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In this Supplementary Material, we provide the technical proofs for all results presented in the

main body of the paper.

S1 Proof of Theorem 2.1

We first establish two lemmas (cf. Lemma S1.1 and Lemma S1.2) that are

very useful in the proof of Theorem 2.1.

Lemma S1.1. Let Zi = f(εi, εi−1, . . .), i ∈ Z, be real-valued random vari-

ables, where εi are independent random elements. Assume |Zi| ≤ M for

all i. Let ε′i be an i.i.d. copy of εi. Let Ti =
∑i

j=1 Zj. For j1, j2 ∈ Z with

j1 ≥ j2, define

Zi,{j1,j2} = f(εi, . . . , εj1+1, ε
′
j1
, . . . , ε′j2 , εj2−1, . . .). (S1.1)
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For any a > 0, we have

E exp(aTn) ≤
n∏
i=1

E exp(aZi) + a exp(aMn)
n∑
i=2

E|Zi − Zi,{i−1,−∞}|, (S1.2)

and

n∏
i=1

E exp(aZi) ≤ E exp(aTn) + a exp(aMn)
n∑
i=2

E|Zi − Zi,{i−1,−∞}|. (S1.3)

Proof of Lemma S1.1. We can write

E exp(aTn)−
n∏
i=1

E exp(aZi) =
n∑
i=2

[
E exp(aTi)− E exp(aTi−1)E exp(aZi)

]
·

n∏
j=i+1

E exp(aZj).

Observe that Zi,{i−1,−∞} has the same distribution as Zi. Also notice that

Zi,{i−1,−∞} and Ti−1 are independent. We have

E exp(aTn)−
n∏
i=1

E exp(aZi)

=
n∑
i=2

E
[

exp(aTi−1)(exp(aZi)− exp(aZi,{i−1,−∞}))
] n∏
j=i+1

E exp(aZj)

≤
n∑
i=2

exp{aM(n− 1)}E| exp(aZi)− exp(aZi,{i−1,−∞})|.

Hence, (S1.2) follows in view of the fact that

E| exp(aZi)− exp(aZi,{i−1,−∞})| ≤ eaMaE|Zi − Zi,{i−1,−∞}|.

And (S1.3) can be derived similarly.

We embed the process Xi, i ∈ Z, into a continuous time process by

defining Xt = Xdte for t ∈ R. For notational simplicity, we abbreviate
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δi,2 defined in (2.6) when q = 2 to δi. Then We also embed the index set

of dependence measure δi defined in (2.6) into continuous time by letting

δt = δdte, t ∈ R. For a Borel set K, define

SK =

∫
K

Xtdt.

Lemma S1.2. For x ≥ 0 and B ≥ 2, let KB ∈ (x, x+B] be a finite union

of intervals. Assume EXi = 0 and |Xi| ≤ M for all i. Let c1 = (e4 − 5)/4.

Then for any t > 0 such that tM ≤ 1 ∧
√

log(ρ−1)/(2B), we have

logE exp(tSKB) ≤ c1B‖X·‖2
2t

2 +
‖X·‖2BMt2

ρ(1− ρ)
ρ(2tM)−1

.

Proof of Lemma S1.2. If BMt ≤ 4, then we have tSKB ≤ 4. Notice that

the function x 7→ x−2(ex − x− 1) is increasing. We can obtain

exp(tSKB) ≤ 1 + tSKB +
c1

4
t2S2

KB
.

Since Xi is stationary and EXi = 0, it follows that ESKB = 0 and

ES2
KB
≤ B

∞∑
k=−∞

|Cov(X0, Xk)|.

By (2.11), we have

E exp(tSKB) ≤ 1 +
c1

2
B‖X·‖2

2t
2. (S1.4)

For BMt > 4, let L = bBMt/2c. Divide the interval (x, x + B] into 2L

consecutive left-open and right-closed intervals of length B/(2L), denoted
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by I1, . . . , I2L. For 1 ≤ j ≤ L, let Zo
j = SKB∩I2j−1

and Ze
j = SKB∩I2j . Define

So =
L∑
j=1

Zo
j and Se =

L∑
j=1

Ze
j .

