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S1 Additional numerical results

S1.1 Computing time and empirical size of Case 2

The simulation is done in the cluster with the configuration of each node similar
to MacBook Pro 2.3 GHz Intel Core i5, 8 GB 2133 MHz LPDDR3. Table
summarizes the average computing time of different methods for analyzing one

data in Case 1 at 7 = 0.5 or the mean, where 7}, ;(7) is the sum of computing
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time for 7,7 (1) and T.7, (1), for k = 1, 2; the average computing times are simi-
lar in Cases 2—3 and, thus, are omitted. Results show that the methods that do not
require the estimation of f,, namely, RS, 7}, »(7), and GC, are more efficient than
that do, namely, 7, 1(7), BON, and CCT. In addition, the resampling-bootstrap-
based methods, QME and CAR, are computationally much more expensive than
the other methods, even if double bootstrap is not used for tuning parameter
selection.

Table S.2 summarizes the empirical sizes from Case 2, which is similar to

Case 1.

Table S.1: The average computing time (seconds) of different methods for analyzing one data in

Case 1.

| n=200 n=800 \

Pn 10 50 200 1000 10 50 200 1000
metho

To1(r) 210 9.05 3463 180.01 3.68 1650 6472 354.41
T,o(r) 0.6 064 231 1159 037 178 7.09 37.82

RS 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.00
QME 226 445 19.64 28427 5.66 12.62 6991 1128.14
BON 1.93 836 3240 167.52 3.31 15.23 61.56 309.93
CCT 193 836 3240 167.52 331 1523 61.56 309.93
CAR 1.70 3.19 18.66 35439 239 8.66 66.84 1582.43
GC 0.79 1.02 1.60 442 1254 16.68 26.29 86.60

Tf, k(‘r) and Tff k(‘r), k = 1,2: four variations of the proposed test; RS: the rank score test of [Park and He| (2017);
QME: the quantile marginal effect test of Wang et al.|(2018); BON, Bonferroni adjustment on d,, individual P-values;
CCT, Cauchy combination test of |Liu and Xie| (2019); CAR: the conditional adaptive resampling test of [Tang et al.

(2018); GC: the sum-squared-type test of|Guo and Chen|(2016).
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Table S.2: Rejection percentages for Case 2 with by = 0. All scenarios correspond to the null

model.

n=200 n=800

Case location me Pr 10 50 200 1000 10 50 200 1000

2 7=025 TF (r) 23 31 36 30 30 45 25 30
(r) 48 50 55 42 55 56 42 35
TE,(r) 26 35 40 28 3.1 48 29 33
TEy(r) 47 60 55 39 58 61 41 40

RS 46 28 / / 50 48 21 /
QME 17 27 73 160 20 30 24 54
BON 4.1 33 40 36 49 52 29 40
CCT 22 19 20 16 26 28 15 14

T=05 TE (r) 23 30 44 32 33 46 44 35
TP (r) 46 52 60 61 67 67 60 49

TE,(r) 24 28 42 39 35 50 45 37

TB,(r) 42 50 63 65 7.1 70 62 53

RS 44 19 / / 56 65 22 /

QME 13 14 17 17 22 24 17 30

BON 37 40 51 40 57 60 53 43

CCT 25 23 24 21 31 33 31 20

mean CAR 39 43 36 25 43 37 35 30
GC 37 49 54 58 48 50 46 59

Tf (7) and Tf & (7). k = 1,2: four variations of the proposed test; RS: the rank score test of [Park and He| (2017);
QME: the quantile marginal effect test of[Wang et al.| (2018); BON, Bonferroni adjustment on d,, individual P-values;
CCT, Cauchy combination test of [Liu and Xie| (2019); CAR: the conditional adaptive resampling test of [Tang et al.

(2018); GC: the sum-squared-type test of|Guo and Chen|(2016).

S1.2 Additional Case 4

We consider a Case 4 to mimic the motivating GFR study and generate X;. as
multivariate Bernoulli variables that are correlated with Z,.. Specifically, we
generate U;. and Z; as in Case 3, and let X;; 5 = 1 — 2[(U;; < 0) for [ =

6,...,p,—1. Inaddition, we let ¢; be standard exponential with median centered
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at zero. Table S.3 and Figure S.1 present the rejection rates under the null and

the power curves of different methods in Case 4.

