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S1 Additional numerical results

S1.1 Computing time and empirical size of Case 2

The simulation is done in the cluster with the configuration of each node similar

to MacBook Pro 2.3 GHz Intel Core i5, 8 GB 2133 MHz LPDDR3. Table S.1

summarizes the average computing time of different methods for analyzing one

data in Case 1 at τ = 0.5 or the mean, where Tn,k(τ) is the sum of computing
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time for TEn,k(τ) and TBn,k(τ), for k = 1, 2; the average computing times are simi-

lar in Cases 2–3 and, thus, are omitted. Results show that the methods that do not

require the estimation of fτ , namely, RS, Tn,2(τ), and GC, are more efficient than

that do, namely, Tn,1(τ), BON, and CCT. In addition, the resampling-bootstrap-

based methods, QME and CAR, are computationally much more expensive than

the other methods, even if double bootstrap is not used for tuning parameter

selection.

Table S.2 summarizes the empirical sizes from Case 2, which is similar to

Case 1.

Table S.1: The average computing time (seconds) of different methods for analyzing one data in

Case 1.

n=200 n=800

method
pn 10 50 200 1000 10 50 200 1000

Tn,1(τ) 2.10 9.05 34.63 180.01 3.68 16.50 64.72 354.41
Tn,2(τ) 0.16 0.64 2.31 11.59 0.37 1.78 7.09 37.82
RS 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.00
QME 2.26 4.45 19.64 284.27 5.66 12.62 69.91 1128.14
BON 1.93 8.36 32.40 167.52 3.31 15.23 61.56 309.93
CCT 1.93 8.36 32.40 167.52 3.31 15.23 61.56 309.93
CAR 1.70 3.19 18.66 354.39 2.39 8.66 66.84 1582.43
GC 0.79 1.02 1.60 4.42 12.54 16.68 26.29 86.60

TEn,k(τ) and TBn,k(τ), k = 1, 2: four variations of the proposed test; RS: the rank score test of Park and He (2017);

QME: the quantile marginal effect test of Wang et al. (2018); BON, Bonferroni adjustment on dn individual P -values;

CCT, Cauchy combination test of Liu and Xie (2019); CAR: the conditional adaptive resampling test of Tang et al.

(2018); GC: the sum-squared-type test of Guo and Chen (2016).
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Table S.2: Rejection percentages for Case 2 with b0 = 0. All scenarios correspond to the null

model.
n=200 n=800

Case location method
pn 10 50 200 1000 10 50 200 1000

2 τ = 0.25 TE
n,1(τ) 2.3 3.1 3.6 3.0 3.0 4.5 2.5 3.0
TB
n,1(τ) 4.8 5.0 5.5 4.2 5.5 5.6 4.2 3.5
TE
n,2(τ) 2.6 3.5 4.0 2.8 3.1 4.8 2.9 3.3
TB
n,2(τ) 4.7 6.0 5.5 3.9 5.8 6.1 4.1 4.0

RS 4.6 2.8 / / 5.0 4.8 2.1 /
QME 1.7 2.7 7.3 16.0 2.0 3.0 2.4 5.4
BON 4.1 3.3 4.0 3.6 4.9 5.2 2.9 4.0
CCT 2.2 1.9 2.0 1.6 2.6 2.8 1.5 1.4

τ = 0.5 TE
n,1(τ) 2.3 3.0 4.4 3.2 3.3 4.6 4.4 3.5
TB
n,1(τ) 4.6 5.2 6.0 6.1 6.7 6.7 6.0 4.9
TE
n,2(τ) 2.4 2.8 4.2 3.9 3.5 5.0 4.5 3.7
TB
n,2(τ) 4.2 5.0 6.3 6.5 7.1 7.0 6.2 5.3

RS 4.4 1.9 / / 5.6 6.5 2.2 /
QME 1.3 1.4 1.7 1.7 2.2 2.4 1.7 3.0
BON 3.7 4.0 5.1 4.0 5.7 6.0 5.3 4.3
CCT 2.5 2.3 2.4 2.1 3.1 3.3 3.1 2.0

mean CAR 3.9 4.3 3.6 2.5 4.3 3.7 3.5 3.0
GC 3.7 4.9 5.4 5.8 4.8 5.0 4.6 5.9

TEn,k(τ) and TBn,k(τ), k = 1, 2: four variations of the proposed test; RS: the rank score test of Park and He (2017);

QME: the quantile marginal effect test of Wang et al. (2018); BON, Bonferroni adjustment on dn individual P -values;

CCT, Cauchy combination test of Liu and Xie (2019); CAR: the conditional adaptive resampling test of Tang et al.