By the Cauchy-Schwarz inequality, we have

2 logE exp(tSKB) ≤ logE exp(2tSo) + logE exp(2tSe).

For 1 ≤ j ≤ L, denote I2j−1 = (`2j−1, u2j−1]. Observe that Zo
j is measurable

with respect to the σ-field of {εi : i ≤ du2j−1e} and B/(2L) ≥ 1/(Mt) ≥ 1.

By Lemma S1.1,

E exp(2tSo) ≤
L∏
j=1

E exp(2tZo
j ) + 2t exp(BMt)

L∑
j=2

E|Zo
j − Zo

j,{du2j−3e,−∞}|,

(S1.5)

where

Zo
j,{du2j−3e,−∞} =

∫
KB∩I2j−1

Xt,{du2j−3e,−∞}dt

with Xt,{du2j−3e,−∞} = Xdte,{du2j−3e,−∞}. For j ≥ 2, we have

|Zo
j − Zo

j,{du2j−3e,−∞}|

≤
∫
KB∩I2j−1

|Xt −Xt,{du2j−3e,−∞}|dt

≤
∫
KB∩I2j−1

|Xt −Xt,{du2j−3e,du2j−3e}|dt

+

∫
KB∩I2j−1

∞∑
m=0

|Xt,{du2j−3e,du2j−3e−m} −Xt,{du2j−3e,du2j−3e−m−1}|dt.

Recall that for t ∈ R, δt = δdte. By the fact that E|Xt −Xt,{j,j}| ≤ δt−j and

E|Xt,{j,j′} −Xt,{j,j′−1}| ≤ δt−j′+1 for t ∈ R and j, j′ ∈ Z with j ≥ j′. Then
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we have

E|Zo
j − Zo

j,{du2j−3e,−∞}|

≤
∫
KB∩I2j−1

δt−du2j−3edt+

∫
KB∩I2j−1

∞∑
m=0

δt−du2j−3e+m+1dt

=

∫
KB∩I2j−1

∞∑
m=0

δt−du2j−3e+mdt

≤ ‖X·‖2

du2j−1e∑
i=d`+2j−1e

ρi−du2j−3e ≤ (1− ρ)−1‖X·‖2ρ
d`+2j−1e−du2j−3e. (S1.6)

Since d`+
2j−1e − du2j−3e ≥ B/(2L)− 1, by (S1.5) and (S1.6), it follows that

E exp(2tSo) ≤
L∏
j=1

E exp(2tZo
j ) +

‖X·‖2BMt2

ρ(1− ρ)
exp(BMt)ρB/(2L)

≤
L∏
j=1

E exp(2tZo
j ) +

‖X·‖2BMt2

ρ(1− ρ)
ρ(2tM)−1

, (S1.7)

where the last step follows in view of the fact that for 0 < tM ≤
√

log(ρ−1)/(2B),

exp(BMt)ρB/(2L) ≤ exp(BMt)ρ(Mt)−1 ≤ ρ(2tM)−1

.

By applying (S1.3) in Lemma S1.1, we can also obtain

L∏
j=1

E exp(2tZo
j ) ≤ E exp(2tSo) +

‖X·‖2BMt2

ρ(1− ρ)
ρ(2tM)−1

. (S1.8)

Since EXi = 0, by Jensen’s inequality, we have E exp(2tSo) ≥ 1 and

E exp(2tZo
j ) ≥ 1 for each j. By the inequality | log x − log y| ≤ |x − y|

for x, y ≥ 1, (S1.7) and (S1.8), we have

logE exp(2tSo) ≤
L∑
j=1

logE exp(2tZo
j ) +

‖X·‖2BMt2

ρ(1− ρ)
ρ(2tM)−1

.
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Notice that 2tZo
j ≤ 2tMB/(2L) and L = bMBt/2c. We have 2tZo

j ≤ 4.

