det Et§;1| = 0,(1).

We first show (i)—(iii) above without discontinuous points, and then we
modify the proof to allow finite discontinuous points.
[Continuous case] For (i), by letting

-~

Si(8) 2GH(8) — Gol(9) ™ = —Gi(0)H(Gil(0) — Gi(0)Ge(0) ™Y, (B.T)

it is straightforward to show that tr(@;lut—ét_lut) = tr (Stut)—i—tr(ét_lAt) +

tr (StAt) .
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Note that

1A < O(kr)||ug| (B.8)

by Lemma (iv), the boundedness of 33, and the fact that sup, |5, — %, | =

O(kr);
@t — ét :AAt_lA, + B[é\t_l — ét_l]B

—AN,_ A" + B[AA,_,AB' + B?[G,_y — Gy_5)(B')?
t—1
= BITAA AN B YT (B.9)

j=1

and
pp = p(B) <1 (B.10)
by Proposition [I, Then, we can show

||St|| <n)‘mm0 |Gt Gt| < On)\mlnozpB ||At ]H

t—1
<Cn)\?

t—1
mmOZO(HT)ijilHutfj” = O(kr) ) Olpp)lwi—yll,  (B.11)
=1

J=1

where the first inequality holds by and the inequality that ||Al <
Vnp(A), the second inequality holds by (B.9)-(B.10) and the fact that

|AB|| < ||Al|p(B), and the third inequality holds by (B.8]). Hence,

!

1
tr(Su)l| <7 > Esuplls
E[E S s ()] <4 sup ||

=1 PP t=1
ti .
O(rr) ) Opp)Ellaell[[ugl

1

—_

IA
Tl
[M] =

t=1 j
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t—1
<5 3" 00sr) Y sy Bl = Ofr)
=1 j=1
where the last inequality holds by Holder’s inequality. By Markov’s in-
equality and 1) we have that ZtT:l SUPgeq |tr(Spus)| = op(1).

Similarly, we can show that L3, | sup,cq \tr(é;lAt) + tr(S:A)| =
0p(1), hence the result (i) follows.

For (ii) and (iii), by Lemma A.1(x) in|Zhou et al.| (2022), |log det(ZtEA]t_lﬂ <
al|Se = S (127 + 15 1) and | log det(G,Gy )| < nl|Gr — Gll(1G7 | +
IG;']1). Then, the results (i) and (iii) follow similarly as for the result (i).

[Discontinuous case] For simplicity, we only prove that 7 ST SUPgeq [tT(Siuy)|

= 0p(1) in the case of one discontinuous point ug € (0,1).

Define Ey = {[Tuq|—[Th], ..., [Tug]+[Th]}. Since sup,cg, 12— < oo

and sup,es, |50 — S| = supseg, |7 2oy Ka((t—9)/T)V,(t/T)| < O/ "%F)

by Lemma [B.1[ii), it follows that

1A < Clluy|| for t € Ey (B.12)

by using Lemma [B.2{(ii).

Next, for ease of proof, we introduce a truncation lag np such that
nr = o(Th) and ny — oo as T' — oo. Here, ny is introduced such that the
impact of the discontinuous point on .S; is small enough for ¢ away from the

[Tug) + [Th]. Then, for t > [T'ug| + [Th] + nr, the similar arguments as for
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(IB.11f) entail
t—1 ‘
ISl <nAzol|Gr = Gill < CndL2, ijBilnAt—jH = 51+ S,
=1

where
t—([Tuq)+[Th])

S = Cn)‘m%no Z ij_l ||At—j ||7

j=1
t—1

SQt - On)\m%no Z ij_l ||At—j ||

j=t—([Tuqg]+[Th])+1

Since t > [T'uq)+[Th]+nr, A,_j in Sy behaves similarly as in the continuous

case, and hence by (B.8)), we have that S;; < Ckr Z ([ual+[TR]) 1 Blla;].

On the other hand, Sy < szzt—([Tud}—i-[Th])—&-l phllu,_;| by (B.12). Hence,

it follows that for ¢ > [Tuy] + [Th] + nr,

t~(Tua+TH) ‘ |
ISl <Cre D pplluyll+C > ppllull. (B.13)
j=1 j=t—([Tuq]+[Th])+1

Third, it is straightforward to see

E— Ziuphzr (Suy)| < —ZEsup 1S [llwe]| = SUL + SUy + SUs,
t=1

where SU; = % ,@;d*mEsupM IS, SUz = L 3ertins g
supgea [|Silll[wll, and SUs = £ 3707 7ny 1ng B 5Wsea |Silllue]l