(2018); GC: the sum-squared-type test of Guo and Chen (2016).

S1.2 Additional Case 4

We consider a Case 4 to mimic the motivating GFR study and generate Xi· as

multivariate Bernoulli variables that are correlated with Zi·. Specifically, we

generate Ui· and Zi· as in Case 3, and let Xi,l−5 = 1 − 2I(Ui,l ≤ 0) for l =

6, . . . , pn−1. In addition, we let εi be standard exponential with median centered
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at zero. Table S.3 and Figure S.1 present the rejection rates under the null and

the power curves of different methods in Case 4.

Table S.3: Rejection percentages for Case 4 with b0 = 0. All scenarios correspond to the null

model.
n=200 n=800

Case location method
pn 10 50 200 1000 10 50 200 1000

4 τ = 0.25 TE
n,1(τ) 3.2 4.1 3.8 4.0 2.5 3.6 4.1 6.0
TB
n,1(τ) 5.7 5.7 5.3 5.1 4.7 4.8 5.8 6.5
TE
n,2(τ) 3.1 4.8 4.1 4.7 2.9 3.6 4.4 6.5
TB
n,2(τ) 5.4 6.2 6.0 5.2 5.1 4.9 5.6 7.3

RS 6.1 2.5 / / 5.4 4.1 2.2 /
QME 2.5 1.8 2.5 7.1 4.0 2.6 3.8 7.7
BON 5.4 4.2 4.7 3.2 4.3 4.7 5.5 6.1
CCT 2.9 2.6 2.1 1.8 2.3 2.6 3.4 3.2

τ = 0.5 TE
n,1(τ) 2.7 4.5 3.7 3.4 3.0 4.7 4.0 4.1
TB
n,1(τ) 4.7 6.5 5.3 4.8 4.9 6.2 5.0 5.0
TE
n,2(τ) 2.9 4.7 4.0 3.8 3.1 4.8 3.9 4.2
TB
n,2(τ) 5.4 6.5 5.7 5.6 5.1 6.2 4.8 5.1

RS 5.0 2.8 / / 5.2 3.2 2.4 /
QME 2.2 1.0 0.3 1.8 3.1 1.6 2.0 1.8
BON 4.5 5.6 4.3 3.7 4.6 5.6 4.5 4.6
CCT 2.4 2.9 1.8 2.1 2.9 3.0 1.5 2.4

mean CAR 5.0 3.8 5.2 5.1 6.2 6.4 6.2 5.8
GC 5.5 7.0 5.7 6.1 6.2 5.1 5.7 4.9

TEn,k(τ) and TBn,k(τ), k = 1, 2: four variations of the proposed test; RS: the rank score test of Park and He (2017);

QME: the quantile marginal effect test of Wang et al. (2018); BON, Bonferroni adjustment on dn individual P -values;

CCT, Cauchy combination test of Liu and Xie (2019); CAR: the conditional adaptive resampling test of Tang et al.

(2018); GC: the sum-squared-type test of Guo and Chen (2016).



S1. ADDITIONAL NUMERICAL RESULTS5

0 1 2 3 4 5 6

0.
0

0.
4

0.
8

pn=10

δ
0 1 2 3 4 5

0.
0

0.
4

0.
8

pn=50

δ

0 1 2 3 4 5

0.
0

0.
4

0.
8

pn=200

δ
0 1 2 3 4 5

0.
0

0.
4

0.
8

pn=1000

δ

Figure S.1: Power curves of the methods in Case 4 with n = 200 and τ = 0.5: TE
n,1(τ) (dashed),

TB
n,1(τ) (line with solid square), TE

n,2(τ) (line with solid dots), TB
n,2(τ) (line with triangle), RS

(line with open circle), CAR (dotted), GC (line with diamond). The gray horizontal line indicates

the nominal level of 0.05.
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S2 Discussion on condition A5