Similarly as (S1.4), we have

L∑
j=1

logE exp(2tZo
j ) ≤

L∑
j=1

log(1 + c1B‖X·‖2
2t

2/L) ≤ c1B‖X·‖2
2t

2.

Therefore, we can obtain (S1.2) by dealing with logE exp(2tSe) similarly.

Equipped with Lemma S1.1 and Lemma S1.2, Lemma S1.3 below can

be proved without extra technical difficulties following the proof of Lemma

10 in Merlevède et al. (2009), which combines the idea of Bernstein big

and small type argument with a twist, diadic recurrence and Cantor set

construction. The proof is thus omitted here.

Lemma S1.3. Assume EXi = 0 and |Xi| ≤M for all i. Let

c =
log(ρ−1)

8
∧
√

(log 2) log(ρ−1)

4
.

For every A ≥ 4 ∨ (log(ρ−1)/2), there exists a subset KA of (0, A], with

Lebesgue measure larger than A/2 such that for any t > 0 such that tM ≤

c/ logA, we have

logE exp(tSKA) ≤ c1A‖X·‖2
2t

2 + 8c2‖X·‖2A
−1Mt2. (S1.9)

where c1 = (e4 − 5)/4 and c2 = [ρ(1 − ρ) log(ρ−1)]−1. Moreover, for any
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t > 0 such that tM ≤ 1 ∧ (log(ρ−1)/2), we have

logE exp(tS(0,A]) ≤ c1A‖X·‖2
2t

2 + 4c2‖X·‖2AMt2 + 2M2t2A logA.

Corollary S1.4. Assume EXi = 0 and |Xi| ≤ M for all i. Let c, c1, c2 be

defined the same as in Lemma S1.3 and let C = max{c1, 8c2}. For every

A ≥ 4 ∨ (log(ρ−1)/2), there exists a subset KA of (0, A], with Lebesgue

measure larger than A/2 such that for any t > 0 such that tM < c/ logA,

we have

logE exp(tSKA) ≤
CAt2(‖X·‖2 +

√
‖X·‖2M/A)2

1− tM logA/c
.

Moreover, for any t > 0 such that tM < 1 ∧ (log(ρ−1)/2), we have

logE exp(tS(0,A]) ≤
CAt2 logA(‖X·‖2 +M)2

1− tM/(1 ∧ (log(ρ−1)/2))
.

Corollary S1.4 follows directly from Lemma S1.3. Now we are ready to

prove Theorem 2.1.

Proof of Theorem 2.1. The proof follows the same spirit of the proof of

Theorem 1 in Merlevède et al. (2009). Adopting the framework of functional

dependence measure, we shall establish some useful moment inequalities

(cf. Lemma S1.1 – S1.3) characterized by the parameter ρ and dependence

adjusted moment ‖X·‖2. In our proof, we apply the newly established

Lemma S1.1, Lemma S1.2, Lemma S1.3 and Corollary S1.4 in place of

respectively Lemma 15, Lemma 8, Lemma 10 and Corollary 11 in the paper
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Merlevède et al. (2009). We omit the complete derivation of the proof, but

point out the main differences on the choices of quantities adapted to our

setting. Using the same notations in the proof of Theorem 1 in their paper,

we take

L = Ln = inf{j ∈ N : Aj ≤ 4 ∨ (log(ρ−1)/2)}.

Hence, the inequality (4.21) in that paper becomes

Ln ≤
⌊ log(n)− log(4 ∨ (log(ρ−1)/2))

log 2

⌋
+ 1.

As one of the key steps, to apply Lemma 3 in Merlevède et al. (2011), for

0 ≤ i ≤ L− 1, we take

κi = M log(n/2j)/c, σi =
√
C[(n/2j)1/2‖X·‖2 + (n/2j)−1/2

√
‖X·‖2M ],

where c is defined the same as in Lemma S1.3 and C = max{(e4−5)/4, [ρ(1−

ρ) log(ρ−1)]−1}. And we also take

κL = M(1 ∨ (log(ρ−1)/8)), σL =
√
CM(4 ∨ (log(ρ−1)/2)).

