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Abstract: We study a sparse negative binomial regression (NBR) for count data

by showing the non-asymptotic advantages of using the elastic-net estimator. Two

types of oracle inequalities are derived for the NBR’s elastic-net estimates by using

the Compatibility Factor Condition and the Stabil Condition. The second type of

oracle inequality is for the random design and can be extended to many `1 + `2 reg-

ularized M-estimations, with the corresponding empirical process having stochastic

Lipschitz properties. We derive the concentration inequality for the suprema em-

pirical processes for the weighted sum of negative binomial variables to show some

high–probability events. We apply the method by showing the sign consistency,

provided that the nonzero components in the true sparse vector are larger than a

proper choice of the weakest signal detection threshold. In the second application,

we show the grouping effect inequality with high probability. Third, under some

assumptions for a design matrix, we can recover the true variable set with a high

probability if the weakest signal detection threshold is large than the turning pa-

rameter up to a known constant. Lastly, we briefly discuss the de-biased elastic-net

estimator, and numerical studies are given to support the proposal.

Key words and phrases: De-biased elastic-net, empirical processes, high-dimensional

count data regressions, oracle inequalities, sign consistency, stochastic Lipschitz

condition.

1. Introduction

In this study, we focus on regression problems involving count data (some-

times called categorical data). The responses are denoted as {Yi}ni=1, each of

which follows a univariate discrete distribution. Here, the covariates {Xi :=

(xi1, . . . , xip)
T }ni=1 ∈ Rp are supposed to be a deterministic or random variable.

If they are random, we can deal with the model by conditioning on design ma-

trix X := (X1, . . . ,Xn)T . The conditional expectation of Yi|XT
i is related to

XT
i β
∗ after a transformation using a link function, where β∗ = (β∗1 , . . . , β

∗
p)T

is the unknown true coefficient vector. The Poisson regression is a well-known
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example. Covariates in a count data regression may take discrete or continuous

values. Here, important examples includes logistic regression, Poisson regression

and negative binomial regression (NBR), amony others. There are many mono-

graphs on statistical models for counting data; see for example, Hilbe (2011) and

Tutz (2011).

A commonly used regression model for count data is the Poisson generalized

linear model, particularly in the economic, social, and biological sciences, see

Tutz (2011). A Poisson regression considers that the response variables Yi’s are

nonnegative integers that follow the Poisson distribution, i.e. P (Yi = yi|λ i) =

(λyii /yi!)e
−λi for i = 1, 2, . . . , n, where the expectation of Yi is λi := E(Yi). We

require that the positive parameter λi be related to a linear combination of p

covariate variables. Specifically, the Poisson regression assumes the logarithmic

link function η(λi) =: log λi = XT
i β
∗. Owing to the nature of the Poisson

distribution, the variance is equal to the expectation: E(Yi |Xi ) = Var(Yi |Xi ) =

λi, called equidispersion.

However, in practice, we often encounter overdispersion. In this case, the

variance of count data is greater than the mean comparing to Poisson count

data. For example in RNA-Seq gene expression data, the negative binomial (NB)

distribution provides a good choice for modeling a set of count variables and

related high-dimensional sets of quantitative or binary variables are of interest,

that is p � n. As evidence of overdispersion, in real data, the variance of

the response variable is greater than its mean; see Rauschenberger et al. (2016)

and Qiu, Chen and Nettleton (2018). To test whether the variance of count

data is greater than the expectation, Cameron and Trivedi (1990) proposed the

Cameron–Trivedi test:

H0: Var(Yi |Xi ) = E(Yi |Xi )=:µi vs. H1: Var(Yi |Xi ) = µi+αg(µi),

where g(µi) = µi or g(µi) = µ2i , and the constant α is the value to be tested.

Therefore, the hypothesis test is alternatively written as H0: α = 0 vs. H1: α 6=
0. For α 6= 0, the count data is overdispersed if α > 0, and it is underdispersed if

α < 0. Here the underdispersion means that the variance of the data is less than

the mean, which suggests that a binomial regression (see Section 3.3.2 of Tutz

(2011)) or a COM-Poisson regression (see Sellers and Shmueli (2008)) should be

suitable. More details on the overdispersion test can be found in Chapter 7 of

Hilbe (2011).

When testing for overdispersion, we have to correct the hypothetical distri-

butions and select a flexible distribution, such as some two-parameter models. A
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suggested overdispersed distribution is the negative binomial (NB) distribution

that is a particular case of the discrete compound Poisson (DCP) family. NB

also belongs to the class of infinitely divisible distribution. For more detailed NB

and DCP distributions properties, please refer to Section 5.9.3 of Johnson, Kemp

and Kotz (2005) and Zhang, Liu and Li (2014).

In low– and fixed–dimensional regressions with p < n, researcher often use

the maximum likelihood estimator (MLE) of the regression coefficients. Here,

we employ the average negative log-likelihood function of the NBR (i.e. a convex

empirical process indexed by n):

`n(β) := − 1

n

n∑
i=1

[YiX
T
i β − (θ + Yi) log(θ + eX

T
i β)], β ∈ Rp;

see Section 2.1. Here, `n(β) is also termed the empirical NBR loss function

in the field of machine learning point. If θ is given (or treated as a tuning

parameter), the NBR actually belongs to the class of generalized linear models

(GLMs) with noncanonical links. It should be noted that the coefficient of Yi in

the log-likelihood of a common GLM with a canonical link function is linear in

XT
i β, whereas the coefficient of Yi in the log-likelihood of the NBR is nonlinear

in XT
i β owing to the noncanonical link function.

In a high-dimensional setting, a powerful tool for remedying the MLE is to

add the penalty function to the `n(β) to get the penalized (regularized) likelihood

estimator. Here, we study the elastic-net regularized MLE defined as follows.

Definition 1. (Elastic-net method of NBR) For the empirical NB loss function

`n(β), let λ1, λ2 > 0 be tuning parameters. Then, the elastic-net estimates are

defined as

β̂ =: β̂(λ1, λ2) = argmin
β∈Rp

{`n(β) + λ1 ‖β‖1 + λ2‖β‖22}, (1.1)

where ‖β‖q := (
∑p

i=1 |βi|
q)1/q is the lq-norm of β, for 1 ≤ q <∞.

In the section below, we usually denote β̂ as β̂(λ1, λ2), for simplicity.