Discussion on condition A5. The term ω∗j,l,τ in A5 measures the weighted partial

correlation between X∗i,j,τ and X∗i,l,τ after accounting for the effect of Z, where

the weights are due to the heteroscedasticity. Condition A5 requires the maxi-

mum of the weighted coefficients to have a lower bound. If Xj, j = 1, . . . , dn

are uncorrelated across j, we have

s0(τ)∑
l=1

bl,0(τ)ω∗j,l,τ =


bj,0(τ)E{fi,τ (0)X∗2i,j,τ}/{τ(1− τ)E(X∗2i,j,τ )}1/2, 1 ≤ j ≤ s0(τ),

0, j > s0(τ).

Thus condition A5 is equivalent to

max
1≤j≤s0(τ)

|bj,0(τ)|E{fi,τ (0)X∗2i,j,τ}/{τ(1− τ)E(X∗2i,j,τ )}1/2 >
√

2 + ε. (S.1)

Furthermore, if the errors are homoscedastic with fi,τ (·) ≡ fτ (·), then A5 re-

quires that

|bj0,0(τ)| >
√

2

{
τ(1− τ)

f 2
τ (0)

}1/2
1

{E(X∗2i,j0)}1/2
,

where j0 is the maxima of the left side of (S.1). This indicates that the larger

the partial variance of Xj0 given Z is, the smaller signal is needed to achieve the

desired power for testing.
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S3 Proofs of Theorems 1-3

This section includes the proofs of Theorems 1-3.

S3.1 Some useful lemmas

Note that in the “bandwidth.rq” function of the R package quantreg,

h = n−1/5[4.5φ{Φ−1(τ)}4/{2Φ−1(τ)2 + 1}2]1/5 , C6n
−1/5,

where Φ(·), φ(·) are the distribution and density functions of the standard normal

distribution, respectively.

Lemma S.1. Assume that conditions A.1–A.4 hold, and h in (2.6) of the main

text satisfies h ≤ h∗n and h−1(q + sn)
√

log(pn ∨ n)/n → 0, where sn =

maxν∈[τ−h∗n,τ+h∗n] ‖θ0(ν)‖0. We have

δf̂ = max
1≤i≤n

|f̂i,τ (0)− fi,τ (0)| = Op

(
h2 + h−1(q + sn)

√
log(pn ∨ n)/n

)
.

Especially, in our implementation, we have h = C6n
−1/5, thus

δf̂ = Op

(
n−2/5 + n−3/10

√
log(pn ∨ n)

)
= Op

(
n−3/10

√
log(pn ∨ n)

)
.

Proof. Lemma S.1 is quite similar to Lemma 19 in the supplementary file of

Belloni et al. (2019), and we present the detailed proof in the following.
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Let X̃i· = (Z>i· ,X
>
i· )
>, then

f̂i,τ (0)

=
2h

Q̂τ+h(Yi | Zi·,Xi·)− Q̂τ−h(Yi | Zi·,Xi·)
=

2h

X̃>i· {θ̂(τ + h)− θ̂(τ − h)}

=
2h

X̃>i· {θ0(τ + h)− θ0(τ − h)}
/

X̃>i· {θ̂(τ + h)− θ̂(τ − h)}
X̃>i· {θ0(τ + h)− θ0(τ − h)}

=
2h

X̃>i· {θ0(τ + h)− θ0(τ − h)}
/
[
1 +

X̃>i· {θ̂(τ + h)− θ0(τ + h)} − X̃>i· {θ̂(τ − h)− θ0(τ − h)}
X̃>i· {θ0(τ + h)− θ0(τ − h)}

]
,

2h

X̃>i· {θ0(τ + h)− θ0(τ − h)}
/Ii. (S.1)

By assumption A4, we have fYi|X̃i·
(y) = fi,τ (y − X̃>i·θ0(τ)), thus it is easy

to see that fi,τ (0) = 1

Q′τ (Yi|X̃i·)
, where Q′τ (Yi|X̃i·) is the derivative of Qτ (Yi|X̃i·)

with respect to τ . By assumption A4, we get

(2h)−1X̃>i· {θ0(τ + h)− θ0(τ − h)} = (2h)−1{Qτ+h(Yi|X̃i·)−Qτ−h(Yi|X̃i·)}

= (2h)−1[{Qτ+h(Yi|X̃i·)−Qτ (Yi|X̃i·)} − {Qτ−h(Yi|X̃i·)−Qτ (Yi|X̃i·)}]