Then it follows that

L∑
i=0

κi ≤M
[(log n)2

c log 2
+ 1 ∨ (log(ρ−1)/8)

]
, (S1.10)

and

L∑
i=0

σi ≤
√
C[4‖X·‖2

√
n+ 2

√
‖X·‖2M +M(4 ∨ (log(ρ−1)/2))]
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≤
√
C1/2(

√
n‖X·‖2 +M). (S1.11)

Using the bounds (S1.10) and (S1.11) in place accordingly, we can obtain

(2.8) without extra technical difficulties. The Bernstein-type inequality

(2.9) follows by the Markov equality

P(Sn ≥ x) ≤ E exp(tSn)

exp(tx)
≤ exp

{C1t
2(n‖X·‖2

2 +M2)

1− C2tM(log n)2
− tx

}
and letting t = x/[2C1(n‖X·‖2

2 +M2) + C2M(log n)2x].

S2 Proof of Results in Section 3

Proof of Theorem 3.1. Let Snj(θ) =
∑n

i=1 ϕκ(xij − θ) and

Rnj(θ) =
n∑
i=1

[ϕκ(xij − θ)− Eϕκ(xij − θ)]. (S2.12)

Denote x̃ij = xij−µj. Notice that the function θ 7→ Snj(θ) is non-increasing

and µ̂Hj is the solution to the equation Snj(θ) = 0. For ∆ > 0, we have

P(µ̂Hj −µj ≥ ∆) ≤ P(Snj(µj+∆) ≥ 0) = P
(
Rnj(µj+∆) ≥ −

n∑
i=1

Eϕκ(x̃ij−∆)
)
.

(S2.13)

We first consider the term −
∑n

i=1 Eϕκ(x̃ij −∆) which can be written as

n∑
i=1

[Eϕκ(x̃ij)− Eϕκ(x̃ij −∆)− Eϕκ(x̃ij)].

By elementary manipulation, we can obtain

Eϕκ(x̃ij)− Eϕκ(x̃ij −∆)
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=

∫ κ

−κ
P(y ≤ x̃ij ≤ y + ∆)dy

= ∆−
∫ κ+∆

κ

P(x̃ij ≥ y)dy −
∫ −κ+∆

−κ
P(x̃ij ≤ y)dy.

Under the condition κ−1∆ ≤ 1/2, which will be verified later, we have∫ κ+∆

κ

P(x̃ij ≥ y)dy +

∫ −κ+∆

−κ
P(x̃ij ≤ y)dy

≤
∫ ∞
κ/2

E1{|x̃ij| ≥ y}dy ≤
∫ ∞
κ/2

E
( |x̃ij|

y

)2

dy = 2κ−1σ2
2. (S2.14)

Also, we have

|Eϕκ(x̃ij)| ≤ |E[(x̃ij)1{|x̃ij| ≤ κ}]|+ κ|E1{|x̃ij| > κ}|

≤ κ−1E
(
|x̃ij| ·

|x̃ij|
κ

)
+ κE

( |x̃ij|
κ

)2

≤ 2κ−1σ2
2. (S2.15)

Then it follows that

−
n∑
i=1

Eϕκ(x̃ij −∆) ≥ n(∆− 4κ−1σ2
2), (S2.16)

and by (S2.13),

P(µ̂Hj − µj ≥ ∆) ≤ P(Rnj(µj + ∆) ≥ n(∆− 4κ−1σ2
2)). (S2.17)

Letting θ = µj +∆, we shall apply Theorem 2.1 to Rnj(θ). By the Lipschitz

continuity of the function ϕκ and the bound |ϕκ(x)| ≤ κ, we have, for all

θ ∈ R,

‖ϕκ(xij − θ)− ϕκ(xij,{0} − θ)‖2 ≤ ‖xij − xij,{0}‖2 = δi,j,2. (S2.18)
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By Theorem 2.1, for t > 0,

P(Rnj(µj+∆) ≥ t) ≤ exp
{
− t2

4C1(n‖x·‖2
2 + κ2) + 2C2κ(log n)2t

}
. (S2.19)

Let

t =
√
C1n‖x·‖2

2 log(1/x)+(
√
C1+C2)κ(log n)2 log(1/x), where 0 < x ≤ 1/e.

and n(∆− 4κ−1σ2
2) = t. By (S2.17) and (S2.19), it follows that

P(µ̂Hj − µj ≥ ∆) ≤ e−1/4x.

