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Abstract: Thresholding rules recently became of considerable interest when Donoho

and Johnstone applied them in the wavelet shrinkage context. Analytically simple,

such rules are very efficient in data denoising and data compression problems. In

this paper we find hard thresholding decision rules that minimize Bayes risk for

broad classes of underlying models. Standard Donoho-Johnstone test signals are

used to evaluate performance of such rules. We show that an optimal Bayesian

decision theoretic (BDT) hard thresholding rule can achieve smaller mean squared

error than some standard wavelet thresholding methods, if the prior information

on the noise level is precise.
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1. Introduction

Many researchers and practitioners, notably in signal and image processing,
used thresholding rules in time or Fourier domains before wavelets were devel-
oped. Examples of such rules are hard and soft thresholding functions given, re-
spectively, by δhard(x, λ) = x 1(|x| > λ) and δsoft(x, λ) = (x− sign(x)λ) 1(|x| >

λ), where λ is the threshold and 1(·) is the indicator function. In the con-
text of nonparametric regression, Donoho and Johnstone (references in Donoho
(1997)) showed that such simple rules produce regression estimates which possess
asymptotic optimality properties for a variety of function spaces. An extensive
simulation study of MSE properties of simple thresholding rules was performed
by Bruce and Gao (1996). Hard and soft thresholding rules can be regarded as
Bayesian solutions with improper and proper priors, respectively, as discussed by
Fan (1997).

In this paper we find an “optimal” threshold λ by minimizing the (integrated)
Bayes risk over the class of hard threshold rules δhard. Instead of finding unre-
stricted Bayes shrinkage rules which never threshold under the squared error loss,
we find the rules that are Bayes in the class of δhard-type rules. In this respect,
our approach is “restricted Bayes.” When the risk-minimizing λ∗ exists, the
rule δhard(x, λ∗) will be called Bayesian decision theoretic (BDT) rule, and the
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induced shrinkage estimator, the BDT estimator. For unrestricted Bayesian ap-
proaches see, e.g., Vidakovic (1998), Chipman, McCulloch and Kolaczyk (1997)
and Clyde, Parmigiani and Vidakovic (1998).

We are interested not only in finding the optimal rules with good denoising
properties, but also in identifying the model-prior pairs which produce nontrivial
risk-minimizing values for λ. Both problems are important because we want
to provide both a sound theoretical background, based on decision theory, and
practical guidelines on which model-based shrinkage should be performed. The
discussion on model-prior pairs aims to help users choose models and priors for
wavelet thresholding. Furthermore, our approach allows for the use of prior
information on the unknown signal of interest and the level of noise.

Let y
˜

be a data vector of dimension (size) N . For simplicity we choose N

to be a power of 2, say 2n, though the generalization to different sample sizes is
straightforward.

Suppose that the vector y
˜

is wavelet-transformed to a vector x
˜
, x
˜

= Wy
˜
. The

transformation is linear and orthogonal and can be described by an orthogonal
matrix W of dimension N × N . In practice, one performs the discrete wavelet
transformation without finding the matrix W explicitly but by using fast filtering
algorithms. These algorithms are based on so-called quadrature mirror filters that
uniquely correspond to the wavelet of choice.

Basics on wavelets can be found in many texts, monographs and papers
at many different levels of exposition, e.g. Daubechies (1992), Walter (1994),
Hernandez and Weiss (1996).

One of the strengths of wavelet transformations in statistics is that they
“unbalance” the data, meaning that most of the �2-norm of the data (which is
preserved in the transformation) concentrates in only a few wavelet coefficients.
Wavelets also form unconditional bases for a range of function spaces. Conse-
quently the magnitudes of wavelet coefficients fully describe some properties of
the decomposed function, such as smoothness.

Suppose the observed data y
˜

is the sum of an unknown signal s
˜

and random
noise ε

˜
, with

yi = si + εi, i = 1, . . . , n. (1)

In the wavelet domain (after applying a linear and orthogonal wavelet transfor-
mation W ), expression (1) becomes xi = θi + ηi, i = 1, . . . , n, where xi, θi, and
ηi are the ith coordinates of Wy

˜
,Ws

˜
and Wε

˜
, respectively. For notational sim-

plicity, the double indexing typical in discrete wavelet representations is replaced
by a single index.