Table S.3: Rejection percentages for Case 4 with by = 0. All scenarios correspond to the null

model.

n=200 n=800

Case location Pr 10 50 200 1000 10 50 200 1000

4 1=025 TP (r) 32 41 38 40 25 36 41 60
(r) 57 57 53 51 47 48 58 65
TE,(r) 3.1 48 41 47 29 3.6 44 65
T5,(r) 54 62 60 52 51 49 56 73
RS 61 25 / [ 54 41 22 /
QME 25 18 25 7.1 40 26 38 177
BON 54 42 47 32 43 47 55 6.1
CCT 29 26 21 18 23 26 34 32

7=05 TP (r) 27 45 37 34 30 47 40 4.1
TB (r) 47 65 53 48 49 62 50 5.0

TE,(r) 29 47 40 38 3.1 48 39 42

TP,(r) 54 65 57 56 51 62 48 5.1

RS 50 28 / / 52 32 24 /

QME 22 10 03 18 31 16 20 18

BON 45 56 43 37 46 56 45 46

CCT 24 29 18 21 29 30 15 24

mean CAR 50 38 52 51 62 64 62 58
GC 55 70 57 6.1 62 51 57 49

TnE’k(‘r) and Tf:k(‘r), k = 1,2: four variations of the proposed test; RS: the rank score test of [Park and He| (2017);
QME: the quantile marginal effect test of Wang et al.|(2018); BON, Bonferroni adjustment on d,, individual P-values;
CCT, Cauchy combination test of |Liu and Xie| (2019); CAR: the conditional adaptive resampling test of [Tang et al.

(2018); GC: the sum-squared-type test of|Guo and Chen|(2016).
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Figure S.1: Power curves of the methods in Case 4 with n = 200 and 7 = 0.5: T,;EJ (7) (dashed),
T.2,(7) (line with solid square), T;%,(7) (line with solid dots), T;7,(7) (line with triangle), RS
(line with open circle), CAR (dotted), GC (line with diamond). The gray horizontal line indicates

the nominal level of 0.05.



6 YANLIN TANG, YINFENG WANG, HUIXIA JUDY WANG, AND QINQ PAN

S2 Discussion on condition A5

Discussion on condition A5. The term wy, - in AS measures the weighted partial
correlation between X/, and X,  after accounting for the effect of Z, where
the weights are due to the heteroscedasticity. Condition A5 requires the maxi-

mum of the weighted coefficients to have a lower bound. If X;,j = 1,...,d,

are uncorrelated across 7, we have

s0(T) bj,O(T)E{fi,T( )Xﬁr}/{T(l - T) (XZ*_?T)}I/z’ 1 S] < SO(T)v

Zblo jo:

0, J > so(T).

Thus condition AS is equivalent to

max |bjo(T)|E{fi-(0) X3 }/{r(1 = T)E(XZ )} >V2+e (S.)

1<j<s0(7)
Furthermore, if the errors are homoscedastic with f; -(-) = f-(-), then AS re-

quires that

, T(1—1) 1/2 1
|bjo,0(7—)| > \/5{ fTQ(O) } {E(X*2 )}1/2’

2,70

where jj is the maxima of the left side of (S.I). This indicates that the larger
the partial variance of X ;) given Z is, the smaller signal is needed to achieve the

desired power for testing.
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S3 Proofs of Theorems 1-3

This section includes the proofs of Theorems 1-3.

S3.1 Some useful lemmas

Note that in the “bandwidth.rq” function of the R package quantreg,
h=n""P[45¢{® " (7))} /{207 ()" + 1}]'/° £ Cen ™'/,

where ®(-), ¢(-) are the distribution and density functions of the standard normal

distribution, respectively.

Lemma S.1. Assume that conditions A.1-A.4 hold, and h in (2.6) of the main
text satisfies h < h’ and h™'(q + s,)\/log(p, Vn)/n — 0, where s, =

maxXycfr—ps +hz] [|@o(V)|o. We have

5= max | J,,(0) = fi-(0)] = O, <h2 RN g + 5/ Tog(pn V ) /n).