Choosing κ as in (3.17), condition (3.18) implies κ−1∆ ≤ 1/2 and we also

have ∆ ≤ ∆n(x), where ∆n(x) = (C1σ
∗ log n+C2‖x·‖2)n−1/2

√
log(1/x). On

the other hand, we can derive P(µ̂Hj − µj ≤ −∆n(x)) ≤ e−1/4x similarly.

Then (3.19) follows. And (3.20) is an immediate consequence by letting

x = p−τ−1 and using the Bonferroni inequality.

Proof of Theorem 3.2. We follow the proof of Theorem 3.1. Now we only

assume (1+ε)-th finite moment. The bounds in (S2.14) and (S2.15) become∫ κ+∆

κ

P(x̃ij ≥ y)dy +

∫ −κ+∆

−κ
P(x̃ij ≤ y)dy

≤
∫ ∞
κ/2

E1{|x̃ij| ≥ y}dy ≤
∫ ∞
κ/2

E
[( |x̃ij|

y

)1+ε]
dy = ε−1σ1+ε

1+ε

(2

κ

)ε
.

with κ−1∆ ≤ 1/2 and

|Eϕκ(x̃ij)| ≤ |E[(x̃ij)1{|x̃ij| ≤ κ}]|+ κ|E1{|x̃ij| > κ}|
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≤ κ−εE
[
|x̃ij| ·

( |x̃ij|
κ

)ε]
+ κE

[( |x̃ij|
κ

)1+ε]
≤ 2κ−εσ1+ε

1+ε.

Then it follows that

−
n∑
i=1

Eϕκ(x̃ij −∆) ≥ n
[
∆− (2 + 2ε/ε)κ−εσ1+ε

1+ε

]
.

The dependence measure in (S2.18) becomes

‖ϕκ(xij − θ)− ϕκ(xij,{0} − θ)‖2
2 ≤ Emin{|xij − xij,{0}|2, 4κ2}

= 4κ2Emin
{∣∣∣xij − xij,{0}

2κ

∣∣∣2, 1}
≤ 4κ2E

∣∣∣xij − xij,{0}
2κ

∣∣∣1+ε

= (2κ)1−εδ1+ε
i,1+ε,j.

As a result,

sup
m≥0

ρ−m
∞∑
i=m

‖ϕκ(xij − θ)− ϕκ(xij,{0} − θ)‖2 ≤ (2κ)(1−ε)/2‖x∗· ‖1+ε.

By Theorem 2.1, for t > 0,

P(Rnj(µj+∆) ≥ t) ≤ exp
{
− t2

4C1[n(2κ)1−ε‖x∗· ‖2
1+ε + κ2] + 2C2κ(log n)2t

}
.

Let

t =
√
C1n(2κ)1−ε‖x∗· ‖2

1+ε log(1/x) + (
√
C1 + C2)κ(log n)2 log(1/x),

where 0 < x ≤ 1/e and let n
[
∆− (2 + 2ε/ε)κ−εσ1+ε

1+ε

]
= t. Choosing κ as in

(3.21), κ−1∆ < 1/2 is ensured by condition (τ + 1)C3n
−1(log n)2 log p ≤ 1/4
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and we have ∆ ≤ ∆∗n(x) with

∆∗n(x) = 2Kε

(
C3(log n)2 log(1/x)

n

) ε
1+ε

.

Hence, it follows that P(µ̂Hj − µj ≥ ∆∗n(x)) ≤ e−1/4x. The remaining is the

same to the corresponding part in the proof of Theorem 3.1.