= (2h)−1
[
{Q′τ (Yi|X̃i·)h+

1

2
Q′′τ (Yi|X̃i·)h

2 +
1

6
Q′′′τ (Yi|X̃i·)h

3 +O(h3)}

−{−Q′τ (Yi|X̃i·)h+
1

2
Q′′τ (Yi|X̃i·)h

2 − 1

6
Q′′′τ (Yi|X̃i·)h

3 +O(h3)}
]

= Q′τ (Yi|X̃i·) +O(h2) =
1

fi,τ (0)
+O(h2). (S.2)

Now we derive the term Ii in (S.1). By the definition of the conditional

quantiles, we have ∫ X̃>i·θ0(τ+h)

X̃>i·θ0(τ−h)
fYi|X̃i·

(y)dy = 2h.
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Since fYi|X̃i·
(y) is continuous in y by assumption A3, there exists ξi,τ ∈ [X̃>i·θ0(τ−

h), X̃>i·θ0(τ + h)] such that

fYi|X̃i·
(ξi,τ ) =

2h

X̃>i· {θ0(τ + h)− θ0(τ − h)}
, (S.3)

or equivalently,

X̃>i· {θ0(τ + h)− θ0(τ − h)} =
2h

fYi|X̃i·
(ξi,τ )

. (S.4)

By theorem 1 of Belloni and Chernozhukov (2011), we have ‖θ̂(τ)−θ0(τ)‖0 =

Op(q+sn), and ‖θ̂(τ)−θ0(τ)‖2 = Op(
√

(q + sn) log(pn ∨ n)/n), thus X̃>i· {θ̂(τ)−

θ0(τ)} = Op{(q + sn)
√

log(pn ∨ n)/n}. Thus, we use (S.4) to derive that

Ii = 1 +Op[(q + sn)
√

log(pn ∨ n)/n/X̃>i· {θ0(τ + h)− θ0(τ − h)}]

= 1 +Op{(q + sn)
√

log(pn ∨ n)/nfYi|X̃i·
(ξi,τ )/(2h)}

= 1 +Op{h−1(q + sn)
√

log(pn ∨ n)/n}, (S.5)

where the last “=” is because of the boundedness of fYi|X̃i·
(·) implied by as-

sumption A3.

Combining (S.1), (S.2) and (S.5), the proof of Lemma S.1 is completed.�

Lemma S.2. Assume that conditions A.1–A.3 hold. Let Θn = {α : ‖α −

αZ,0(τ)‖ ≤ C7

√
log(dn)/n}, where C7 is some large enough positive constant.
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Under the null hypothesis βX,0(τ) = 0dn , we have

sup
1≤j≤dn, α∈Θn

∣∣∣Sτ,j(α)− Sτ,j{αZ,0(τ)} − E[Sτ,j(α)− Sτ,j{αZ,0(τ)}]
∣∣∣

= Op

{
n−1/4(log n)3/4

}
, (S.6)

where Sτ,j(·) is either based on fτ or its estimate from the quotient method.

Lemma S.2 follows directly from the proof of lemma A.2 (expression (A.5))

of Wang and He (2007).

Lemma S.3. Assume that conditions A.1–A.4 hold. Then, for any x ∈ R, as

n→∞, dn →∞,

P [ max
1≤j≤dn

S2
j − 2 log(dn) + log{log(dn)} ≤ x]→ exp{−π−1/2 exp(−x

2
)}, (S.7)

P [ max
1≤j≤dn

Sj ≤
√

2 log(dn)− log{log(dn)}+ x]→ exp{−1

2
π−1/2 exp(−x

2
)}, (S.8)

where Sj = n−1/2
∑n

i=1X
∗
i,j,τψτ{Yi − Z>i·αZ,0(τ)}/{τ(1 − τ)‖X∗·j,τ‖2/n}1/2,

j = 1, . . . , dn.

Lemma S.3 is similar to Lemma 6 of Cai et al. (2014), while the difference

lies in the asymptotic normality of Sj and the normality assumption required by

Lemma 6 of Cai et al. (2014). We fill the theoretical gap by Theorem 1.1 in

Zaı̈tsev (1987), similar to the proof of Theorem 6 of Cai et al. (2014).