Assuming a location model [xi|θi] ∼ f(xi − θi) and a prior [θi] ∼ π(θi) we
find the Bayes risk of the decision rule δhard.
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Donoho and Johnstone proposed wavelet shrinkage, a class of simple and
efficient procedures for nonparametric estimation of functions and densities based
on thresholding of wavelet coefficients. An overview is given by Donoho and
Johnstone (1994, 1995).

Wavelet shrinkage can be described as a three-step procedure:
1. Data (a noisy signal, measurements, blurred image pixels, etc.) are trans-
formed by a discrete wavelet transformation from the “time domain” to the
“wavelet domain”. (y

˜
→ x

˜
)

2. The transformed data are shrunk. (x
˜
→ θ̂

˜
)

3. The processed data are transformed back to the “time domain”. (θ̂
˜
→ ŝ

˜
)

The choice of a shrinkage rule in Step 2 is important. Many different thresh-
olding methods have recently been proposed. An excellent overview of shrinkage
rules based on thresholding is given by Nason (1995).

Here we narrow our attention to hard thresholding rules δhard. Note that
δhard is fully specified by the threshold λ.

We compare our method with the nonadaptive shrinkage methods of Donoho
and Johnstone in (1994), (1995) (hard thresholding with the universal thresh-
old, UNIV) and that of Bruce and Gao (1996) (hard thresholding with an opti-
mal minimax threshold, OPT). We also provide a comparison with the adaptive
Bayesian wavelet shrinkage (ABWS) method of Chipman, McCulloch and Ko-
laczyk (1997).

The paper is organized as follows. In Section 2, we give the decision theoretic
background necessary for optimality considerations, and identify models that
have nontrivial minimizers of the Bayes risk for a general class of loss functions.
In Section 3, we discuss the selection of models and priors and elaborate in detail
on the normal-double exponential setup. Section 4 contains some simulation
results where we use the standard Donoho-Johnstone test functions for mean
squared error comparisons of our method with the aforementioned methods.

2. Results

Given the real space R and a subset Θ, let X be a random variable on a
dominated statistical space denoted by (R,BX , {Pθ, θ ∈ (Θ,BΘ)}), with density
f(x|θ). Let Π denote a probability measure on the parameter space (Θ,BΘ),
with density π(θ).

Let δ(x), A and L(θ, a) denote, respectively, a decision rule, the action space
and a loss function, with x∈X, θ∈Θ and a∈A. By R(θ, δ)=EX|θ(L(θ, δ(X))) we
denote the frequentist risk, while the Bayes risk is given by r(π, δ)=

∫
R(θ, δ)π(θ)dθ

= Eπ(R(θ, δ)). Here we consider the class D of decision rules, D = {δλ(x) =
x · 1(|x| > λ), λ ∈ [0,∞)}, which corresponds, in the wavelet world, to the class
of hard thresholding rules.
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2.1. General results

Suppose that f(x|θ) = f(x−θ) for any (x, θ) ∈ BX⊗BΘ, and that both f and
π are symmetric functions. Consider a symmetric loss function L(θ, a) = L(θ−a)
and the decision rule δλ(x) from the class D. It follows that L(θ, δλ) = L(x − θ)
(for |x| > λ) or L(θ) (for |x| ≤ λ). It can be readily shown that the risk
function and the Bayes risk, with respect to the prior π, of the decision rule
δλ are given, respectively, by R(θ, δλ) = C +

∫ λ
−λ[L(θ)−L(θ−x)]f(x − θ)dx and

r(π, δλ) = C +
∫
R[

∫ θ+λ
θ−λ [L(θ) − L(t)]f(t)dt]π(θ)dθ, Here C =

∫
R L(t)f(t)dt is the

risk function (and the Bayes risk) when considering the decision rule δ(x) = x

for any real x. We are looking for λ∗ which improves upon the Bayes risk,
r(π, δ0) = C.