1<i<n

Especially, in our implementation, we have h = C¢n~'/°, thus

07 =0, <n_2/5 + n~31% /log(p, V n)) =0, (n_?’/m\/log(pn v n))

Proof. Lemma |S.1|is quite similar to Lemma 19 in the supplementary file of

Belloni et al. (2019), and we present the detailed proof in the following.
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Let X;. = (Z],X])T, then

fi(0)

B 2h B 2h

QY] ZeXi) = Qrn(Vil Zio Xa)  XI{B(r + 1) = 6(r — )}

B 2h X,/ {0(t+h)—6(r—h)}

 XI{80(7 ) = Oo(7 = 1)} X[{60(r + h) — Ou(r — )}

_ 2h ) 14 XIHO( + 1) = 0y(7 + h)} = XT{B(7 — h) — 07 — 1)}
X {6o(T +h) — Oo(T — 1)} X {0o(m +h) — Oo(T — 1)}

a 2h /1. S.1)

XT{00(7 -+ h) = Oy(7 — h)}
By assumption A4, we have fy. x (y) = fi-(y — XT6y(7)), thus it is easy

to see that f; (0) = o , where Q.(Y;|X,.) is the derivative of Q,(V;|X.)

(Yt\fiza)
with respect to 7. By assumption A4, we get
(20) 7 X {80 (7 + h) — Oo(r — h)} = (2h) Q- 12 (Vi Xs) — Q- n(VilXs)}
= (2h) " {Qra (VilXs) = Q- (YilXi)} — {Qrn(YilXi) — Q- (YiXi)}]

= (o0 [{Q, IR+ JQUYIRR + QU VIR + O}

QIR+ SQUYIRI — SQU VIR + O}
= QLX) +O(?) = fi’f(o) o). (5.2)

Now we derive the term /; in (S.I). By the definition of the conditional

quantiles, we have

X[ 6o(t+h)
/ fy, W)y = 2h.

X 0o(T—h)
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Since fy, %, (y) is continuous in y by assumption A3, there exists §; - € (X[ 0,(r—

h), X[ 6,( + h)] such that

2h

- (6.) = = , S.3
hox ) = o — outr — o
or equivalently,
< 2h
Y;|X;. \Se,T

By theorem 1 of Belloni and Chernozhukov|(2011), we have [|6(7)—8,(7) |0 =

Op(q+sn), and [|0(1) =60 (7)||2 = Op(+/(q + 5n) 10g(pn V 1) /1), thus X {8(7)—

0o(7)} = Op{(q + sn)\/10g(pn V n)/n}. Thus, we use 1i to derive that

I = 14 0,[(q+ sn)v/10g(pn V1) /n/X]{66(7 + h) — (7 — h)}]
= 14+ 0y{(q + su)VIog(pn V1) /nfy. %, (§ir)/(2h)}
= 1+ 0,{h7 " (q+ s,)\/1og(p, V n)/n}, (S.5)

“__9

where the last is because of the boundedness of f,. |55() implied by as-
sumption A3.

Combining (S.1)), (S:2) and (S.5), the proof of Lemma|S.1]is completed.(]

Lemma S.2. Assume that conditions A.1-A.3 hold. Let ©, = {a : ||a —

azo(7)|| < Cry/log(d,)/n}, where C; is some large enough positive constant.
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Under the null hypothesis Bx o(7) = 0q4,, we have

sup Srj(@) = Srj{azo(r)} — E[Sr (@) = Srj{azo(7)}]

1<j<dn, ac®,

=0, {n_1/4(10g n)3/4} : (S.6)
where S; (-) is either based on £, or its estimate from the quotient method.