Proof. We only prove (S.7), and the proof of (S.8) is similar.

Let Vi,j = X∗i,j,τψτ{Yi − Z>i·αZ,0(τ)}/{τ(1 − τ)‖X∗·j,τ‖2/n}1/2, thus Sj =

n−1/2
∑n

i=1 Vi,j . Let V̌i,j = Vi,jI(|Vi,j| ≤ ζn) for i = 1, . . . , n and Šj =
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n−1/2
∑n

i=1 V̌i,j , where ζn = 2C
−1/2
1

√
dn + n, with C1 defined in Assumption

A1 (ii). Then

P
{

max
1≤j≤dn

|Sj − Šj| ≥
1

log(dn)

}
≤ P ( max

1≤j≤dn
max
1≤i≤n

|Vi,j| ≥ ζn)

≤ ndn max
1≤j≤dn

P (|V1,j| ≥ ζn) = O(d−1n ). (S.9)

Note that

| max
1≤j≤dn

S2
j − max

1≤j≤dn
Š2
j | ≤ 2 max

1≤j≤dn
|Sj| max

1≤j≤dn
|Sj − Šj|+ max

1≤j≤dn
|Sj − Šj|2. (S.10)

By expression (S.9) and (S.10), it is enough to prove that, for any x ∈ R, as

n→∞, dn →∞,

P [ max
1≤j≤dn

Š2
j − 2 log(dn) + log{log(dn)} ≤ x]→ exp

{
− 1√

π
exp(−x/2)

}
.

Given t, we define I = {1 ≤ j1 < . . . < jt ≤ dn : max1≤k<l≤t |corr(Sjk , Sjl)| ≥

d−γ0n }, where γ0 is a sufficiently small number satisfying γ0 < 1/(2t); we omit t

from the definition of I for notation ease. For 2 ≤ g ≤ t− 1, define

Ig = {1 ≤ j1 < . . . < jt ≤ dn : card(∆) = g,where ∆ is the largest subset of {j1, . . . , jt}

such that ∀jk 6= jl ∈ ∆, |corr(Sjk , Sjl)| < d−γ0n }.

For g = 1, define I1 = {1 ≤ j1 < . . . < jt ≤ dn : |corr(Sjk , Sjl)| ≥

d−γ0n for every 1 ≤ k < l ≤ t}. So we have I = ∪t−1g=1Ig.

It follows from lemma 1 of Cai et al. (2014) that, for any fixed k ≤ [dn/2],

2k∑
t=1

(−1)t−1Et ≤ P ( max
1≤j≤dn

|Šj| ≥
√
xdn) ≤

2k−1∑
t=1

(−1)t−1Et, (S.11)



12 YANLIN TANG, YINFENG WANG, HUIXIA JUDY WANG, AND QINQ PAN

where xdn = 2 log(dn) − log{log(dn)} + x, Et =
∑

1≤j1<...<jt≤dn P (|Šj1 | ≥

√
xdn , . . . , |Šjt | ≥

√
xdn).

Then, by Theorem 1.1 of Zaı̈tsev (1987), we have

P ( min
1≤l≤t

|Šjl | ≥
√
xdn) ≤ P{min

1≤l≤t
|S∗jl | ≥

√
xdn − εn log(dn)−1/2}

+a1g
5/2 exp

{
− n1/2εn
a2g3ζn log(dn)1/2

}
, (S.12)

where a1 > 0 and a2 > 0 are positive constants, εn → 0 will be specified later,

and (S∗j1 , . . . , S
∗
jt)
> is a t-dimensional normal vector, which is a sub vector of

S∗ = (S∗1 , . . . , S
∗
dn)> ∼ N(0,Rτ,X|Z).