Searching for the optimal λ, we first consider the derivative of r(π, δλ) to find
λ∗, i.e. the rule δλ∗ which minimizes the Bayes risk. Suppose the usual conditions
for the differentiability under the integral sign are fulfilled to get following lemma.

Lemma 2.1.

∂r(π, δλ)
∂λ

= r
′
(λ) = 2

∫
R

[L(θ)−L(θ−λ)]f(θ−λ)π(θ)dθ.

Proof. By differentiating r(π, δλ) with respect to λ we get

r
′
(λ) =

∫
R

[L(θ)−L(θ+λ)]f(θ+λ)π(θ)dθ +
∫
R

[L(θ)−L(θ−λ)]f(θ−λ)π(θ)dθ.

The result then follows because the symmetry of f, π and L implies that∫
R L(θ)f(θ+λ)π(θ)dθ =

∫
R L(θ)f(θ−λ)π(θ)dθ and

∫
R L(θ+λ)f(θ+λ)π(θ)dθ=∫

R L(θ−λ)f(θ−λ)π(θ)dθ.

It should be noted that r
′
(0) = 0, while limλ→∞ r

′
(λ) = 0 under very mild

conditions.
A useful tool in finding models and priors which result in nontrivial λ∗ (i.e.,

away from 0 and ∞) is given by the following

Remark 2.1. If λ∗ maximizes Bayes risk when f is the model for X, and π is
the prior on θ, then λ∗ minimizes Bayes risk when π is the model and f is the
prior. Indeed, by the transformation θ−λ = −t and the symmetry of f and π, it
follows that

∫
R[L(θ)−L(θ−λ)]π(θ−λ)f(θ)dθ = − ∫

R[L(θ)−L(θ−λ)]f(θ−λ)π(θ)dθ.

Example 2.1. We will say that the random variable X has a double-exponential
DE(θ, β) distribution if the density of X has the form: f(x) = β exp{−β|x −
θ|}/2, β > 0.

For X ∼ DE(θ, 1) and θ ∼ N (0, 1), it can be shown (Section 3.1) that
λ∗ = .94055 maximizes the Bayes risk under a squared loss function, while it
minimizes the Bayes risk when X ∼ N (θ, 1) and θ ∼ DE(0, 1).
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2.2. Case f = π

The next theorem gives important practical advice on which models and
priors are not to be chosen, if interested in nontrivial λ∗.

Theorem 2.1. Given f(x|θ) = f(x− θ), let f(t) = π(t) for all t ∈ R. It follows
that the Bayes risk is constant, i.e. r(π, δλ) = C, where C =

∫
R L(t)f(t)dt.

Proof. Consider r(π, δλ) − C =
∫
R L(θ)[

∫ θ+λ
θ−λ f(t)dt]f(θ)dθ − ∫

R[
∫ θ+λ
θ−λ L(t)f(t)dt]

f(θ)dθ. The two terms in the right-hand side of the equation coincide; this follows
by applying Fubini’s Theorem to the second term.

Under the above conditions, any number in [0,∞] can be chosen as λ∗.
Therefore, the choice of the same model and prior is to be avoided in the search
of a threshold λ∗, as shown by the following example involving the normal model
and prior.

Example 2.2. (Normal) Assume that X ∼ N (θ, σ2), θ ∼ N (0, σ2), with σ2

known. It can be shown that r(π, δλ) = σ2 for L(t) = t2. Similarly, r(π, δλ)
equals

√
2/πσ for L(t) = |t| and 2Φ(−µ) for L(t) = 1(|t| > µ).

2.3. Case f �= π

Consider the case when the model f(x−θ) and the prior π(θ) have the same
functional form, apart from a scale parameter. We will see that λ∗ cannot be a
positive, finite number when the ratio of model and prior is decreasing.

Many standard distributions satisfy the conditions of the next Theorem,
whose proof is in the Appendix.

Theorem 2.2. Consider a density f(x|θ) = f(x − θ), the prior π(θ), and a
symmetric loss function L such that L(t) is nondecreasing for nonnegative t. If
f(t)/π(t) is decreasing, then λ∗ = 0; if it is increasing, then λ∗ = ∞.