Chapter 3 of Tutz (2011) begins with three important criteria for penalized

estimation methods for sparse coefficient vectors:

1◦. Existence of unique estimates: this is where MLEs often fail;

2◦. Prediction accuracy: a model should yield a decent prediction of the outcome;

3◦. Sparseness and interpretation: a parsimonious model that contains the stro-

ngest effects is easier to interpret than a big model with hardly any structure.
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For 3◦, as the penalty function, we study the elastic-net estimate because

it enjoys the advantages of both the Lasso and the Ridge, see Zou and Hastie

(2005). The Lasso can only select one variable in a group of highly related

variables, whereas the elastic-net can choose more than one, which we called

a grouping effect. For 1◦ and 2◦, we concentrate on the nonasymptotic oracle

inequalities of the elastic-net penalized MLE in NB regression because asymptotic

distribution of the high-dimensional penalized estimator is usually not available.

Essentially, deriving oracle inequalities is a powerful mathematical skill that gives

deep insight into an estimator’s nonasymptotic fluctuation compared to that of

an ideal unknown parameter (the oracle). Wang et al. (2016) compared the NBR

and Poisson regression models based on the elastic-net, MCP-net, and SCAD-net

penalty functions by using hospitalization days in hospitalized pediatric cardiac

surgery and the associated covariates for variable selection analysis. Massaro

(2016) constructed the elastic-net penalized NBR to analyze overdispersed count

data: time-to-death (in days). Here, the elastic-net selects the genes’ functional

characteristics that increase or decrease the survival time in the high-dimensional

scenario, as p� n. In practice, the covariates are usually corrupted because they

contain unavoidable measurement errors. Sørensen et al. (2018) suggested that

elastic-net penalty (or generalized elastic-net penalty with higher-order terms,

such as cubic, quadratic terms, etc.) can decorrupt the corrupted covariates in

high-dimensional GLMs, by choosing the second tuning parameter in the elastic-

net.

Contributions:

• For GLMs, Bunea (2008) investigated the oracle inequalities in the setting of

logistic and linear regression models for the elastic-net penalization schemes

under the Stabil Condition. By extending the proofs from Bunea (2008),

Blazere, Loubes and Gamboa (2014) derived oracle inequalities for GLMs

with canonical link functions that do not contain the NBR. The empirical

processes technique is used by Blazere, Loubes and Gamboa (2014) to get

the oracle inequalities for elastic-net in GLMs; however, their assumption

of GLMs does not contain the NBR. Even under a fixed design, the Hessian

matrix of the NB log-likelihood contains random responses. This complex

phenomenon is substantially different from the canonical link GLMs. Ad-

ditional treatments for the concentration of a random Hessian matrix are

needed. To show the KKT-like event with high probability, we propose a

new concentration inequality for the superma of multiplier NB empirical

processes.
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• van de Geer (2008) mainly studied the oracle inequalities for high-dimensional

GLMs with Lipschitz loss functions. However, the loss of NBR is not Lips-

chitz owing to the unbounded responses. To handle the non-Lipschitz loss,

we have to ensure the stochastic Lipschitz property (see Chi (2010)) of the

NB loss with high probability. Thus we derive oracle inequalities for elastic-

net estimates for the NBR under the Compatibility Factor Condition or

Stabil Condition, which differs from the conditions in van de Geer (2008).

• Apart from the `1 consistency, few studies focus the sign consistent (Zhao

and Yu (2006)) of the elastic-net type estimators, see Jia and Yu (2010)

for the linear model, and Yu (2010) for the Cox model. Based on the

bounded covariates assumption, we study the sign consistency of an elastic-

net regularized NBR without using the Irrepresentable Condition in Zhao

and Yu (2006).

We examine the theoretical properties of the elastic-net methods for a sparse

estimator in the NBR within the framework of the nonasymptotic theory. Sec-

tion 2.1 and Section 2.2 present a review of the NBR and KKT conditions. In

Section 2.3 and 2.4, we show that two types of oracle inequalities can be derived

for `1 estimation and prediction error bound under the assumption of the Com-

patibility Factor Condition or Stabil Condition with measurement errors. The

remaining sections are byproducts of our proposed oracle inequalities. We estab-

lish a uniform bound for the grouping effect in Section 3.1. To obtain the sign

consistency in Section 3.2, we require a uniform signal strength in order to de-

tect coefficients larger than a constant multiplied by the tuning parameter of the

`1 penalty. Using the weakest signal condition, in Section 3.3, we find that the

probability of correct inclusion for all true variables in the selected set and the

probability of corrected subset selection are high. We discuss de-biased elastic-

net regularized M-estimators for low-dimensional parameters in Section 3.4. All

proofs of the main theorems, lemmas, and propositions are given in Appendix

S1, and the assisted lemmas are presented in Appendix S2. Simulation studies

are provided in Appendix S3.

2. High-Dimensional NBR

In the following two subsections, we review the negative binomial GLMs and

the corresponding mathematical optimization problems.
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2.1. NBR

The probability mass function of the negative binomial distribution ran-

dom variable is py =: P (Y = y) = (Γ(y + θ)/Γ(θ)y!)(1− p)θpy, (p ∈ (0, 1), y ∈
N). The expectation and variance of the NB distribution are θp/(1− p) and

θp/(1− p)2, respectively. If θ is a positive integer, it is called a Pascal distribu-

tion. This special case of the NB is modeled as the number of failures Y = y

before the θ-th success in repeated mutually independent Bernoulli trials (with

success probability 1− p). Here, θ is a positive integer or real number.

In the regression setting, one type of NBR assumes that the count data

response obeys the NB distribution (denoted as Y ∼ NB(µi, θ)) with over-

dispersion:

P (Yi = yi|Xi) =: f(yi, θ, µi) =
Γ(θ + yi)

Γ(θ)yi!

(
µi

θ + µi

)yi( θ

θ + µi

)θ
, (i = 1, 2, . . . , n)

Here, E(Yi |Xi ) = µi and Var(Yi |Xi ) = µi + µ2i /θ. The θ is a qualification of

the level of overdispersion that underlies a count data set. Furthermore, θ is

assumed as the known dispersion parameter which can be estimated (see Section

8 of Hilbe (2011)). When the mean parameter µi and the covariates are linked by

logµi = XT
i β
∗, we have an NBR. When θ → +∞, Var(Yi |Xi )→ µi= E(Yi |Xi ).

Thus, the Poisson regression is a limiting case of the NBR when the dispersion

parameter tends to infinite. Because overdispersion occurs in real data, the NBR

can be more powerful and interpretable than a Poisson regression.