Because log(dn) = o{n1/4/ log(n)3/4}, we can let εn → 0 sufficiently slowly

such that

a1g
5/2 exp

{
− n1/2εn
a2g3ζn log(dn)1/2

}
= O(d−Mn ) (S.13)

for any large M > 0. It follows from expressions (S.11), (S.12) and (S.13) that

P ( min
1≤j≤dn

|Šj| ≥
√
xdn)

≤
2k−1∑
t=1

(−1)t−1
∑

1≤j1<...<jt≤dn

P
{

min
1≤l≤t

|S∗jl | ≥
√
xdn − εn log(dn)−1/2

}
+ o(1). (S.14)

Similarly, using Theorem 1.1 of Zaı̈tsev (1987) again, we can obtain

P ( min
1≤j≤dn

|Šj| ≥
√
xdn)

≥
2k∑
t=1

(−1)t−1
∑

1≤j1<...<jt≤dn

P
{

min
1≤l≤t

|S∗jl | ≥
√
xdn − εn log(dn)−1/2

}
+ o(1). (S.15)
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So, by expression (S.14) and (S.15) and the proof of Theorem 1 (Lemma 6) of

Cai et al. (2014), the lemma is proved.�

S3.2 Proof of Theorem 1

Recall that

Sτ,j(αZ) = n−1/2
n∑
i=1

X∗i,j,τψτ (Yi − Z>i·αZ)/{τ(1− τ)‖X∗·j,τ‖2/n}1/2, j = 1, . . . , dn.

Since the density function matrix fτ is estimated by f̂τ , we further define

X̂∗·j,τ =
{

In − f̂τZ(Z>f̂2τZ)−1Z>f̂τ

}
X·j

.
= (X̂∗1,j,τ , . . . , X̂

∗
n,j,τ )

>,

Sτ,j(αZ; X̂∗·j,τ ) = n−1/2
n∑
i=1

X̂∗i,j,τψτ (Yi − Z>i·αZ)/{τ(1− τ)‖X̂∗·j,τ‖2/n}1/2,

j = 1, . . . , dn. Because we actually use Sτ,j(αZ; X̂∗·j,τ ) to construct our test

statistic, we prove Theorem 1 with Sτ,j(αZ; X̂∗·j,τ ).

Under the null hypothesis βX,0(τ) = 0>dn , it is easy to show thatE[Sτ,j{αZ,0(τ); X̂∗·j,τ} |
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Z,X] = 0, j = 1, . . . , dn. Due to the fact that Z>f̂τ X̂∗·j,τ = 0, we have

E{Sτ,j(α; X̂∗·j,τ ) | Z,X} · {τ(1− τ)‖X̂∗·j,τ‖2/n}1/2

= n−1/2
n∑
i=1

X̂∗i,j,τ{τ − P (Yi < Z>i·α)}

= n−1/2
n∑
i=1

X̂∗i,j,τ [P{Yi < Z>i·αZ,0(τ)} − P (Yi < Z>i·α)]

= n−1/2
n∑
i=1

X̂∗i,j,τ

{
− fi,τ (0)Z>i· {α−αZ,0(τ)} −O

(
f ′i,τ (0)[Z>i· {α−αZ,0(τ)}]2

)}
= n−1/2

n∑
i=1

X̂∗i,j,τ

[
{f̂i,τ (0)− fi,τ (0)}Z>i· {α−αZ,0(τ)}

]
+Op

{
n−1/2

n∑
i=1

X∗i,j,τ
(
f ′i,τ (0)[Z>i· {α−αZ,0(τ)}]2

)}
= Op

(√
log(dn) max

1≤i≤n
|f̂i,τ (0)− fi,τ (0)|+ n−1/2 log(dn)

)
= Op

(
δf̂
√

log(dn) + n−1/2 log(dn)
)
, (S.16)

uniformly over α ∈ Θn = {α : ‖α − αZ,0(τ)‖ ≤ C7

√
log(dn)/n}. It is easy

to show that α̂Z(τ) ∈ Θn with probability approaching 1. Thus, combined with

Lemmas S.1–S.2 and assumption A1, we have

Sτ,j{α̂Z(τ); X̂∗·j,τ}

= Sτ,j{αZ,0(τ); X̂∗·j,τ}+ E[Sτ,j{α̂Z(τ); X̂∗·j,τ}] +Op

{
n−1/4(log n)3/4

}
= Sτ,j{αZ,0(τ); X̂∗·j,τ}+Op

{
δf̂
√

log(dn) + n−1/2 log(dn) + n−1/4(log n)3/4
}

= Sτ,j{αZ,0(τ); X̂∗·j,τ}+ op(1). (S.17)

Since we assume thatXi,j is subGaussian, it is easy to prove that Sτ,j{αZ,0(τ); X̂∗·j,τ}
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is asymptotic normal. The proof of Theorem 1 follows by Lemma S.3.�

S3.3 Proof of Theorem 2

From the proof of Theorem 1, we find that the plug-in of f̂τ doesn’t affect the

proof, thus here we use fτ for notational ease.