If the noise ε
˜

in y
˜

= s
˜
+ ε

˜
is i.i.d. normal, then orthogonality and linearity of

the wavelet transformation ensure that the noise η
˜

in x
˜

= θ
˜

+ η
˜

is i.i.d. normal
as well. When σ2 in xi ∼ N(θi, σ

2) is known, one may proceed by specifying a
prior on θi. However, if σ2 is not known, it should be integrated out by elicit-
ing an appropriate prior π(σ2), before proceeding with the marginal likelihood
f(xi|θi) =

∫
φσ(xi−θi)π(σ2)dσ2. The function φσ(xi−θi) is the density function

of the normal N(θi, σ
2) law and π(σ2) is a prior on σ2.

For instance, if π(σ2) is an exponential distribution, the resulting marginal
likelihood f(xi−θi) is a double exponential; whereas if π(σ2) is an inverse gamma,
then f(xi − θi) is distributed as t.

We consider only three types of models on xi: the normal, double exponen-
tial, and t. Since the three distributions are symmetric and exhibit different tail
behavior, we use them as candidates for the prior on θi as well.
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For any possible combination of the above distributions, we check whether
the ratio of model and prior is strictly monotone, looking for conditions under
which λ∗ equals either 0 or ∞. In absence of monotonicity, the proposed decision
theoretic approach to thresholding could be applicable, since it could lead to
0 < λ∗ < ∞. Notice that the number of pairs of interest can be reduced because
of Remark 2.1 and Theorem 2.2. For example, if the pair (f(x − θ), π(θ)) gives
a trivial λ∗, then the pair (π(x − θ), f(θ)) also gives a trivial λ∗.

The next example shows that, once the model and the prior have the same
functional form, λ∗ = 0 or ∞, depending upon whether the variance of the model
is smaller or larger than the variance of the prior. Similar result holds for double
exponential and t distributions.

Example 2.3. (Normal - Normal) Let f(x − θ) ∝ exp{−(x − θ)2/(2σ2
f )}

and π(θ) ∝ exp{−θ2/(2σ2
π)}. For any 0 < x1 < x2, it follows that ∆(x1, x2) ∝

exp{−x2
1/(2σ

2
f ) − x2

2/(2σ
2
π)} − exp{−x2

2/(2σ
2
f ) − x2

1/(2σ
2
π)}, which is positive if

and only if σ2
f < σ2

π. Therefore, applying Theorems 2.1 and 2.2, it follows that
λ∗ equals 0 for σ2

f < σ2
π, ∞ for σ2

f > σ2
π or it can take any value for σ2

f = σ2
π.

The choice of different models and priors could give non trivial λ∗, as in
the following case (the pairs t/double exponential and t/normal can be treated
similarly).

Example 2.4. (Normal - Double Exponential) Let f(x − θ) ∝ exp{−(x −
θ)2/(2σ2

f )} and π(θ) ∝ exp{−β|θ|}. For any 0 < x1 < x2, it follows that
∆(x1, x2) ∝ exp{−x2

1/(2σ
2
f )−βx2}− exp{−x2

2/(2σ
2
f )−βx1}, which is positive if

and only if x1+x2 > 2σ2β. Therefore, the ratio f(t)/π(t) is not strictly monotone
and it is possible that 0 < λ∗ < ∞, as shown later in Section 3.1.

It is worth mentioning that the conditions in Theorem 2.2 do not depend on
the choice of the loss function L(t), provided that it is nondecreasing in |t| and
symmetric.

We might consider other priors, for example uniform distributions and two-
point masses, both symmetric around 0. Our numerical experience leads us to
conjecture that λ∗ equals either 0 or ∞. Improper priors, even though strongly
questioned by many Bayesians, are often considered in literature. A typical choice
of an improper prior about the location parameter θ, defined all over R, is given
by π(θ) = 1 (or any other constant). It can be shown that such a prior leads to
λ∗ = ∞.

In Subsection 3.1 we thoroughly discuss a situation (Normal model, Double
exponential prior) where 0 < λ∗ < ∞, which is suitable for wavelet threshold-
ing. Based on that particular model we perform the simulations discussed in
Section 4.
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3. Selection of Models and Priors

In this section we provide practical guidance on how to choose models and
priors.