For SU; and SU,, we have SU; < TZ[T“d ™ O(ky) = O(kr) and
SU, < O(%) Sttt S phEllu ) w || = O(242). For SUs,

by (B.13), we have
T t—([Tug)+[Th)

sus<o(7) X > Bl

t=[Tug+Th)+nr Jj=1
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T t

vo(z) X > pBlulul

t=[Tuq+Th]+ny j=t—([Tug]+[Th])+1

=0(sr) + 0(7) S = Oler) + O

T
t=[Tuqg+Th|+nr

Hence, B4 3, supyeq [tr(Siuy)| < O(sr) + O(FHL) + O(pjF) = o(1),

and the result follows by Markov’s inequality. This completes the proof. [

PROOF OF PROPOSITION [B.4] It suffices to prove
(1) 2 mr supgea [tr((Ge(@) ™" = Ge()us)| = 0,(1);
(i) 4 31y suPyea | log det Gi()Gi(6) ! = 0,(1).
Note |G7Y| < G212 = tr(G;Y) < te(I, — AA’ — BB'). Hence, by the
compactness of P,
sup |G| < oo, (B.14)
ped
and similarly,
sup |G, || < oc. (B.15)
PED
In addition, similar to (B.9)), given initial values U, we can show Gy(¢)—
ét(Qb) = Bt_l[A(ﬁg — uO)A’ + B(G\O - Go)B/](B/)t_l, and hence
|G(9) = Gi(9)]| < Kpl. (B.16)

Observe that

> sup [tr([G(@) ! — Gulo) u)|

1
T oeo
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T
1 - ~ -~ —
< TZSUPHGt( )G () = G()elIGe(d) N uell-
t=1 ¢
By (B.14) , the result (i) follows. Using |log det(G,G; )| < n||G; —
Gell(IGEH + ||ét_1||), the result (ii) follows similarly. O

In order to proceed the proof of Theorem (ii), we need Lemmas
below. We note that the related assumptions for Lemmas are

the same as those for Theorem [4(ii) unless stated otherwise.

Lemma B.3. Let my be a truncation lag such that
my = O(T*) for some Ay >0 and Ay, + Ay < 1/2. (B.17)

Then, Max<j<m, max]quHz (S =D ])2;_1]./4—2;3/4(2—292;1/4H —
O(L) a.s.

VT

ProoF OF LEMMA B3] For 1 <j <mpand j+1<t¢<T, we have

IS4 S - ) S - 27 E - 2 Y
_HZ 3/4Zt JE 1/4 . 2_3/42 2—1/4“
<HZ 3/4(2t - Et) 1/4|| + HE 3/42 2 1/4 2—3/42 2—1/4”

21+ L.

We first consider I;. Note that |K(55t) —K( 1) < C|S I by Lipschitz

condition. Then, since K(z) = 0 for |z| > 1, we have that for any 0 <
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s—s <mrp,

1 gasal s—1 s —t
S-Sl XK - K ()l
IS =] 3 [ v
[s/ +mT+
1 —t s —t
=0 ()~ #()|
= [ N \ 7 )|l
1 [s"+mp+Th]
§C|S - S/‘TQ 2 Z Cu”ut”
t=[s'"—Th)|
mp 4+ 2Th 1 e
=C|s —§| 573 Z |
T2h mr + 2Th
t=[s'—Th]
myp + 2Th 1
<Cmp S Blu| = 0<ﬁ) a.s. (B.18)

Hence, by the boundedness of ¥;* and (B.18)), it follows that I, = O(\/LT).

Second, we consider I. Since ¥; ' is bounded and ¥, is trice differen-

tiable, we can show that ||Zt_j — ZtH < C’(%) = 0(\%) and HZ;E’/S(Zt_j —

Zt)Z;‘r)/gH < C’(%) = o(\/if). Then, by Taylor’s expansion, we have

S = (D 4 By — BV

—-1/4
SR AR AR AR A vkl B el

. 1 . 1
_y, 1/8[]n— 5 (S — DT > 1/8+0(T)

. ) |
VA 712 (D — x5 +O<T)

o) o)

which implies that ¥, 1/4 = 2;1/4 + 0(\/%?). Similarly, ¥, 3/4 = 2_3/4

0(\/%7), and hence it is not hard to show that I, = 0(\%) in view of that
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IS| = O(1) as. by Lemma . This completes the proof. O

Lemma B.4. Under the conditions in Proposition |1, {z,vec(Gy), Veg(ﬁt)}

18 strictly stationary and B-mizing with exponential decay.