The log-likelihood function of the NB responses is:

L(Y;β) = log

[
n∏
i=1

f(Yi, θ, µi)

]
=

n∑
i=1

log

{
Γ(θ + Yi)

Γ(θ)Yi!

(
µi

θ + µi

)Yi( θ

θ + µi

)θ}

=

n∑
i=1

{log Γ(θ +Yi) + Yi logµi + θ log θ− log Γ(θ)− log Yi!− (θ + Yi) log(θ + µi)}

= c0 +

n∑
i=1

[YiX
T
i β − (θ + Yi) log(θ + eX

T
i β)], with a constant c0.

Then, take the derivative of the vector β. Let ∂L(Y;β)/∂β := {∂L(Y;β)/∂β1,

. . . , ∂L(Y;β)/∂βp}T . We get the score function

˙̀
n(β) := − 1

n

∂L(Y;β)

∂β
= − 1

n

n∑
i=1

Xiθ

[
θ + Yi

θ + eX
T
i β
− 1

]
= − 1

n

n∑
i=1

Xi(Yi − eX
T
i β)θ

θ + eX
T
i β

.

(2.1)
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By setting ˙̀
n(β) = 0, we obtain the solution β̂mle. The second derivative is calcu-

lated as the Hessian matrix ῭
n(β) = (1/n)

∑n
i=1XiX

T
i θ(θ + Yi)e

XT
i β/(θ + eX

T
i β)2,

which is semi-negative, such that β̂mle makes the likelihood function take the

maximum value globally.

2.2. KKT conditions

Let g(β) be a nonnegative convex function with g(0) = 0, and λ1 and λ2 be

positive turning parameters. Yu (2010) considered a penalized likelihood for the

convex loss function `(β),

F (β;λ1, λ2) = `n(β) + λ1‖β‖1 + λ2g(β)

as the generalized Lasso-type convex penalty (GLCP). The GLCP estimator for

the general log-likelihood is β̂(λ1, λ2) = argminβ∈Rp F (β;λ1, λ2). By the sub-

derivative technique in the optimization function, the corresponding Karush–

Kuh–Tucker(KKT) conditions of GLCP estimator are{
˙̀
n,j(β̂) + λ2ġj(β̂) = −λ1sign(β̂j) if β̂j 6= 0

| ˙̀n,j(β̂) + λ2ġj(β̂)| ≤ λ1 if β̂j = 0
(2.2)

See page 68 of Bühlmann and van de Geer (2011)). Thus, in the NBR, the KKT

conditions for the non-zero (or zero) elastic-net estimate is

Lemma 1. (Necessary and Sufficient Condition). Let k ∈ {1, 2, . . . , p} and λ2 >

0. Then, a necessary and sufficient condition for elastic-net estimates of the NBR

to be a solution of (1.1) is

1. β̂k = β̂k 6= 0 if (1/n)
∑n

i=1 xikθ(e
XT
i β̂ − Yi)/(θ + eX

T
i β̂) = [signβ̂k](λ1 +

2λ2|β̂k|).

2. β̂k = 0 if
∣∣∣(1/n)

∑n
i=1 xikθ(e

XT
i β̂ − Yi)/(θ + eX

T
i β̂)
∣∣∣ ≤ λ1.

Zhou (2013) gave an elementary proof of KKT conditions for the elastic-net

penalized optimization problem in a linear regression. Note that the KKT con-

ditions are a standard result of sub-differentiation techniques. The prerequisite

λ2 > 0 in Lemma 1 is indispensable. The reason is that we need λ2 > 0, such that

F (β̂ + εek;λ1, λ2)− F (β̂;λ1, λ2) > 0 where {ek}pk=1 are unit coordinate vectors,

see Appendix S2. Then β̂ is the unique local minimum. The KKT conditions are

crucial for all sections below.
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2.3. `q-estimation error using a compatibility factor

This section presents the sparse estimator for a high-dimensional NBR by

using the fact that the elastic-net estimator is asymptotically close to the true

parameter under some suitable regularity conditions.

For fixed designs {Xi}ni=1, let β∗ be the vector of true coefficients, which

satisfies

EYi = eX
T
i β
∗
. (2.3)

In some sense, we can never really know the expectation of the negative log-

likelihood, because β∗ is the unknown parameter in the functional estimating

equation XT
i β
∗ = log(EYi).

In high-dimensions, we are interested in the sparse estimates defined in (1.1)

by adding elastic-net penalty. For the true coefficient vector β∗ = (β∗1 , . . . , β
∗
p)T ,

let H = {j : β∗j 6= 0, j = 1, . . . , p} and Hc = {j : β∗j = 0, j = 1, . . . , p} be

the nonzero and zero components, respectively. Let d∗H = |H| be the number of

nonzero coefficients in β∗, i.e. the support of β∗. For any b ∈ Rp and index set

H ∈ {1, 2, . . . , p}, define the sub-vector indexed by H as bH = (. . . , b̃j , . . .)
T ∈ Rp,

with b̃j = bj if j ∈ H, and b̃j = 0 if j /∈ H. In the MLE theory, we know that

the Kullback–Leibler (K–L) divergence measures how one probability distribu-

tion is different from another, based on a quasi-distance of two log-likelihoods.

Similarly, in order to measure the derivative discrepancy between two penalized

log-likelihood function w.r.t. the parameters, the symmetric Bregman (SB) di-

vergence between `(β1) and `(β2) is

Ds
g(β1,β2) = (β1 − β2)

T [ ˙̀
n(β1)− ˙̀

n(β2) + λ2(ġ(β1)− ġ(β2))], β1,β2 ∈ Rp.

If g = 0, the symmetric Bregman divergence is Ds(β̂,β) = (β̂ − β)T [ ˙̀
n(β̂) −

˙̀
n(β)]. In this case, the symmetric Bregman divergence is a type of generalized

quadratic distance (Mahalanobis distance), which can been viewed as a symmetric

extension of the K–L divergence. See Nielsen and Nock (2009) and Huang et al.

(2013) for more details about SB divergence. Because g(β) is a nonnegative

convex function, we have the inequality: Ds
g(β1,β2) ≥ Ds(β1,β2).

The key to derive the oracle inequalities also depends on the behavior of the

Hessian matrix of the NBR: ῭
n(β) = (1/n)

∑n
i=1 X̃iX̃

T
i , where X̃i := Xi(θ(θ+Yi)

eX
T
i β/((θ + eX

T
i β)

2
))1/2 is the curvature-scaled design.