As discussed in Section 2, we assume a normal model with a location param-
eter θ and the nuisance parameter σ2. We will use our prior knowledge to specify
a distribution on σ2, necessary for obtaining the marginal likelihood on θ.

If σ2 is known or estimable, then the prior is a point mass and the marginal
likelihood becomes normal. An example with the normal likelihood will be dis-
cussed in detail in Subsection 3.1.

When information on σ2 is vague, we consider two possible cases:
(i) If we want to be noninformative about σ2, it is reasonable to specify an

exponential prior. This is justified since an exponential distribution min-
imizes the Fisher information in the class of all distributions with a fixed
first moment supported on [0,∞). The corresponding marginal likelihood is
a double exponential, being an exponential scale mixture of normals.

(ii) When we have more information about σ2, then it is reasonable and mathe-
matically convenient to specify an inverse gamma prior. The inverse gamma
priors can model a variety of prior beliefs on σ2, such as information about
the most probable values, some moments, etc. The corresponding marginal
likelihood is t.
The choice of the prior on θ is another key issue. It is natural to assume that

the prior is symmetric and unimodal about zero since the detail coefficients should
not contain any systematic aberration. Also, our analysis suggests that the
functional forms of the prior and the model should be different. We consider only
three priors: normal, double exponential and t. Apart from their mathematical
convenience, these three priors describe a wide variety of tail behaviors.

For example, if the marginal likelihood is a double exponential, we suggest
using either normal or t priors depending on the prior information available
about the signal itself. Smooth signals tend to give fine-scale wavelet coefficients
that can be modeled by light-tailed distributions, like the normal one. On the
other hand, if it is believed that the signal has discontinuities, some of the fine-
scale wavelet coefficients will be large. In such cases, modeling by heavy tailed
distributions, such as the t, is suggested.

Finally, one has to specify the scale parameter of the prior distribution.
Scale parameters that contribute to the small variability of θ reflect our prior
willingness to substantially shrink the corresponding wavelet coefficient.

3.1. Normal model and double exponential prior

In this subsection we give in detail one illustrative example. The optimal
threshold is derived as a function of the hyperparameter of the prior, and com-
parisons are made with the universal threshold.
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Consider the normal model X ∼ N (θ, σ2), in which σ2 is assumed known
(or estimable), and the double exponential prior θ ∼ DE(0, β). Let the loss be
the squared error, L(t) = t2. Under such assumptions, it follows that

r
′
(λ)/λ ∝

∫
R

(2θ − λ) exp{−(θ−λ)2/(2σ2)} exp{−β|θ|}dθ

∝
∫
R

(2θσ + λ) exp{−θ2/2 − β|σθ + λ|}dθ

∝ exp{βλ + (βσ)2/2}
∫ −λ/σ

−∞
(2θσ + λ) exp{−(θ − βσ)2}dθ

+ exp{−(βλ + (βσ)2/2}
∫ ∞

−λ/σ
(2θσ + λ) exp{−(θ + βσ)2}dθ

∝ exp{βλ + (βσ)2/2}{−2σφ(−λ/σ − βσ) + (2βσ2 + λ)Φ(−λ/σ − βσ)}
+ exp{−βλ + (βσ)2/2}{2σφ(−λ/σ + βσ)

+(−2βσ2 + λ)[1 − Φ(−λ/σ + βσ)]}.

Thus, λ∗ can be found by solving r
′
(λ) = 0 and checking that it is a minimum.

Figure 1 (left) depicts r′(λ) for σ = β = 1. The optimal λ∗ is 0.94055. For this
specific case, the Bayesian solution is the soft thresholding rule with λ = 1 (see
e.g. Fan (1997)).