PrOOF OF LEMMA [B.4] The proof is omitted, since it is similar to the

proof of Proposition [1| by noting the recursive representation in (C.1)). [

Lemma B.5. Let {c;}iez be a sequence of stationary process, and F; =

o(ci,t <i<s) be the sigma-filed generated by {c;,t <i < s}. Define

where a; = f(c), by = g(cy, ¢—x) for some k < np, and f(-) and g(-,-) are
two real-valued functions. Suppose the following conditions hold:

(1) Ea; = 0, Eb, = 0, E|a;|°*?) < 0o and E|b?+%) < oo for some
0>0;

(2) ¢t is B-mizing with mizing coefficients B(j) satisfying 3 7=, B(j )8/(1+0) <
00;

(3) K(-) satisfies Assumption[5 and h satisfies Assumption [9;

(4) ny is a constant or ny — 0o and ny = o(NTh?) as T — .

Then,

(i) |ESr| < % and (i) ES%gC’maX{ "t L}
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PRrROOF OF LEMMA [B.5] The proof is omitted, since it is similar to the

one of Proposition A.1 in Jiang et al. (2021) by some minor modifications.

O
Lemma B.6. Under (5.1),
iiD o iEO P+ 0y(1).
\/T t=1 ! T t=1 ’
. 1/2 1/2
PrROOF OF LEMMA . Write w, — I,, = G} “(e; — 1,) Gy~ + Gy —
Then,
Uy — [n :Ao(ut,1 — [n)AID + Bo(ut,1 — [n)86
— BoGyli(er1 — 1)GABy + G (e = LG,
and hence
T A A
T Z :_T Z(A6®2 + B*)Dypzi g + T Z Zvec(e; — I,,)

t=1 t=1

‘ -

T
-7 Z (BS*)( 1/2 “vec(e,_, — I,).
=1

Recalling that 2y = (1,2 — AY? — BF*) "1 (I,» — BS?), the result follows. [

~

PROOF OF THEOREM [4{ii). By Assumption [§|and Taylor’s expansion,

we have

L 0Z0(9) _ 1 0%r(00) | 10Z(9) s>

O:ﬁ 26 VT 00 ?&b@(b’ (¢ — o),
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where ¢ lies between gg and ¢y. Hence,

~ 1 °Zr(6)71-1 1 0L (o)
VT(¢— o) = _[T 900¢ } JT 06
By letting I,, — ﬁtét_l =1, — utCNJt_l —wS; — Atat_la %Tff = (g_% -

%) + % and @t—l = Gy + S, we can write

1 0% (%) =,
VT 09; _;Rﬁ

where
R, :ﬁZtr (In—uth )th :|,
t=1 v
T - -
- 1 [ ~_1 GGt (9Gt ~_1
Rg—ﬁ;tr_(ln—uth )(8¢i 6¢i>Gt },
T -
1 r ~ . 0G
R3 :ﬁ Ztr (In — uth_l)aTJSt},
t=1 ¢
T - ~
1 r ~ . 70G oG
Ry T >t (= wG 1)(37; a aTst> St}’
t:1 = (3 T
T ~
Ry = ﬁ;tr_utsta@Gt }
T - -
1 r oG,  0Gy ~—1
=— — — — — G
L O L1 Crt o Ll
T
1 [ 8Gt
R, = — — t S, Stl,
v, DO L |
T ~
1 oG, 0G;

Rg = — — tr|w S — — ,
) ﬁ;r ”<a¢i adoZ) ]
T ~

1 r oG
Ry =—— tr|AG LG,
’ ﬁ§a¢ ]
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1 < oG, oG

R == 7= >l (55 - 556
1 < . ~ .0G

RH = — ﬁ;tr_Ath lagbztst],
1 < . ~./0G, 0G

o~
Il

1

Here, A; and S; are defined in (B.4)) and (B.7)), respectively. Furthermore,
by Propositions below and the central limit theory for mixing pro-

cess (Hall and Heyde, |2014)), we have that _%%ﬁo) —2 N(0,Qg,), where

T
Qo :Th_rf;o Var( Zﬂtft \/— 2[21/4 ® %y 1/4]D Zt)
t—1
In view of Proposition below, it remains to show
Qoo =N+V+H+H. (B.19)
First, since p;& forms an m.d.s., we have
A Var( Vi Zpt&) = E[p:Var(&)p] = N.

Second, by similar arguments as for Theorem 3 (ii), we can show

T
hm Var( 1TZT t/T)D zt> :/ Z Eziz; ;DY (x)dx.
t=1

]7—00

Since D, 7 Ezz D, = llm Var( IT S D,z) and

T
lim Var (% Z Dnzt> =Sl [(Gi/2>®2\/ar(§t)(Gt1/2)®2] =
=1

T—o0
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by Lemma the expression of ¥ follows.