Recall that Sτ,j(α) = n−1/2
∑n

i=1X
∗
i,j,τψτ (Yi−Z>i·α)/{τ(1−τ)‖X∗·j,τ‖2/n}1/2, j =

1, . . . , dn. Under the local alternative βX,n(τ) = b0(τ)
√

log(dn)/n with fixed

s0(τ) = ‖b0(τ)‖0, we assume without loss of generality that bj,0(τ) 6= 0, j =

1, . . . , s0(τ). For notational ease, we omit τ from s0(τ), and for a vector b, we

use b1:s0 to represent the first s0 components. To derive the asymptotic property

under the local alternative, we define

SAτ,j(α,β1:s0) = n−1/2
n∑
i=1

X∗i,j,τψτ (Yi − Z>i·α−X>i,1:s0β1:s0)/{τ(1− τ)‖X∗·j,τ‖2/n}1/2,

so that Sτ,j(α) = SAτ,j(α,0).

Recall that Θn = {α : ‖α−αZ,0(τ)‖ ≤ C7

√
log(dn)/n}. By Lemma S.2,

we have

sup
α∈Θn

∣∣∣SAτ,j(α,0)− SAτ,j{αZ,0(τ),
√

log(dn)/nb1:s0,0(τ)}

−E[SAτ,j(α,0)− SAτ,j{αZ,0(τ),
√

log(dn)/nb1:s0,0(τ)}]
∣∣∣ = Op

{
n−1/4(log n)3/4

}
. (S.18)
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To derive the property of Sτ,j(α) = SAτ,j(α,0), we first obtain

E{SAτ,j(α,0) | Z,X} × {τ(1− τ)‖X∗·j,τ‖2/n}1/2

= n−1/2
n∑
i=1

X∗i,j,τ{τ − P (Yi < Z>i·α)}

= n−1/2
n∑
i=1

X∗i,j,τ [P{Yi < Z>i·αZ,0(τ) +
√

log(dn)/nX>i·b0(τ)} − P (Yi < Z>i·α)]

= n−1/2
n∑
i=1

X∗i,j,τ

(
fi,τ (0)[Z>i· {αZ,0(τ)−α}+

√
log(dn)/nX>i·b0(τ)]

+ f ′i,τ (0)[Z>i· {αZ,0(τ)−α}+
√

log(dn)/nX>i·b0(τ)]2

+O[Z>i· {αZ,0(τ)−α}+
√

log(dn)/nX>i·b0(τ)]2
)

= n−1/2
n∑
i=1

X∗i,j,τ

(
fi,τ (0)[Z>i· {αZ,0(τ)−α}+

√
log(dn)/nX>i·b0(τ)]

)
+Op{log(dn)/

√
n}

=
1

n

√
log(dn)

n∑
i=1

X∗i,j,τfi,τ (0)

s0∑
l=1

Xi,lbl,0(τ) +Op{log(dn)/
√
n}

=
√

log(dn)

s0∑
l=1

bl,0(τ)
1

n

n∑
i=1

fi,τ (0)X∗i,j,τXi,l +Op{log(dn)/
√
n}

=
√

log(dn)

s0∑
l=1

bl,0(τ)ω∗j,l,τ{τ(1− τ)‖X∗·j,τ‖2/n}1/2 +Op{log(dn)/
√
n}, (S.19)

where the last but third equality is because
∑n

i=1X
∗
i,j,τfi,τ (0)Zi· = 0, and the

last equality is because the projection matrix PZ,f = fτZ(Z>f2τZ)−1Z>fτ is

idempotent, so that ω∗j,l,τ = E{fi,τ (0)X∗i,j,τX
∗
i,l,τ}/{τ(1 − τ)E(X∗2i,j,τ )}1/2 =

E{fi,τ (0)X∗i,j,τXi,l}/{τ(1 − τ)E(X∗2i,j,τ )}1/2 and ‖X∗·j,τ‖2/n = E(X∗2i,j,τ ){1 +

Op(n
−1/2)}.