In the fixed design linear model EY = Xβ∗ with VarY = Ipσ
2, it can be
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shown that, with probability greater than 1− δn,

‖β̂LS − β∗‖2 ≤ σ
√
p

n
·
[
δnλmin

(
1

n
XTX

)]−1/2
. (2.4)

for the ordinary least square (OLS) estimator β̂LS = (XTX)−1XTY, see Section

8.1 of Zhang and Chen (2021). In an increasing dimension p = p(n), it is well–

known that the Gram matrix is (1/n)
∑n

i=1XiX
T
i (i.e., the correlation matrix

between the covariates), which is singular when p > n. The positivity assumption

of the λmin((1/n)XTX) is crucial to obtain optimal convergence under p <∞. In

the sparse high-dimensional linear model via Lasso, to obtain the oracle inequality

with the fast and optimal rate as discussed in Bickel, Ritov and Tsybakov (2009),

the following versions of the restricted minimal eigenvalue is usually needed under

sparse cone set (2.5).

Let the sparse cone set be

S(s,H) := {b ∈ Rp : ||bHc ||1 ≤ s||bH ||1}, (s ∈ R+). (2.5)

The compatibility factor (denoted by C(s,H,Σ); see van de Geer (2007)) of a

p× p nonnegative-definite matrix Σ is defined by

C2(s,H,Σ) := inf
06=b∈S(s,H)

d∗H(bTΣb)

‖bH‖21
> 0, (s ∈ R+). (2.6)

To derive the `q-loss (q > 1) oracle inequalities for the target coefficient

vectors, we require the concept of weak cone invertibility factors (weak CIF; see

(53) of Ye and Zhang (2010)),

Cq(s,H,Σ) := inf
06=b∈S(s,H)

d∗H
1/q(bTΣb)

||bH ||1 · ||b||q
> 0, (s ∈ R+). (2.7)

This constant generalizes the compatibility factor, and is close to the restricted

eigenvalue; see Bickel, Ritov and Tsybakov (2009).

From the results in Ye and Zhang (2010) and Huang et al. (2013), we know

that the positivity assumptions of compatibility factor and the weak CIF can

achieve sharper upper bounds for the oracle inequalities because both are bigger

than the restricted eigenvalue:

Re(s,H,Σ) := inf
06=b∈S(s,H)

bTΣb

‖b‖22
≤ inf

06=b∈S(s,H)

d∗H(bTΣb)

‖bH‖21
= C2(s,H,Σ), (s ∈ R+),
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due to ‖bH‖1 ≤ d∗H
1/2‖b‖2.

Using the definitions of SB divergence with β1 = β̂,β2 = β∗, let z∗ :=

‖ ˙̀
n(β∗) + λ2ġ(β∗)‖∞ and ∆ := β̂ − β∗. We now provide the lower and upper

bounds for the symmetric Bregman divergence.

Lemma 2 (Theorem 1 in Yu (2010)). For the GLCP estimation, we have

(λ1 − z∗)||∆Hc ||1 ≤ Ds
g(β̂,β

∗) + (λ1 − z∗)||∆Hc ||1 ≤ (λ1 + z∗)||∆H ||1. (2.8)

If z∗ ≤ ((ζ − 1)/(ζ + 1))λ1, for some ζ > 1, the inequality (2.8) imply

2λ1
ζ + 1

||∆Hc ||1 ≤ Ds
g(β̂,β∗) +

2λ1
ζ + 1

||∆Hc ||1 ≤
2ζλ1
ζ + 1

||∆H ||1, (2.9)

from λ1 − z∗ ≥ 2λ1/(ζ + 1) and λ1 + z∗ ≤ 2ζλ1/(ζ + 1). By (2.9), we have

||∆Hc ||1 ≤ ζ‖∆H‖1. (2.10)

Hence we conclude that in the event

Kλ :=

{
z∗ = ‖ ˙̀

n(β∗) + λ2ġ(β∗)‖∞ ≤
ζ − 1

ζ + 1
λ1

}
,

the error of estimate ∆ = β̂ − β∗ ∈ S(ζ,H). Then assumptions C2(s,H,Σ) >

0 and Cq(s,H,Σ) > 0 for the Hessian matrix Σ = ῭
n(β∗) are indispensable

assumptions for deriving the targeted oracle inequalities from the optimization

(1.1) and the expected version (2.3). Some additional regularity conditions are

required.

• (C.1): Assume bounded covariates,

max{|xij | ; 1 ≤ i ≤ n, 1 ≤ j ≤ p} = L <∞.

• (C.2): Based on the covairates {Xi}ni=1, we assume identifiability condition

that β ∈ Rp satisfies

XT
i (β + δ) = XT

i β implies XT
i δ = 0 for δ ∈ Rp.

• (C.3): Suppose that ||β∗||1 ≤ B.

The bounded covariates in C.1 are a common assumption in GLMs (see Example

5.40 of van der Vaart (1998)); it may be achieved by performing a bounded and

monotone transformation of the covariates in the real data. The identifiability

condition C.2 and the compact parameter space C.3 are common assumptions
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for obtaining the consistency for a general M-estimation; see Section 5.5 and

the remark after Theorem 5.9 in van der Vaart (1998). Recently, Weißbach and

Radloff (2020) showed the consistency of the NBR with fixed covariates, under the

assumption that all possible parameters and the regressor are in some compact

spaces.

First, we present the nonasymptotic upper bounds for the elastic-net regu-

larized NBR in the following two theorems.

Theorem 1. Let C(ζ,H, ῭
n(β∗)) and Cq(ζ,H, ῭

n(β∗)) be the compatibility fac-

tor and the weak cone invertibility factor, respectively, defined above. Define

τ := L(ζ + 1)d∗λ1/(2[C(ζ,H)]2) ≤ (1/2)e−1. Assume that ( C.1), ( C.2), and the

event Kλ hold. Then, we have

‖β̂ − β∗‖1 ≤
e2aτ (ζ + 1)d∗Hλ1

2C2(ζ,H, ῭
n(β∗))

and ‖β̂ − β∗‖q ≤
2e2aτ ζd∗H

1/qλ1

(ζ + 1)Cq(ζ,H, ῭
n(β∗))

,

(2.11)

where aτ ≤ 1/2 is the smaller solution of the equation ae−2a = τ .