Third, by similar arguments we have

Hé%ij&oCOV(\/_Zpt&’ ﬁ ;[21/4@)2 1/4]D Zt>

1
- Z E[ptétZ£—j]D;1/0 Y (z)dx.

j=—o00
Using Lemma [B.6] we obtain
o0

T T
| 1
N Elpéiz_,|D, = lim Cov(—§ =S Dnz>
iz J] =00 VT t=1 P vT t=1 t

j=—00
1 & 1 «
IRRT L - — 1/2\®2
_,llggo COV(\/T tzl ptgta \/T tzl ‘—‘O(Gt ) 515)

=B | pVar(6)(G)/)] =

Hence, H = E[pt\/ar(ft)( /2)®2] =0 Jo "Y/(z)dz. Now, the result (B.19

follows. O]

We note that Propositions are all proved under the conditions

of Theorem [4(ii).
Proposition B.5. R; = 0,(1) for j =4,6,7,8,10,11, 12.
Proposition B.6. R; = 0,(1) for j =2,3.

Proposition B.7. For each 1,

T T
1 Z F; Z _
= t=1

~
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E77t 1/4 —1/4

|Dnze + 0,(1).

HMH

1 92Zr(9)

Proposition B.8. T 9500

— Jg, in probability.

PROOF OF PROPOSITION [B.5l. We only give the proof for Ry, since

the proofs for other terms are similar. First, note ||A:]] < O(k7)||u|| by

[@))

B.g), |G < AL

by (B.

|| < 30120 10(8) + O el +

min 0 3

O(p) ol as for (C.2), and ||| < O(sr) Et 1 0(p3) [lae | by (B.11).

Then, it follows that

oG,

1
IRl <= ZHMHG 5

15

_fZOmT \utuﬂmmZHO PE) + O(pg )l
m=0

t—1

x O(kr) Y O(pp)lue]l,

J=1

which implies that E||Ry|| < O(v/Tk%) by Holder’s inequality and (B.10)).
Under Assumption @, we have that sup, (3, — %) = O(h2), which entails
O(K%) = o(T~%/?) and hence E||Ry;|| = o(1). Finally, the result follows by

using Markov’s inequality. O]

PROOF OF PROPOSITION [B.6] We only give the proof for Rj, since

the proof for Ry is similar. By and (B.16)), it is not hard to see

i[ e )gi;sthopa),

3\
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%Zt |~ w6y )gijc: G~ GG+ op(1),
L
VT

d 0Gi 1,7~
> tr|G M1 — )G GG (G G| 4 op(1),

=1
Let ¢; = G71/2(In — et)G;lm%G[l. By using Lemma [B.2(iv) and

(B.9)), we have
| Tt ‘ .
Ry == = D23 0lBy ABe s A BP0l + 0,1
t=1 j=1
| LT .
=T = Z tr[ B Ao A AY(BY) " ] + 0, (1)
VT j=1 t=j+1
LSS el 1B e @ B A+ o, (1)
= T vec( s 0 0 0 o]V t—j P
j=1 t=j+1
LSS el B Ay @ By Al + R+ oy (1)
= ﬁ vec(y; 0 0 0 0] VeC|A¢—j 34 P
j=1 t=j+1
=R31 + R3a + Rs3 + Ray,
where
1 mr T ) )
Ry = ——— Z Z Vec(gpt)'[Bé_le ® B(])_le]
2VT j=1 t=j+1
X VeC[E / (Et —j = Et‘ j)zgj]/4ut—j]7
Riyp = ——— Z Z vec(p:)'[B) " Ay @ By A
] 1t=j+1
X VeC[ut_jZ (Et —j Et ])2_3/4]7
] T
Rs3 = O(k%) Z Z vec(py) [B YA, ®B] Ao]VeC(Yt i)

\/_ j=1 t=j+1
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R3y = \/_ Z Zvec (1) B] A0®B] AQ]VGC[At i)

j=me+1t=5+1

Here, my is defined in (B.17). The remaining is to show that (i) Rs1 = 0,(1),
(11) R32 = Op(]_), (lll) R33 = Op(l)7 and (IV) R34 = OP(]‘)'

(i) Note that

mr T

1 i—1 i—1
Ry =— —— Z Z vec(py) [BY Ao @ BT Ay
2VT =1 t=j+1

x vee[S; S — B2 ] + 0,(1)

x [u 5 @ 5 vec| (5 — 50)] + 0p(1),

where the first equality holds by Lemma [B.3] and the second equality holds
by the property of vec operator. Since vec(3,—%;) = A3 K (B2 (Z4/%)®?

vee(us — 1) + Op(*EL + h?) by Lemma it follows that

Rsi = — ) Raij+oy(1),

j=1

T

Rglj = = — Z Vec(gpt)’[BS_le & Bé_lAQ]
Qﬁ t=j5+1

_ 1
% w3 Vi o 3/4 1

T 21/2) 2vec(ug — I,).