Lemmal|S.2|follows directly from the proof of lemma A.2 (expression (A.5))

of (Wang and He/| (2007).
Lemma S.3. Assume that conditions A.1-A.4 hold. Then, for any x € R, as

n — oo, d, — 00,

P[lg}%ﬁ S7 — 2log(dy) + log{log(d,)} < z] — exp{—71/? exp(—g)}, (S.7)

P[ max S; < +/2log(d,) — log{log(d,)} + z] — exp{—%w‘l/2 exp(—g)}, (S.8)

1<j<dn

where S; = n='2 300 Xy Y — Zl oz o(7)}A{T(L = 7) X5 |17 /n} 2,

nE.
j=1,...,d,.

Lemma [S.3]is similar to Lemma 6 of Cai et al.| (2014), while the difference
lies in the asymptotic normality of S; and the normality assumption required by
Lemma 6 of |Cai et al.| (2014). We fill the theoretical gap by Theorem 1.1 in
Zaitsev| (1987)), similar to the proof of Theorem 6 of |Cai et al.| (2014).

Proof. We only prove (S.7)), and the proof of is similar.

Let Vi, = X

Z7J7T

UelYi = Zlazo(m)}/{r(1 = 7)|IX5 |2 /n}V/?, thus S; =

nYV2S" Vi Let Vi = Vi I(|Vij| < ¢) fori = 1,...,n and S; =
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n~Y23°" Vi, ;, where ¢, = 20{1/2\/dn +n, with O} defined in Assumption

Al (i1). Then

Q> = >
PLEE IS 512 gy} < Plag, el 2 6)
. g -1
< nd, 12}2)5” P(IVi;| > ¢) =0(d,"). (S.9)

Note that

| max S? — max S?
1<j<dn 7 1<j<dn

< . _ g . S.2. (S.
| <2 max |S;] max [; — 5| + max |5; —Si[%. (S.10)
By expression (S.9) and (S.10), it is enough to prove that, for any = € R, as

n — oo, d, — 00,

P[lrgr;z%:gn 57 — 2log(dy) + log{log(d,)} < z] — exp{ — % exp(—m/Z)}.

Givent,wedefineZ = {1 < j; < ... < j; <d, : maxj<p<i<; |corr(S;,,S;,)| >
d 70}, where 7y is a sufficiently small number satisfying v, < 1/(2t); we omit ¢

from the definition of Z for notation ease. For 2 < g <t — 1, define

I, = {1<j <...<j <d,:card(A) = g, where A is the largest subset of {7i,...

such that Vi, # ji € A, |corr(S;,,S;)| < d,7°}.

For g = 1, define Z; = {1 < j1 < ... < jy < dy : [corr(S;,,5;) >

;0 for every 1 < k <1 < t}. Sowehave Z = U\ 7.

It follows from lemma 1 of |Cai et al. (2014) that, for any fixed k& < [d,, /2],

2k 2k—1

_1)t-1 g _1yt-1
;( 1) EéP(lg;ggnlSle\ﬁxdn)s;( DB, (D)

7.jt}
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where 4, = 2log(d,) — log{log(d,)} + =, E, = lej1<._.<jt§d" P(|Sj1| >

ST 1185, = EL).

Then, by Theorem 1.1 of Zaitsev| (1987), we have

P(min |8, > @a,) < P{min|S5| > Za, — enlog(d,) %}

1<i<t 1<I<t

n'/2e,

a29%Gn log(d,)'/?

Fay g exp{ . } (S.12)

where a; > 0 and ay; > 0 are positive constants, €, — 0 will be specified later,

and (5%

VIR

ST

T
Jt)

is a t-dimensional normal vector, which is a sub vector of
* * * \ T
S - (317"'7Sdn) ~ N(O,Rﬂx‘z).

Because log(d,) = o{n'/*/log(n)**}, we can let ¢, — 0 sufficiently slowly

such that

1/2

n’<e,

a293Cn log(dn

a1 g°/? exp{ — )1/2} = 0(d;™) (S.13)

for any large M > 0. It follows from expressions (S.11)), (S.12) and (S.13) that

P( min |S;| > \/7a,)

1<5<dn
2k—1

< 1yl { g _ —1/2}

< > (-1 > P{minlSi| > Vi, — enlog(dn) ' f 4 o(1). (S.14)
t=1 1<j1<...<je<dpn,

Similarly, using Theorem 1.1 of Zaitsev|(1987) again, we can obtain

P( min |S;| > /74,

1<j<dn

v
]
=

I

Z P{ min S} | > \/Zq, — €, log(dn)_l/Z} +o(1). (S.15)