A useful approximation to λ∗ for large β is given by λ̂ = 2βσ2. This follows
by observing that r

′
(λ)/λ is a continuous function and

0 < r
′
(λ̂) < 4β2σ2 exp{−2β2σ2}/3π. (2)

The inequality (2) follows from computing r
′
(λ̂) = λ̂β2σ/π exp{5(βσ)2/2} ∫ −3βσ

−∞
exp{−t2/2}dt, observing that r

′
(λ̂) is positive, and from the fact that the integral

can be bounded from above by
∫ −3βσ
−∞ exp{3βσt/2}dt. The approximation result

relies on the continuity of r
′
(λ), and the fact that the right-hand side in (2) is

approximately equal to zero for large values of βσ.
Numerical computations of λ∗ for fixed σ = 1 are summarized in Figure 1

(right). Non-monotonicity of f(t)/π(t) in Theorem 2.2 does not ensure existence
of non-trivial λ∗; note that λ∗ = 0 for β < 0.9 (approx.). Eliciting extreme
(small or large) values of β may cause unsatisfactory MSE performance of BDT
rules. This is evident from the dependence of λ∗ from β, as illustrated in Figure
1 (right). No thresholding is performed for small β and severe oversmoothing
occurs for large β.



BAYESIAN WAVELET THRESHOLDING 191

0.5 1 1.5 2 λ

β = 1

-0.0025

0.0025

0.005

0.0075

0.01

0.0125

r′

1

2

2

beta

th
re

sh
o
ld

0

3

4

4 5

6
8

1
0

Figure 1. N (θ, 1) model and DE(0, β) prior. (left) The derivative of Bayes
risk rλ for β = 1; (right) Threshold λ∗ (continuous line) and approximation
λ̂ (dotted line) as functions of β.

Figure 1 (left) gives the plot of r′ for β = 1 and σ = 1. Similar results can
be obtained by keeping β fixed and allowing σ to vary. We noticed that λ∗ is
sensitive to the choice of the prior and that the user must be careful in choos-
ing the parameter values. Sensitivity to a prior is a well studied problem in
Bayesian analysis. Discussion on this issue exceeds the scope of this paper. See
Berger, Betrò, Moreno, Pericchi, Ruggeri, Salinetti, and Wasserman (1996) for a
thorough discussion.

Remark 3.1. In the normal-double exponential case we can give a single heuris-
tic rule for eliciting the parameter β based on inspecting the minimum of the
AMSE graphs (as in Figure 2). For a variety of signals and images we have
found that, in the case of unknown σ2, the choice of β =

√
0.4 log N/σ̂, where

N is a sample size and σ̂ is an estimator of the standard deviation of the noise,
gives a good thresholding rule whenever the signal-to-noise ratio (SNR), defined
as the ratio of standard deviations of the signal and the noise, is moderate. Notice
that the corresponding threshold λ ≈ √

1.6 log N σ̂ is smaller than the standard
Donoho and Johnstone threshold λU . This is in agreement with findings of Bruce
and Gao (1996) in the context of optimal minimax thresholding.
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Figure 2. AMSE as a function of β compared with ABWS, optimal minimax,
and universal AMSE errors. Panel (upper left) is for bumps, (upper right)
is for blocks, (lower left) is for doppler, and (lower right) is for heavisine
test functions. The legend is provided in Panel (upper left).

4. Simulations

In this section we consider BDT thresholding estimators for the standard
test signals (bumps, blocks, doppler and heavisine). The scaled signals
are affected by i.i.d. normal noise with unit variance. The length of signals is
n = 1024 and decomposing wavelets are Haar for blocks, and least asymmetric
Daubechies’ of order 8 for bumps, doppler, and heavisine. The signal-to-noise
ratio SNR is 7 and the variance of noise is chosen to match the conditions used
by Bruce and Gao (1996) and Chipman, McCulloch and Kolaczyk (1997). The
number of levels in the wavelet decompositions is the maximum (yielding a single
coarse detail coefficient and a single “smooth” coefficient). Shrinkage has been
applied only to the detail coefficients and the “smooth” coefficient has been left
intact.
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We evaluate the performance of BDT estimators by comparing the averaged
mean squared errors, AMSE =

∑n
i=1

∑N
j=1(θi − θ̂i,j)2/(Nn), where N is the num-

ber of simulated runs, θi is the true signal value, θ̂i is the estimate of the signal
value from a simulation, and θ̂i,j is θ̂i in the jth simulation run.