IIM’%

Finally, we are going to show

Var(Rs1;) < o(pfg), (B.20)



B. PROOFS OF THEOREMS 3-5

where o(1) holds uniformly in j. Note that || B) ™" Ay ® B} ' Aq|| = O(p),

and sup, ||| < ¢, and sup, ||[X; ]| < ¢ by Assumption [1} Then, (B.20))

holds if
1 < 1 « t — s
Var{ — Z vec(pr) [u—j @ 1, —Z Jvec(us — 1) p = o(1).
F 2 i 2 }

(B.21)
To prove (B.21)), we apply Lemma with a; = vec(u — I,,), by =
vec(gr)'[u—; ® I,,] and ¢, = {zt,vec(Gt),av%C—ft)}. It remains to verify
Conditions (1)—(4) in Lemma First, by Holder’s inequality, and

the fact that E|ju,*1+?) < oo, we have

EHbt ||3(1+26)

_ _1/20G 3(1+24)
<CEHG V2 aq;e Yue; @ L) E|I, — e+
G, 116(1+25) 6(1+25)
gCEH 8<z>»t ‘ u_; — I, BlL — o042 < oo,

and hence Condition (1) holds. Second, Lemma[B.4] ensures Condition (2).

Third, Conditions (3)—(4) hold by Assumption [3 [ and (B.17)). Therefore,

(B.21) holds.

By the Cauchy-Schwarz inequality and (B.20)),

V&I‘ Z Rglj < Z Var R31 = O(].),

and hence Chebyshev’s inequality implies that R3 = 0,(1).

(ii) By the similar arguments as for Rs;, we can show that Rss = 0,(1).
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(iii) Note that Ef||vec(y:)]| |ly:|]] < oo by Holder’s inequality. Since

= o(T~"/?), by (B.10) we have

O(k
E|Ry| < G Z Z | B~ Ay @ By Aol| E ||vec(s)|| |y
\/_ j=1 t= ]+1
) lyell = o(1).
Jj=11t=j+1

Then, we obtain that Rs3 = 0,(1) by Markov’s inequality.

(iv) Note that E[||vec(yy)|| sup, ||As]|]] < oo by Hoélder’s inequality.
Then, we can show that E|Rs| < O(p’gT)O(\/@) = o(1) as for (iii).
Next, it follows that Rss = 0,(1) by Markov’s inequality. This completes

the proof. O

PROOF OF PROPOSITION [B.7] First, we consider Rs. Write Ry =

\/LT S tr [utét_l(ét — ét)éfl?%é;l] by (B.7), and then using similar

arguments as for Ry; in Proposition we can show

0G,
9oi

Further, by letting u,G; ' = (w,G; ! — I,) + I, it follows that

Ztr u,G Gt)G 1—G; ] + 0,(1).

Rs = Rs + 0,(1), (B.22)

where Rj = \F ST [( Gt)Gt’lg—ifGt’l], and we have used the fact

that

0G,

tr[(w Gyt = 1) (G, — GGyt 9,

-G, } = Op(l)

% [l
1M+
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by Proposition [B.6]

Since k2 = o(T~"/?), by Lemma [B.2{iv) and (B.9), we have

- —Ztr[ZBﬂ LSS, =SS

0G,

< Ay(By) G S

Gy ] + 0p(1).

By interchanging the summations, we obtain

T-1 T
~ 1 3/4 —-1/4
Ry =— —= Z BJ 1A X (B —j — Ui J)Zt*' Ui
VT j=1 t=j+1 [ ’
< AN By Gy gjfagl] +0,(1). (B.23)

Let my satisfy (B.17). By Lemma [B.1] Lemma and similar arguments

as for Proposition it is not hard to see

~ 1 &%
Rs = ——= > Rs; +o0p(1
) \/T; 57 p()

where
T oG
. _3/4, —1/4 1 NF—1 - L=
Rs; :ﬁt:zj;l tr [B(]] IAOEt / (X — X)X, / i Ay(By)’ th 1 0¢; G 1]
1 oG
- vee( BJ '40) [u ® G ! tG
\/TT t;1 0> [ " 0¢; ]
T
t_
[21/4 ® BJ 1AOE 1/4] ZK( ThS)DnZS + Op(l)'
s=1