. ) 1<i<t
t=1 1< <. <je<dn
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So, by expression (S.14) and (S.15) and the proof of Theorem 1 (Lemma 6) of

Cai et al.| (2014), the lemma is proved.[]

S3.2 Proof of Theorem 1

Recall that

S, ;(az) —nWZ X7 b (Vi — Zag) J{r (1 — )X, 12/} 2, G =1,

Since the density function matrix f. is estimated by /fT, we further define

T o A Te2 1T * *

Rr. = {In—fTZ(Z £22)717 fT}X = (Xp X T
SrilazXy,) = —WZ Xij e (Y = Z ) [{r (1= D)IIK5 1P/},
j =1,...,d,. Because we actually use ST](aZ,X _) to construct our test

statistic, we prove Theorem 1 with S; ;(az; X*JT)

Under the null hypothesis Bx,o(7) = 0, , itis easy to show that E[S; j{cz(7);

jT}’
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Z,X]=0,j =1,...,d,. Due to the fact that Zf, X", = 0, we have
E{S, (0 X5,) | Z,X} - {r(1 — 7)K%, || /n} 2
_ _1/22 AT =P < Z.! o)}
= 71/22 ”TP{Y;<ZZO€Z70<T)}_P<Yi<Zz‘T-a)]
_ Zx;f”{ 1021 {a = azo(r)} = O(f1,0)[Z {a — azo(n)}?) }
n1s2 Z [{f” ~ i (0} {o — ago(7)}]
+0,{n —WZ L (L O(Z] o~ azo(M)) |

= Op< log(d,,) max £ (0) = fir (0)] + 012 log(dn)>

- 0, (5]?\ log(dy) +n~\/? log(dn)>, (S.16)

uniformly over « € ©,, = {a : || — azo(7)| < Cry/log(d,)/n}. It is easy

to show that az(7) € ©,, with probability approaching 1. Thus, combined with

Lemmas [S.THS.2] and assumption A1, we have
Sri{az(r); X5}
= S {azo(r); X5} + B[S, {@z(r); X} + O, {n~*(logn)*/*}
= S i{azo(r); X*JT} +0, {5]? log(d,) +n"?log(d,) +n~*(log n)3/4}

= S, {azo(1): X5, )+ 0,(1). (S.17)

Since we assume that X; ; is subGaussian, it is easy to prove that S j{cz o(7); X, }
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is asymptotic normal. The proof of Theorem 1 follows by Lemma [S.3|0

S3.3 Proof of Theorem 2

From the proof of Theorem 1, we find that the plug-in of /fT doesn’t affect the
proof, thus here we use f, for notational ease.

Recall that S, () = n=/2 Y0, X7, b (Vi B @)/ {r(1-7) X |/} /2, j =
1,...,d,. Under the local alternative Bx ,(7) = bo(7)+/log(d,)/n with fixed
so(T) = ||bo(7)]|0. we assume without loss of generality that b;o(7) # 0,j =
1,...,so(7). For notational ease, we omit 7 from s,(7), and for a vector b, we
use by, to represent the first s, components. To derive the asymptotic property

under the local alternative, we define

(Ol 181 80) - n71/2 Z Xz*] TwT(Y ZTa X;rl 30/61:8())/{7—(1 - T)HXZ‘,TH2/H}1/27

=1

so that S, j(a) = S7,(ex, 0).