S3. PROOFS OF THEOREMS 1-317

We then obtain

E[SAτ,j{αZ,0(τ),
√

log(dn)/nb1:s0,0(τ)}] = 0,

SAτ,j{αZ,0(τ),
√

log(dn)/nb1:s0,0(τ)} = Op(1), (S.20)

which is straightforward under the local model.

Combining (S.18), (S.19) and (S.20), we have

sup
α∈Θn

∣∣∣ Sτ,j(α)√
log(dn)

−
∑s0

l=1 bl,0(τ)ω∗j,l,τ{E(X∗2i,j,τ )}1/2

(‖X∗·j,τ‖2/n)1/2

∣∣∣ = Op

{ 1√
log(dn)

}
.

Therefore,

P
[

sup
α∈Θn

∣∣∣ Sτ,j(α)√
log(dn)

−
∑s0

l=1 bl,0(τ)ω∗j,l,τ{E(X∗2i,j,τ )}1/2

(‖X∗·j,τ‖2/n)1/2

∣∣∣ ≤ ε/4
]
→ 1.

Under the local model (2.6), with s0 being fixed, we can show that α̂Z(τ) ∈ Θn

with probability approach 1. Therefore,

P
[∣∣∣Sτ,j{α̂Z(τ)}√

log(dn)
−

s0∑
l=1

bl,0(τ)ω∗j,l,τ{E(X∗2i,j,τ )}1/2/(‖X∗·j,τ‖2/n)1/2
∣∣∣ ≤ ε/4

]
→ 1.

Since max1≤j≤dn |
∑s0

l=1 bl,0(τ)ω∗j,l,τ | >
√

2 + ε, we have

max
1≤j≤dn

|
s0∑
l=1

bl,0(τ)ω∗j,l,τ |{E(X∗2i,j,τ )}1/2/(‖X∗·j,τ‖2/n)1/2 ≥
√

2 + ε/2.

Therefore,

P
[

max
1≤j≤dn

∣∣∣Sτ,j{α̂Z(τ)}√
log(dn)

∣∣∣ ≥ √2 + ε/4
]
→ 1,
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which leads to

P (reject H0|Ha)

= P [Tn,1(τ)− 2 log(dn) + log{log(dn)} ≥ qγ|Ha]

= P
[

max
1≤j≤dn

S2
τ,j{α̂Z(τ)}
log(dn)

≥ 2− log{log(dn)}/ log(dn) + qγ/ log(dn)|Ha

]
→ 1.

�

S3.4 Proof of Theorem 3

From the proof of Theorem 1, we find that the plug-in of f̂τ doesn’t affect the

proof, thus here we use fτ for notational ease.

Recall that

Tn,1(τ)∗ = max
1≤j≤dn

{n−1/2
n∑
i=1

wiX
∗
i,j,τψ(ei)}2/{τ(1− τ)‖X∗·j,τ‖2/n},

where ei i.i.d. ∼ N(−Φ−1(τ), 1), wi i.i.d. ∼ P (w = 1) = P (w = −1) = 1/2.

It is easy to verify that {n−1/2
∑n

i=1wiX
∗
i,j,τψ(ei)}2/{τ(1−τ)‖X∗·j,τ‖2/n} ∼ χ2

1.

For dependence across j, we have

corr

[ ∑n
i=1wiX

∗
i,j,τψ(ei)

{τ(1− τ)‖X∗·j,τ‖2}1/2
,

∑n
i′=1wi′X

∗
i′,j′,τψ(ei′)

{τ(1− τ)‖X∗·j′,τ‖2}1/2
| Z,X

]

=
n∑
i=1

E(w2
i )E{ψ(ei)

2}X∗i,j,τXi,j′,τ/{τ(1− τ)‖X∗·j,τ‖‖X∗·j′,τ‖}

=
n∑
i=1

X∗i,j,τXi,j′,τ/(‖X∗·j,τ‖‖X∗·j′,τ‖) = rj,j′ +Op(n
−1/2),
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which is asymptotically equivalent to the correlation of Sτ,j{αZ,0(τ)} and Sτ,j′{αZ,0(τ)}

given Z and X. The proof follows similar steps as the proof of Theorem 1. �
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