On the one hand, the Theorem 1 contains basic oracle inequalities condi-

tioning on the random event, which needs further refinements. What remains to

be done is to focus the probability upper bound of event Kλ. With assumption

(C.3), we have z∗ ≤ ‖ ˙̀
n(β∗)‖∞ + 2λ2B. Our aim of proof is to have

P (Kcλ) ≤ P
(
‖ ˙̀
n(β∗)‖∞ ≥

ζ − 1

ζ + 1
λ1 − 2λ2B

)
→ 0 as n, p→∞, (2.12)

provided that λ2 is sufficient small.

To bound ‖ ˙̀
n(β∗)‖∞, all we need is to apply some concentration inequalities

in terms of the NB empirical processes (2.1), that is the sum of independent

weighted centralized NB random variables. Because the dispersion parameter θ

is known, the NB random variables {Yi}ni=1 belong to the exponential family

f(yi; ηi) ∝ exp{yiηi − ψ(ηi)} with ηi := XT
i β
∗ + log(θ + eX

T
i β
∗
) ∈ Θ, (2.13)

where Θ is the compact parameter space. Thus, under fixed design, the sub-

Gaussian concentration inequalities for the non-random weighted sum of expo-

nential family random variables with compact parameter space is applicable; see

Lemma 6.1 in Rigollet (2012) or Proposition 3.2 in Zhang and Chen (2021) with

more discussion.

On the other hand, the Compatibility Factor and weak CIR we employ in

this section are random constants. They contains the Hessian matrix of the true
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coefficient vector, and thus encapsulate the random quantities {Yi}ni=1. Note that

deriving the lower bound for these random quantities decreases the probability

that oracle inequalities are true, but the loss is negligible in the next theorem.

Next, we successfully show using the NB concentration inequality that a rea-

sonable non-random lower bounds of the compatibility factor (or the weak CIR)

makes sure that the upper bounds are constants with high probability. Thus the

rigorous convergence rate of β̂ is well established. Note that Yu, Bradic and Sam-

worth (2021) directly assume that the inverse of compatibility factor of ῭(β∗) for

the Cox model is Op(1), which they call it “a high-level condition”. The Hessian

matrix of the Cox model is also a random element.

Two events for truncating the compatibility factor and the weak CIR, is

defined by

Ec := {C2(ζ,H, ῭
n(β∗)) > C2

t (ζ,H)} and Ew := {Cq(ζ,H, ῭
n(β∗)) > Cqu(ζ,H)},

where C2
t (ζ,H) and Cqu(ζ,H) are nonrandom constants defined in the proof for

certain constants t, u > 0.

Theorem 2. Under the assumptions of Theorem 1, we further assume ( C.2).

Let B1 be the constant satisfying Cξ,B1
:= (ζ − 1)/(ζ + 1) − 2B1 > 0. Let λ1 =

(CLBL/Cξ,B1
)
√

2r log p/n, where C2
LB := eLB + e2LB/θ is a variance-depending

constant and r > 1 is a constant. Put λ2 = B1λ1/B. Under the event K∩ Ec (or

K ∩ Ew), we have:

P

(
‖β̂ − β∗‖1 ≤

e2aτ (ζ + 1)d∗Hλ1
2C2

t (ζ,H)

)
≥ 1− 2

pr−1
− 2p2e−nt

2/(2[d∗HCLB(1+ς)L
2]2) (2.14)

or P

(
‖β̂ − β∗‖q ≤

2e2aτ ζd∗H
1/qλ1

(ζ + 1)Cqu(ζ,H)

)
≥ 1− 2

pr−1
− 2p2e−nu

2/(2[d∗HCLB(1+ς)L
2]2). (2.15)

If we presume the condition d∗H = O(1) in Theorem 2, which implies that the

error bound is of order
√

log p/n, the elastic-net estimates have `1-consistency

property when the dimension of covariates increases with order eo(n). The MLE

has the convergence rate 1/
√
n. Nevertheless, in high-dimensional condition, we

have to magnify
√

log p to the convergence rate of MLE. If we assume d∗H =

o(
√
n/log p), that is p = eo(n/d

∗
H), then d∗Hλ = o(1) which implies the consistency

property. If we consider random designs, the story is different. Our purpose in



HIGH-DIMENSIONAL NEGATIVE BINOMIAL REGRESSION 193

next section is to present an approach that avoids the random upper bound for

the `1 or `2 estimation error, and provides the oracle inequality for the squared

prediction error.

2.4. The prediction error under a random design

In this section, we focus on the prediction error. We assume that the n × p
design matrix X = (X1, . . . ,Xn)T is random. In our applications, the test data

set is a new design X∗, which is an independent copy of X. Thus it requires the

randomness assumption of the design matrix. We aim to predict the response

Yn+1 using the new random covariates Xn+1 by resorting to elastic-net estimator

β̂ to estimate the unknown Yn+1.

Here Y ∈ Rn contains n independent (ind.) responses {Yi}ni=1. Thus the

covariates and responses are considered pairs of random vectors (X,Y). When

{Xi}ni=1 is degenerately distributed, it reduces to a fixed design, and hence the

result here also holds for a fixed design. Through this paper, we denote the

element in the design matrix {xij} as fixed design, and {Xij} as random design.

The conditional distribution of a single observation Yi|Xi = xi is assumed to be

conditional NB distributed with E(Yi|Xi = xi) = ex
T
i β.

Let β∗ be the vector of true coefficients, which is defined by the minimizer

β∗= argmin
β∈Rp

El(Y,X,β), (2.16)

where l(Y,X,β) = YXTβ − (θ + Y ) log(θ + eX
Tβ) is the NB loss.

To derive nonasymptotical bounds for the `1 estimation and square prediction

error, we focus on the empirical process for any possible β [on the NB loss function

in (2.16) with random X],

Pnl(X, Y,β) := − 1

n

n∑
i=1

[YiX
T
i β − (θ + Yi) log(θ + eX

T
i β)],

where Pn is the empirical measure of the samples {(Xi, Yi)}ni=1
ind.∼ (X, Y ).

The concentration and fluctuation of the empirical process are crucial to eval-

uating the consistent properties of the estimates. The proof oracle inequalities

in this section consists 3 steps, including: 1. Checking β̂ − β∗ be in cone set by

using definition of penalized estimation and KKT-like conditions; 2. Verifying

the high probability of KKT-like conditions; 3. Deriving the oracle inequalities

from restricted eigenvalue condition with some elementary inequalities. For sim-

plicity, we use symbols for the empirical process in this section. We need some
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assumptions, such that β̂ is consistent.