Recall that ©,, = {a : ||a — azo(7)| < C74/log(d,)/n}. By Lemma

we have

sup Sfj(a, 0) — Sfj{azp(f), V1og(d,)/nbi.s0(T)}

a€®n
—E[Sfj(a,O) ST]{Oézo ,V1og(dy,)/nby.gs, 0T ‘ =0, {n~ 4(logn) 3/4} (S.18)
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To derive the property of S ;(a) = S2;(cx,0), we first obtain

E{S}(c,0) | Z,X} x {7(1 — 7)|IX5 ||*/n}/?
- 71/22 LT = P(Yi < Z[ )}

_ -2 Z L P < Zlagzo(7) + V/log(d,) /nX bo(1)} — P(Y; < Z[ )]

= ‘1/22 ]T<f” )Z[ {azo(r) — a} + /log(d,) /nX] by(7)
+fi,7< )[Z} {ezo(r) — a} + /log(dy,) /nX by(7)
+ O[Z] {azo(r) — a} + y/log(d,) /nX ] bo(7) )
_ —1/22 Xty (Fir(O)Z] {omo(r) — o} + v/I0m(d,) /X bo(r)]) + O, {lo(dn)/ v/}

= \/1og Z X fir (0 ZXzzbzo ) 4+ Op{log(dy)/v/n}
= /log(d Zblo Zf” X7+ Xig + Op{log(dy,) /v/n}

= Vlog(dn Zblo Wi AT(1 = DX 1P /n}? + Op{log(dy) /v/n}, (S.19)

where the last but third equality is because ;" | X, _f;+(0)Z; = 0, and the
last equality is because the projection matrix Py = £, Z(Z'f2Z)71Z'f, is
idempotent, so that w3, = = E{f;,(0)X;, X }/{r(1 — 7)E(X;3 )}'/? =

E{fir(0) X7, Xsab{r(1 = ) E(X5 )M and X5 |P/n = E(X3){1 +

%,J,T 4,J,T
0,(n~112)}.



S3. PROOFS OF THEOREMS 1-317

We then obtain

{Oéz 0 \/ log /nbl 150, 0 =0,
ST]{aZ 0 y V log /nbl 150, 0 } O ( ) (820)

which is straightforward under the local model.

Combining (S.18)), (S.19) and (S.20), we have

Srj(e) 220 bio(m)wy AB(XE )M 1
sup — (12 /0)\1/2 - Op{—}'
aco, | \/log(d,) (X% 112 /n) Y log(dy,)
Therefore,
P[ ‘ (a) Zzsil bl,O(T)w;,l,T{E(Xz*gT }1/2‘ < /4} 1
aE@n Vlog(d (HXTZ,THQ/”)I/Z

Under the local model (2.6), with s, being fixed, we can show that az(7) € ©,,

with probability approach 1. Therefore,

[

Since maxi<j<q, | Y12 bo(T)wl, .| > V2 + €, we have

i1 . .
]i{ogz Zbl J'J’T{E(Xz?7)}1/2/(||X-j,7||2/n)1/2

< 6/4] — 1.

50
ma | buo(r)es, LEOX2 )}V /(15 12/m) 2 > VE + /2
=1

1<j<dn

Therefore,

P[ max

1<j<dn

Srolaa(r }’_\/_+e/4}—>1
log(

N
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which leads to

P(reject Hy|H,)

= P[Ta(7) — 2log(dy) + log{log(dn)} = ¢, Ha]

= P g G

iy S 22— log{log(da)}/log(dn) + g/ og(d) Ha)

S3.4 Proof of Theorem 3

From the proof of Theorem 1, we find that the plug-in of /f\T doesn’t affect the
proof, thus here we use f, for notational ease.

Recall that

Toa(r)" = max {n Wsz mie(e)} {r (L= 1)IX5 I1*/n},

1<5<dn,
where ¢; i.i.d. ~ N(=®7Y(7),1), w; i.i.d. ~ P(w =1) = P(w = —1) = 1/2.
Itis easy to verify that {n="/2 "7 w; X7, (e;)}?/{r(1—7)[|X5 [12/n} ~ X3

For dependence across j, we have

2?21 wiX;jj,r@ZJ(ei) Zri L Wi X e Y (er)
{r(1 = )|IX5 2327 {r (1 = ) IX, |12 12

corr | Z,X
= ZE VE{u(e)*} X7 Xigrr /{T (1 = T)IX5ANIX 11}

= KXo /U ) = 735+ Oy,

— 1.
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which is asymptotically equivalent to the correlation of S j{az o(7)} and S; j{az o(7)}

given Z and X. The proof follows similar steps as the proof of Theorem 1. [
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