DGCOI].’lpOSG R5j = R5j1 + R5j2, where

T

Z Vec(Bg_le)'qut_j ® Gt
J

R 1 oG,
S ey
VTTh t=j+1

elo

o] )

J
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T
. _ t_
x (2@ By A Y K () D
s=1
1 T T t—s
Rsn = vee(BI Ay MISH* @ BIP Ao S T K(——) Doz,
552 \/TThtEj;l (B~ Ao)' Mj ]; (=)

and let Ry = > "% i1 Rsjn and Rsp = ZT:T1 Rsjo. Then, by similar arguments

as for Lemma [B.5] we have that Rs; = 0,(1), and hence Rs = —Rsz +0,(1),

where
T m T
R —LZ ~ L > K(t % vee( B Ao MI[S @ B A D, 2
52 — T Th Th 0 0 s
s=1 j=1 t=j+1
1« N T PR
:—TZDnzs > T Z K (= )vee(By " Ao)' M,
s=1 7=1 t=j+1

x V4@ BI T AgX Y4 D,z 4 0,(1)

by the continuity of ¥(z). Since 7= ZtT:jH K(%2) = 14 O(%£) for any

fixed s, and \/"% — 0, we can show

T mp

Rsy = szec (By " Ag) MI[EY* @ By A V4 D,z + 0,(1).

51]1

(B.24)

Moreover, since VT = o(1), it follows that

T oo
D) vee( BT Ag) Mi[1, ® BT ARV @ £V Dyz, + 0,(1)

T
- Z[Z;M ® ;4 Dyzs + op(1). (B.25)

Next, we consider Ryg. Write Ry = _\/LT Zle tr(Athl%ﬁFGt_l) —
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\/LTZLtr(AtSt%G;I) by (B.7). Slncefzt tr(A Sta¢tG Y = 0,(1)

by using similar arguments as for R;; in Proposition it follows that

Ry = _\/LT ST tr(AtGgl‘?%G;l) +0,(1). Then, by the similar arguments

as for (B.23), Ry = = S tr[S, ¥ (5=5) %, VG (e 1,) Gy 286+

Ry + 0p(1), where

_1/40G
s o

Moreover, since th ) [E 3/4(2t—2 )2;1/4Gt1/2(et—fn)Gt_l/2g—%Gfl] =

0p(1) by similar arguments as for Proposition , it entails that Ry =

Ry + 0,(1).

Recall n;; = Vec(Gt’l‘g—%)I. By Lemma |B.1| we can show
T T
~ 1 1 t—
By =—=>" =3 K
2

using the property of trace operator. Since Var(TLh Zthl,\t—s|gTh K(';—}f)nm) =

S _
)771572' [E%M ® 1/4]Dnzs + Op(l)a

O(TL) by Davydov’s inequality and [ K(z)dxz = 1, it follows that

Ry =

Entz 1
(V4@ B4 D,z + 0,(1 B.26
N ;1 ] (1), ( )

by using similar arguments as for (B.24)).

Finally, by (B.16}), it is straightforward to see that R; = _\/LT Zle pri&t+

0p(1), and then the conclusion follows by (B.25) and (B.26). O

PRrROOF OF PROPOSITION [B.8| By Theorem 3.1 in [Ling and McAleer

(2003)), the conclusion holds by the following two arguments:
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: 2.7y 2.4 (
(1) SUPgep |% ad,igésf) - % a¢1§¢f)| = Op(l)

. 920
(ii) Esupyeq | 8(1):;‘?){ < 00.

For (i), we first note that

%0(0) [ PGy A o PG oA 0G4, 0G4,
9000, ~ 56,06, O~ WO a0 Gt = GtG 5 tG
. 0G, ~ . 0G, ~ oG, ~ 0G, ~
=~ 1 t A-199t 5 1 t N1 t N1
HEG GG 8(bJG Wen 90,1 55, Ci ]

By using the similar arguments as for Propositions [B.2HB.4] we can show
1N T 2Gy i— 2°G 1 .
(a) 31—y SUPyeo | 36:00; G, ~ 96.06; Ot | = op(1);

T ~ _
(b) %thl SUPyeq !uth 18‘3%5(; G '~ G, 183) g{; Gy 1| = 0,(1);

( ) Zt 1Sllp¢€q> }gﬁ: —18G Gt_ 8GtG—18GtG 1‘ _ 0p<1)

(d) & Si, supyeq [MG 192G 284G — 0 G 98 G B8 G = 0, (1),

Hence, it follows that (i) holds.