• (H.1): All variables Xi are bounded: there exists a constant L > 0, such

that |||X|||∞ := sup1≤i≤∞ ‖Xi‖∞ ≤ L a.s.

• (H.2): Assume that ||β∗||1 ≤ B.

• (H.3): There exists a large constant M0, such that β̂ is in the `1 ball:

β̂ ∈ SM0
(β∗) := {β ∈ Rp : ‖β − β∗‖1 ≤M0}.

• (H.4): Let θ > 1. The negative log-density of n independent NB responses

ψ(y) := − log pY (y), for Y = (Y1, . . . , Yn)T , satisfies the strongly midpoint

log-convex properties for some γ > 0,

ψ(x)+ψ(y)−ψ
(⌈

1

2
x+

1

2
y

⌉)
−ψ
(⌊

1

2
x+

1

2
y

⌋)
≥ γ

4
‖x−y‖22 ∀x,y ∈ Zn.

(2.17)

Remark 1. (H.1) and (H.2) are mentioned in Blazere, Loubes and Gamboa

(2014), and (H.3) is a high technique condition owing to the noncanonical link

GLMs. The constraint in the optimization is equivalent to α ‖β‖1+(1−α)‖β‖22 ≤
t, with unknown α ∈ [0, 1] and t ∈ R leading to ‖β̂‖1 ≤ M0 if we suppose that

t/α ≤M0. There is a constant K > 0, such that max1≤i≤n
∣∣XT

i β
∗∣∣ ≤ K a.s., for

all n. A convex function F is called strongly convex if the Hessian matrix of F has

a (uniformly) lower bounded eigenvalue. While examining exponential families

in high dimensions, Kakade et al. (2010) assumed that continuous exponential

families (2.13) have strongly convex log-likelihood function with ηi in a sufficiently

small neighborhood. For a fixed dimensional MLE, Balabdaoui et al. (2013) show

that the discrete log-concave maximum likelihood estimator is strongly consistent

under some settings. Our assumption (H.4) is a condition that ensures that the

suprema of the multiplier empirical processes of n independent responses have

sub-Gaussian concentration phenomena in (S1.19), which can be alternatively be

checked by the tail inequality for suprema of empirical processes corresponding to

classes of unbounded functions (Adamczak (2008)). For the case of a fixed design

in Section 2.3, we do not require (H.4) in order to derive the oracle inequalities.

In this section, we give sharp bounds for `1 estimation and squared prediction

errors for NBR models by looking for a weaker condition that is analogous to the

restricted eigenvalue (RE) condition proposed by Bickel, Ritov and Tsybakov

(2009), and the weak CIF and compatibility factor conditions presented in Section
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3.2. Here, we borrow a condition from the Stabil Condition introduced by Bunea

(2008) for `1 and `1 + `2 penalized logistic regressions.

For c, ε > 0, we define the fluctuated cone set for some bias vector b as

V(c, ε,H) := {b ∈ Rp : ||bHc ||1 ≤ c||bH ||1 + ε}, (2.18)

which is a fluctuated (or measurement error) version of the cone set S(s,H) :=

{b ∈ Rp : ||bHc ||1 ≤ s||bH ||1} mentioned in (2.5).

We substitute b = β̂−β∗ into the proof. For real data, let β̂ be the estimator

based on the true covariates, and let β̂me be the estimator from covariates with

a measurement error. Note that under the cone condition ||bHc ||1 ≤ c||bH ||1, for

b = β̂ − β∗, we get

||(β̂me − β∗)Hc ||1 − ||(β̂ − β̂me)Hc ||1 ≤ ||(β̂ − β∗)Hc ||1 ≤ c||(β̂ − β∗)H ||1
≤ c||(β̂me − β∗)H ||1 + c||(β̂ − β̂me)H ||1.

Then,

||bmeHc ||1 ≤ c||bmeH ||1 + ε for bme := β̂me − β∗,

where ε = c||(β̂me − β∗)H ||1 + ||(β̂ − β̂me)Hc ||1. This argument indicates that

the fluctuated cone set quantifies the level of the measurement error if β̂me is

misspecified as β̂.

On the fluctuated cone set, we assume that the p× p the expected empirical

covariance matrix Σ = EXXT fulfills the Stabil Condition as below. The Stabil

Condition for matrix Σ avoids the random Hessian matrix in the Compatibility

Factor Condition and the weak CIF Condition. However, there is no free lunch.

The proposed oracle inequalities in this section require (H.4), which serves for

the tail inequality for the suprema of NB empirical processes.

Definition 2. (Stabil Condition with measurement error). For given c, ε > 0,

the matrix Σ satisfies the Stabil Condition S(c, ε, k) if there exists 0 < k < 1,

such that

bTΣb ≥ k||bH ||22 − ε

for any b ∈ V (c, ε,H). Here, the restriction 0 < k < 1 can be attained by scaling

X.

Let l1(β) := l1(β,X, Y ) := −Y [XTβ− log(θ+exp{XTβ})], which is a linear

function of the response, and let l2(β) := l2(β,X) := θlog(θ+exp{XTβ}), which

is free of the response. The NB loss function l(β,X, Y ) = l1(β,X, Y ) + l2(β,X)

is thus decomposed into two parts. Let Pl(β) := El(β,X, Y ) be the expected risk
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function, where the expectation is under the randomness of (X, Y ). We prefer the

centralized empirical loss (Pn − P) l(β), which represents the fluctuation between

the expected and the sample loss, rather than the loss itself. We break down the

empirical process into two parts:

(Pn − P) l(β) = (Pn − P) l1(β) + (Pn − P) l2(β). (2.19)

In the following, we give upper bounds for the first and second parts of

the empirical process: (Pn − P)(lm(β∗) − lm(β̂)), for m = 1, 2. We show that

(Pn−P)(lm(β∗)− lm(β̂)) has stochastic Lipschitz properties (see Chi (2010)) with

respect to ‖β̂ − β∗‖1. Let the `1 ball be SM0
(β∗) := {β ∈ Rp : ‖β − β∗‖1 ≤M0},

which is referred as the local set. Then,

Proposition 1. Let the centered responses be {Y c
i := Yi − EYi}ni=1 and, ( H.1)–

( H.4) are satisfied. If λ1 ≥ 4L(2C̃LB+A
√

2γ)
√

2 log 2p/n,(A ≥ 1, C̃2
LB := eLB+

(1 + θ)e2LB/θ), define the event A for the suprema of the multiplier empirical

processes as

A :=

{
sup

β1,β2∈SM0
(β∗)

∣∣∣∣∣ 1n
n∑
i=1

Y c
i θX

T
i (β1 − β∗)

(θ+exp{XT
i β2})‖β1 − β∗‖1

∣∣∣∣∣ ≤ λ1
4

}
.