The simulations are illustrated in Figure 2 where, for a range of β’s, we
depict the AMSE obtained from N = 10 simulation runs. The AMSE’s from
ABWS, OPT, and UNIV methods found in Bruce and Gao (1996) and Chipman,
McCulloch and Kolaczyk (1997) are provided for comparison purposes. The
panel (upper left) depicts the AMSE for the bumps signal, (upper right) for the
blocks, (lower left) for the doppler, and (lower right) panel for the heavisine

test functions.
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Figure 3. BDT estimators of the standard Donoho and Johnstone test signals.

We have found that the hard thresholding rule using the λ� threshold (BDT
rule) can achieve AMSE comparable to that of the adaptive method, ABWS.
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The AMSE performance clearly depends on the choice of the parameter β. For
instance in the case of the blocks signal, better AMSE than for the UNIV method
can be expected for β in the approximate range of [1.4, 2.2].

Figure 3 gives the graphs of the processed signals obtained for the risk-
minimizing β. We also noticed that repeated simulations gave stable and com-
parable reconstructions.

We also provide summaries of AMSE of BDT estimators for different sample
sizes and signal-to-noise ratios. For sample sizes n = 256, n = 512, and n = 1024,
SNR= 3 and 7, and the four Donoho and Johnstone test functions, we found
means and standard deviations of MSE based on 100 simulation runs, see Table
1.

Table 1. Descriptive statistics of MSE for BDT thresholding estimators based
on N = 100 runs.

size SNR Ave. MSE BDT SD MSE BDT Ave. λ∗ SD λ∗

(Ave. MSE Univ) (SD MSE Univ.) (λ∗/λuniv)

256 3 0.6716 (1.0284) 0.1027 (0.1119) 2.0921 (0.628) 0.3107
7 0.6614 (0.8553) 0.0678 (0.0943) 2.3093 (0.693) 0.3019

bumps 512 3 0.4673 (0.6060) 0.0505 (0.0640) 2.6395 (0.747) 0.2779
(symm 8) 7 0.4814 (0.6449) 0.0521 (0.0658) 2.5350 (0.718) 0.2789

1024 3 0.3222 (0.0395) 0.0318 (0.0395) 2.8411 (0.763) 0.2456
7 0.3784 (0.4812) 0.0320 (0.0417) 2.7464 (0.737) 0.2746

256 3 0.3827 (0.5127) 0.0780 (0.0976) 2.6326 (0.791) 0.3234
7 0.2646 (0.3100) 0.0536 (0.0673) 3.0113 (0.904) 0.4046

blocks 512 3 0.2282 (0.3215) 0.0349 (0.0493) 2.8226 (0.799) 0.2707
(haar) 7 0.1543 (0.1808) 0.0323 (0.0369) 3.1573 (0.894) 0.3348

1024 3 0.1397 (0.1728) 0.0192 (0.0263) 3.1518 (0.846) 0.2886
7 0.1046 (0.1228) 0.0187 (0.0248) 3.3565 (0.901) 0.3669

256 3 0.3917 (0.5074) 0.0672 (0.0731) 2.6737 (0.803) 0.3417
7 0.4205 (0.5075) 0.0652 (0.0828) 2.7109 (0.814) 0.3455

doppler 512 3 0.2303 (0.2574) 0.0335 (0.0354) 3.1984 (0.906) 0.3315
(symm 8) 7 0.3186 (0.4094) 0.0403 (0.0624) 2.7806 (0.787) 0.2713

1024 3 0.1554 (0.1695) 0.0163 (0.0177) 3.3977 (0.912) 0.4355
7 0.2108 (0.2527) 0.0258 (0.0292) 3.1265 (0.840) 0.2715

256 3 0.1580 (0.1786) 0.0316 (0.0420) 3.0248 (0.908) 0.5424
7 0.2352 (0.2914) 0.0573 (0.0598) 2.9018 (0.871) 0.4058

heavisine 512 3 0.1199 (0.1394) 0.0256 (0.0292) 3.3658 (0.953) 0.5290
(symm 8) 7 0.1527 (0.1877) 0.0278 (0.0378) 3.1214 (0.884) 0.3728

1024 3 0.0518 (0.0561) 0.0079 (0.0105) 3.6740 (0.986) 0.5578
7 0.0886 (0.0998) 0.0153 (0.0178) 3.5218 (0.946) 0.3959