For (ii), it suffices to prove that Esupycg |8 b(¢) | < o0. Note that

06:04;
0%y(¢) 0’G, ,_ L 0*Gy ., 0G, 0G,
=tr Gt —uG;t Gyl — Gl —G;t
0600 [a@a@ 0900, g 09
oG oG G oG
196t 106y 110Gt 100Gy
— . (B.2
PG Gy 6¢JG HuGy G, a@Gt} (B.27)
To facilitate our proofs, we first claim that
2a, | ek
Esu < oo and FEsu < 00, B.28
ses [|06:06, ses || 06 (28

where the preceding results hold by Minkowski’s inequality, (B.10]), (C.2))—

(C.3)), the fact that F|ju||*> < oo, and some standard arguments.
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Next, for the first term in (B.27)), we have

L0G, S aG,

9G||||19G¢

90, Il 9¢;
AG 1|371/3 oG, 1/3]
36l (ol T <o

where the first inequality holds by , Assumption |5 and the property

tr [utG_ Gy, }

[E sup
Ped

|

E sup
ped

u;

511/3
<C[Esup fju*| " [£sup
PED Ped

that tr(AB) < ||A||||B]|, and the second inequality holds by Hoélder’s in-
equality and (B.28)). Similarly, we can show the proofs for other terms in

(B.27)), and consequently, the result follows. O

PROOF OF THEOREM (i). Denote ly(v) = vly(¢) + c(y;, v) and l(~) =

VE(QZs) + c(yt, v). Then, some straightforward calculations give

alt(7>
ov

= t1( 1 (¢)y;) + log det ;(¢) — log det y; + nlog(2)
~ v+ 1l—i
—— ) —nl —n.
+ 1211#( 5 ) nlog(v) —n
From the proof of Theorem , we have shown that %ZtT:l[tr(Et) -
tr(e;)] = o0,(1), and similarly, %Z;‘F:l[logdet(/e\t) — logdet(er)] = o0,(1).
Therefore, by Theorem 4.1.1 in |Amemiya, (1985) and the strong law of

large numbers, it suffices to show that 14 is the unique solution to

v+1—1

Eftr(e;)] — Elogdet(e;) + nlog(2) + Z 1/1( 5

) —n —nlog(v) = 0.

Note that by the property of Wishart distribution, we have E[tr(e;)] = n

and F'logdet(e;) = nlog(2) + >, 1#(%1_’) —nlog(vy). So, clearly vy is
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the solution of the above equation. Therefore, it suffices to show

23 o) - ntost)
=1

1s monotonic in v > n.

By |Alzer and Batir| (2007), we have that for z > 0,

(z) — log(x) + %w’(x) > 0 and log(z) — o P(z) > 0.

Therefore, when v > n,
=3[ () 3]
SyMGEHENEEUE

n _ 1 1
E _——1 >0
>i_1 Ly +1—1 V} ’

which implies the monotonicity of f(v).

(ii) Note that

Al ( oly(
Gyt S M pin ma

where P, = \/LT ST log det(,Q;) and P, = \/LT ST tr((@;l -G+
GrlA,).

For P, we write it as P, = Pi1+ P9, where Py = \/LT ZL log det(Etit_l)
and Py = \/LT th:1 log det(Gt@t_l). On one hand, we can show

A~

PH = 10g Et)it_l])

IIM’%
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~

> (S = S5 + 0y(3)
> e (8- S0 + 0,(1), (B.30)

where the first equality holds by the identity log det(I,, +¢€) = trlog(I, +¢),
the second equality holds by Taylor’s expansion that log(I,, +¢) = € +O(€?)
and Lemmal[B.1} and the third equality holds since k% = o(T~"/?). Further,

by similar arguments as for Lemma [B.2[(iii), we have
B@) ™ =S(2) " - Z(0)(E(x) - £(2))Z(@) 7 + O(xF)

holds uniformly for all z, and then by (B.30)), it is not hard to see

T

Py = % ;tr((zt - it)E;l) + 0p(1). (B.31)

On the other hand, by similar arguments as for (B.30)), P = \/LT Zle tr(Gt—

~

Gt)@t_l) + 0,(1), and then

Py = % ;tr((Gt — GG +0,(1) (B.32)

by similar arguments as for Proposition [B.5]
For Py, we write it as Py = Py +Pos+ Ps3, where Py = % Zthl tr(Syuy),
P22 = \/LT Z?:l tr(G’;lAt), and P23 = \/szz;l tI'(StAt). Here, At and St

are defined as in (B.4) and (B.7)), respectively. By similar arguments as for

Proposition [B.6} we can show that \/LT ST tr[Gy (G — Gy (e, —1,)] = 0p(1),
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and hence by (B.32]), it follows that