Then, we have P (A) ≥ 1− (2p)−A
2

. Moreover,

P

{
(Pn − P)(l1(β

∗)− l1(β̂)) ≤ λ1
4
‖β̂ − β∗‖1

}
≥ 1− (2p)−A

2

.

This proposition indicates that the discrepancy between the first part of

the empirical process and its expectation is bounded from above by the tuning

parameter multiplied by the `2 norm of the difference between the estimated

vector and the target vector. The λ1/4 can be seen as a Lipschitz constant of the

first part of the centralized empirical process.

Similarly to A as a KKT-like condition, we provide a crucial lemma to

bound the second part of the empirical process with responses. Let νn(β,β∗) :=

(Pn − P) (l2(β
∗)− l2(β))/(‖β − β∗‖1 + εn) be the normalized second part of the

empirical process, which is a random variable indexed by β. Then we define the

local stochastic Lipschitz constant for a certain M > 0,

ZM (β∗) := sup
β∈SM (β∗)

|νn(β,β∗)|, and a random event B :=

{
ZM (β∗) ≤ λ1

4

}
,

where we bound the local stochastic Lipschitz constant using the rescaled tuning
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parameter λ1/4. Moreover, by definition, we have

|νn(β̂,β∗)| ≤ sup
SM (β∗)

|νn(β̂,β∗)| ≤ λ1
4
,

which gives following bound,

|(Pn − P)(l2(β̂)− l2(β∗))| ≤
λ1
4

(‖β̂ − β∗‖1 + εn) on B, (2.20)

provided that β̂ ∈ SM (β∗).

According to the following lemma, in the event A
⋂
B, the estimator β̂ lies

in a known neighborhood of the true coefficient vector β∗.

Lemma 3. Under ( H.2), let 8Bλ2 + 4M = λ1, we have

‖β̂ − β∗‖1 ≤ 16||β∗||+ 2εn on A
⋂
B.

The proof of Lemma 3 relies on the optimization (1.1) and the definition of

the minimizer β∗ from the expected loss (2.16). By Lemma 3, on the event A
⋂
B,

we immediately get β̂ ∈ S16B+2εn(β∗). Note that we assume that β̂ ∈ SM0
(β∗),

for some finite M0 > M = 16B + 2εn in (H.3). That is Lemma 3 sharpens β̂

in the `1-ball SM (β∗), whereas β̂ is originally assumed in the `1 ball SM0
(β∗).

Therefore, the following probability analysis of the event A
⋂
B is indispensable.

The event A∩B associated with the empirical loss functions plays an important

role in deriving the oracle inequalities for general loss functions, because we could

bound the `1 estimation error conditioning on event A
⋂
B. We now give the

result that the event A ∩ B occurs with a high probability.

Proposition 2. Let M = 16B + 2εn. Suppose β̂ ∈ SM0
(β∗), for ∞ > M0 > M ,

and that ( H.1)-( H.4) hold. If

λ1 ≥ max

(
20θAML

M + εn

√
2 log 2p

n
, 4L(2C̃LB +A

√
2γ)

√
2 log 2p

n

)
, A ≥ 1, (2.21)

then P (A ∩ B) ≥ 1− 2(2p)−A
2

.

The proof of Theorem 3 is based on some lemmas in Appendix S1, which

show that the event A ∩ B holds with a high probability. Judging from the

above probability analysis, we can formulate the main result of this section that

gives bounds for the estimation and prediction error because the target model is

sparse, and log p is tiny compared to n. In particular, the oracle inequality of the

estimation error is useful in the following sections.
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Theorem 3. Assume condition S(3.5, εn, k) and ( H1)–( H4) hold. Let λ1 be

chosen by (2.21) and λ2 ≤ λ1/8B. Then, under the event A∩B, we have P (β̂−
β∗ ∈ V(3.5, εn/2, H)) ≥ 1− 2(2p)−A

2

and

P

{
‖β̂ − β∗‖1 ≤

2.252λ1d
∗
H

ak + 2λ2
+

(
1 +

a

λ1

)
εn

}
≥ 1− 2(2p)−A

2

. (2.22)

Moreover, let the test data (X∗, Y ∗) be an independent copy of the training data

(X, Y ), and denote E∗(·) := E(·|X∗). Conditioning on the event A ∩ B, the

squared prediction error is

E∗[X∗T (β̂ − β∗)]2 ≤
17.71875d∗Hλ

2
1

a(ak + 2λ2)
+

(
4λ1
a

+ 3.5

)
εn, (2.23)

where a := min{|x|≤LM+K,|y|≤K}{(1/2)θex(ey + θ)/[θ + ex]2} > 0.

Comparing with the upper bounds under the Compatibility Factor Condi-

tion in Section 2.3, in much the same fashion, we observe that when d∗ = O(1),

the number of covariates increases by as much as o(exp(n)). Then, the bound

on the estimation error is o (1), and the elastic-net estimator ensures the con-

sistent property. Theorem 3 is also an improvement over Lemma 3 from a big

neighborhood of β∗ to the desired small neighborhood of β∗.

Remark 2. Discussion of the measurement error εn when d∗H <∞:

• 1. If εn = o(
√

log p/n), then ‖β̂−β∗‖1 ≤ O(
√

log p/n), E∗[X∗T (β̂ − β∗)]2 ≤
O(log p/n);

• 2. If εn = O(
√

log p/n), then ‖β̂ − β∗‖1 ≤ O(1), but E∗[X∗T (β̂ − β∗)]2 ≤
O(
√

log p/n);

More typical examples for εn are 1/n or even zero. Under the restricted condition

β̂ − β∗ ∈ V (3.5, εn/2, H), Case 2 tells us that if the order of fluctuations εn is

sightly lower than the order of the tuning parameter, elastic-net with λ2 ≤ λ1/8B
guarantees that the squared prediction error is asymptotically zero, with a lower

rate O(
√

log p/n).