S3 Proof of Results in Section 4

Proof of Corollary 4.1. Let x = p−τ−2. Then

∆n(p−τ−2) =
√
τ + 2(C1σ

∗ log n+ C2‖x·‖2)

√
log p

n
.

Notice that (3.18) satisfies with the assumption (4.24). By the Bonferroni

inequality and Theorem 3.1,

P
(
|µ̂H − µ|∞ ≥ ∆n(p−τ−2)

)
≤ 2e−1/4p−τ−1. (S3.20)

Since

max
1≤j,k≤p

|µ̂Hj µ̂Hk − µjµk| ≤ 2µo|µ̂H − µ|∞ + |µ̂Hj − µj|2∞,

by (S3.20), it follows that

P
(

max
1≤j,k≤p

|µ̂Hj µ̂Hk − µjµk| ≥ 2µo∆n(p−τ−2) + ∆2
n(p−τ−2)

)
≤ 2e−1/4p−τ−1.

(S3.21)

By the Lipschitz continuity of the function ϕκ, the triangle inequality and

the Hölder inequality, we can compute the dependence measure of the pro-
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cess ϕκ(xijxik), i ∈ Z, as

‖ϕκ(xijxik)− ϕκ(xij,{0}xik,{0})‖2

≤ ‖xijxik − xij,{0}xik,{0}‖2

≤ ‖xij‖4‖xik − xik,{0}‖4 + ‖xik,{0}‖4‖xij − xij,{0}‖4

= ω4(δi,4,j + δi,4,k), (S3.22)

which implies

sup
m≥0

ρ−m
∞∑
i=m

‖ϕκ(xijxik)− ϕκ(xij,{0}xik,{0})‖2 ≤ 2ω4‖x·‖4.

Let

∆̃n(p−τ−2) =
√
τ + 2(C1ω

∗ log n+ C2w4‖x·‖4)

√
log p

n
.

Applying Theorem 3.1 on the process (xijxik)i and by the Bonferroni in-

equality again, we have

P
(

max
1≤j,k≤p

|µ̂Hjk − µjk| ≥ ∆̃n(p−τ−2)
)
≤ 2e−1/4p−τ . (S3.23)

Then (4.25) follows from (S3.21) and (S3.23) in view of p ≥ 3 and

|Σ̂H
x − Σx|∞ ≤ max

1≤j,k≤p
|µ̂Hj µ̂Hk − µjµk|+ max

1≤j,k≤p
|µ̂Hjk − µjk|.

Proof of Corollary 4.2. The key step to compute the dependence measure

of the process ϕκ(xijxik − θ), i ∈ Z, is shown below. For any θ ∈ R,

‖ϕκ(xijxik − θ)− ϕκ(xij,{0}xik,{0} − θ)‖2
2



REFERENCES

≤ Emin{|xijxik − xij,{0}xik,{0}|2, 4κ2}

≤ 4κ2E
∣∣∣xijxik − xij,{0}xik,{0}

2κ

∣∣∣1+ε

= (2κ)1−ε‖xijxik − xij,{0}xik,{0}‖1+ε
1+ε.

By the triangle inequality and the Hölder inequality,

‖xijxik − xij,{0}xik,{0}‖1+ε

≤ ‖xij‖2+2ε‖xik − xik,{0}‖2+2ε + ‖xik,{0}‖4‖xij − xij,{0}‖2+2ε

= ω2+2ε(δi,2+2ε,j + δi,2+2ε,k).

We then have

sup
m≥0

ρ−m
∞∑
i=m

‖ϕκ(xijxik)− ϕκ(xij,{0}xik,{0})‖2 ≤ (2κ)(1−ε)/2ω
(1+ε)/2
2+2ε ‖x∗· ‖1+ε.

We can follow the proof of Corollary 4.1 to complete the remaining proof

and thus it is omitted here.

Proof of Theorem 4.3. The proof of Theorem 4.3 essentially follows from

the error bound of Huber type covariance estimator (4.25) or (4.28) and

the arguments in Cai et al. (2011) without extra technical difficulties.
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