BAYESIAN WAVELET THRESHOLDING 195

We compare AMSE of BDT estimators with those obtained by universal
thresholding. Standard deviations of MSE’s are compared as well. The numbers
in brackets correspond to UNIV estimators. In the last two columns we provide
average BDT thresholds, their ratios with the universal threshold (numbers in
brackets) and the sample standard deviations of BDT thresholds. It is evident
from Table 1 that AMSE for BDT estimators are in all cases smaller than those
for the universal threshold. The corresponding standard deviations of MSE are
smaller as well. We found that the size of the BDT threshold is, usually, 60-90%
of the size of a corresponding universal threshold. The size and performance of
a BDT threshold is comparable to an optimal minimax threshold of Bruce and
Gao (1996), Table 3, page 739.

5. Discussion and Conclusions

In this paper, we have outlined an approach for Bayesian wavelet shrinkage
based on the decision theoretic paradigm. The shrinkage is simple: a unique
hard thresholding rule is applied to all the detail wavelet coefficients. When
there is precise information about the parameters of the model, decision theoretic
shrinkage can lead to mean squared error performance exceeding that of some of
the popular shrinkage techniques.

We conclude by discoursing on some potential developments of our approach.
Similar work can be done when the distribution depends on a scale parameter.
Such models are interesting when the noise in the wavelet domain is multiplica-
tive. Theoretical results about scale-parameter models, similar to those presented
in Section 3 of this paper, can be found in Ruggeri and Vidakovic (1996).

The BDT approach may be further generalized by specifying the models in
the wavelet domain which are level dependent. For instance, if the prior model is
normal, the variance may be a decreasing function of the level, as suggested by
Wahba (1981), in the context of density estimation by classical orthogonal series.
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Appendix

Proof of Theorem 2.2. By applying the symmetry properties of f, π and L

and the transformation θ−λ = −t, it follows that
∫
R

[L(θ)−L(θ−λ)]f(θ−λ)π(θ)dθ

= −
∫ ∞

λ
[L(θ)−L(θ−λ)]f(θ)π(θ−λ)dθ +

∫ λ

0
[L(θ)−L(θ−λ)]f(λ − θ)π(θ)dθ

+
∫ ∞

λ
[L(θ)−L(θ−λ)]f(θ−λ)π(θ)dθ

=
∫ λ

0
[L(θ)−L(θ−λ)]f(λ−θ)π(θ)dθ

+
∫ ∞

λ
[L(θ)−L(θ−λ)][f(θ−λ)π(θ)−f(θ)π(θ−λ)]dθ

= I1(λ) + I2(λ).

Let τλ(θ) = f(θ−λ)π(θ)− f(θ)π(θ−λ). Suppose that f(t)/π(t) is decreasing. It
then holds that ∆(x1, x2) = f(x1)π(x2) − f(x2)π(x1) > 0 for all 0 < x1 < x2.

Consider I2(λ) =
∫ ∞
λ [L(θ)−L(θ−λ)]τλ(θ)dθ. Since θ > θ−λ ≥ 0 for all θ ≥ λ

and since L(t) is nondecreasing for nonnegative t, observe that [L(θ)−L(θ−λ)] ≥ 0.
Similarly, ∆(θ−λ, θ) = τλ(θ) > 0, so that I2(λ) > 0.
Consider now I1(λ). It follows that

I1(λ) =
∫ λ

0
L(θ)f(λ − θ)π(θ)dθ +

∫ λ

0
L(θ)f(θ)π(θ−λ)dθ

=
∫ λ

0
L(θ)τλ(θ)dθ

=
∫ λ/2

0
[L(θ)−L(θ−λ)]τλ(θ)dθ.

By an argument similar to the previous one, it follows that I1(λ) > 0, since both
[L(θ)−L(θ−λ)] and τλ(θ) are negative. Also λ∗ = 0, since r

′
(λ) > 0 for all λ > 0.

When f(t)/π(t) is increasing, it can be similarly proved that λ∗ = ∞ since
r
′
(λ) < 0 for all λ > 0.
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