1 X » T
Py = ﬁ ;tr(Gt (Gy — ; Gt Gt Gi)(e, — In))

Further, by Lemma [B.2[(iv), similar arguments as for P, and (B.31])), it is

not hard to see
T
1 B _ ~
Py = — Ztr(Gt V2SN (S - S5 G Pey) + 0,(1)
VT
T
1 —1/2——3/4 S —1/4 ~1/2
VT ;“@ PRS- 202G + 0p(1)
= Pll + Op(l).

Note that Pa3 = 0,(1) by using similar arguments as for Proposition [B.5]

Therefore, it follows that P, = P, 4 0,(1), and then by (B.29),

alt ’YO 8lt 70
\/_ Z > —\/_Z L (1). (B.33)

By similar arguments as for Proposition |B.&|

T Z 85;:/2 = B[P0 4 o) = s+ 0y(0) (B.34)

2

where we have used the fact that E[%] = 2J,, and E[%} =

%E[%}z by standard arguments for Fisher Information. Finally, by

(B.33)—(B.34)), the conclusion follows. O



C. DERIVATIVES

C Derivatives

Let J;; be an n x n matrix zeros everywhere except for a one at the

(i, 7)th entry. Then,
G, 0G4

aTij =Jij(w—y — I)A' + A(wyy — 1) Jj; + B A, B, o
e, , 0Gy 1 o, '
aT%tj :Jij(Gt—l - In)B + B(Gt_l — In)Jﬂ + B aB:] B
Therefore, the first order derivative of Gy(¢) w.r.t ¢ is given by
aGt o - Bm J [ A/ A ]— J B/ m
0A;; o Z {Jij (W1 — L) A"+ A(@ein—1 — 1) J; H(B)™,
R m=0
OG, i oB™
= ——(I, — AA" — BB'+ Auw;_,,, 1 A")(B")™
8Bij D 8BU (02>
a(B/>m

+ B™(I,, — AA' — BB+ Au;_,,, 1 A')

_ BmJij(B/>m+1 _ Bm—Hin(B,)m,

where 98" — S~ L Bn 1. B™~1="_ The second order derivative of Gy(¢) is

9B,
given by
0%*G,
— =N, + N{;
IA,0A, T
er
_C L N, + Ny,
DA 0By 2T (C.3)
802G, :
2L _NO(N,+ N
0B;;0By ;< o o)
where

Ny =Y B"[Jij(Wor — L) Ju)(B)™,
m=0
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8Bm / nm
Z z] ut mo1— 1 )A +A(ut7mfl - IH)JJZKB) )

8Bkl
N =S a2i(I — AA' — BB' + Auy_,, 1 A)(B)"
3 —~ GBU@BM n t—m—1 )
= OB™ o(BH™
Ny=S"22 (I, — AA — BB' + Au,_,, A’ :
=255, A )
=, 9B™
Ny = ( JuB' — BJlk)(B) ,
2~ 9B,

o GBM
- aBm Nnm-+1
NY:Z_EJ”(B> )
a(B/>m+1
Ng = -B"J———

D Some numerical evidences

In this appendix, we generate one data sample from model ({2.1)) with

sample size T' = 5000, where u; follows model (3.1)) with

0.5 04 06 0 1+ 1.522 1.122
Ay = , By= , and X(z) =

0 0.2 0.2 0.3 1.122 1+ 1.523

and e; is a sequence of independent and identically distributed (i.i.d.)
Wishart random matrices from v, *Wishart(vp, I5) with 15 = 10. To make a
comparison, we also generate another data sample from model (2.1)) under

the same settings except X(z) = . Fig[D.1]plots the p,4(j) for each gener-
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ated data sample, where p,(j) is the autocorrelation function of y,,; at lag
J, and y,s+ is the (r, s)th element of y;. From this figure, we find that when
Y, is time variant (or invariant), p,.s(j) decays slowly (or fast) with respect
to j, exhibiting long memory (or short memory) patterns. This implies that
the data sample of y; may exhibit a spurious long memory phenomenon,

resulting from the structural change.

p11(0) p12() p22())

T T T T : T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
i i i

p11(0) p12(i) p22())

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
j j j

Figure D.1: Top panels: the plot of p,s(j) when ¥; is time variant. Bottom panels: the

plot of p,s(j) when X, is time invariant.
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