3. Applications of the Oracles Results

We now examine the non-asymptotic and asymptotic results. In this section,

the applications are derived from oracle inequalities about the `1 estimation error,

and we assume that the design matrix is fixed, for simplicity.



HIGH-DIMENSIONAL NEGATIVE BINOMIAL REGRESSION 199

3.1. Grouping effect from oracle inequality

Zou and Hastie (2005) show that the elastic-net has a grouping effect that

asserts that strongly correlated predictors tend to be in or out of the model

together when the coefficients have the same sign. Zhou (2013) proves that the

grouping effect of the elastic-net estimates holds without the assumption of the

sign. Yu (2010) derives the asymptotical result of the grouping effect for elastic-

net estimates of the Cox models. Based on the oracle inequalities we put forward,

we provide an asymptotical version of the grouping effect inequality as p, n→∞
for the fixed design case.

Theorem 4. Under the assumption of Theorem 2 with d∗H < ∞, suppose that

the covariates (nonrandom) are standardized as

1

n

n∑
i=1

x2ij = 1,
1

n

n∑
i=1

xij = 0, for j = 1, 2, . . . , p. (3.1)

Denote ρkl = (1/n)
∑n

i=1 xikxil as the correlation coefficient. For any constant

Es > 0, with probability at least 1−2/pr−1−2p2e−nt
2/(2[d∗HCLB(1+ζ)L

2]2)−σ2n/nE2
s ,

(i). |β̂k − β̂l|2 ≤ (1− ρkl)[Ke2LMO(1) + (1/λ22)(Es + µs)];

(ii). If the asymptotic correlation between two random predictors is asymptoti-

cally up to one, that is ρkl = 1 − o(λ22), with λ22 = O(log p/n) → 0, we

have

|β̂k − β̂l| ≤
√
op(1)[λ22e

2LMO(1) + (E + µ)].

This grouping effect oracle inequality asserts that if ρkl tends to one with

a high probability, the elastic-net is able to select covariates k, l ∈ {1, 2, . . . , p}
together. Combined with the Lasso sparse estimation, the `1 +`2 penalty enables

strongly correlated predictors to be in or out simultaneously. In addition to

the sparse estimation, intuitively, highly related covariates should have similar

regression coefficients, but the Lasso cannot select them simultaneously.

3.2. Sign consistency

Sign consistency indicates whether an estimate is good, relating tp the es-

timated sign of the coefficient. A few researchers have studied the sign con-

sistency property of the elastic-net. One condition for sign consistency is the

Irrepresentable Condition (IC). Zhao and Yu (2006) explore the IC for the sign

consistency of a linear regression under a Lasso penalty. Moreover, the model

selection consistency of elastic-net is studied by Jia and Yu (2010), following
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Zhao and Yu (2006). Along the same line, for the elastic-net penalized Cox

model, Yu (2010) investigates the selection consistency. Here, the basic idea is

that the KKT condition is a necessary and sufficient condition for the global min-

imizer of the target function. We focus on the elastic-net penalized NBR model’s

selection consistency based on some reasonable assumptions in a similar fashion.

It is interesting to see that under the bounded covariates assumption, we do not

need the IC, which is assumed in Yu (2010) and Lv et al. (2018). We rely only

on the assumptions in Theorem 2.

Uniform Signal Strength Condition.

β∗ := min
j∈H
|β∗j | ≥

e2aτ (ζ + 1)d∗Hλ1
2C2(ζ,H)

,

with λ1 = O(
√

log p/n), Bλ2 = B1λ1.

Assume d∗H < ∞. Zhang and Zhang (2014) points out that the selection

consistency theory characteristically necessitates a uniform signal strength con-

dition (or beta-min condition) that the smallest nonzero regression coefficients

β∗ := min{|βj | : j ∈ H} should be greater in size than a thresholded level

O(
√

log p/n). When β∗ is less than the level, the presence of weak signals cannot

be detected by statistical inferences procedures.

Theorem 5. Suppose that the uniform signal strength condition and the as-

sumptions of Theorem 2 hold. Let λ1 = O(
√

log p/n), d∗H < ∞. Then, for√
log p/n = o(1) and a suitable tuning parameter r in Theorem 2, we have the

following sign consistency:

lim
n,p→∞

P (signβ̂ = signβ∗) = 1. (3.2)

3.3. Honest variable selection and detection of weak signals

As a particular case of the random design in Section 2.4, we focus on the

fixed design in this section, where the {Xi}ni=1 is deterministic.

Recall that Ĥ := {j : β̂j 6= 0}; thus Ĥ is an estimator of the true variable

set H := {j : βj 6= 0} (or the set of positives). Let δ1, δ2 be constants such

that P (Ĥ 6⊂ H) ≤ δ1, P (H 6⊂ Ĥ) ≤ δ2. Then we have P (H 6= Ĥ) ≤ P (Ĥ 6⊂
H) + P (H 6⊂ Ĥ) ≤ δ1 + δ2. If we treat H as the null hypothesis, P (Ĥ 6⊂ H)

is often called the false positive rate in the language of ROC curves (or type I

error in statistical hypothesis testing; the estimate is Ĥ but it makes the deci-

sion Ĥ ⊂ Hc); P (H 6⊂ Ĥ) is often called the false negative rate (or type II error).
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Thus, the probability of correct subset selection under some random events W

(the assumptions hold with probability P (W )) is

P (H = Ĥ) ≥ P (W )− δ1 − δ2. (3.3)

From the `1 estimation error obtained in Theorem 3, we easily bound the false

negative rate P (H 6⊂ Ĥ) in Proposition 3. However, the upper bound of the false

positive rate P (Ĥ 6⊂ H) cannot be obtained directly, additional assumptions on

the covariates correlation are required.

Proposition 3. Let δ ∈ (0, 1) be a fixed number, and let the assumption of The-

orem 3 be satisfied. The weakest and strongest signal meet the condition: B0 :=

2.252λ1d
∗
H/(ak + 2λ2)+(1+a/λ1)εn ≤ minj∈H |β∗j | ≤ B. If p = exp{(1/(A2 − 1))

log(21−A
2

)/δ}, with A > 1, then

P (H ⊂ Ĥ) ≥ P (‖β̂ − β∗‖1 ≤ B0) ≥ 1− δ

p
.

Note that the lower bound we have derived may be too large in some set-

tings. For example, this may occur if d∗H is as large as λ1d
∗
H = O(1) and

minj∈H |β∗j | ≥ 2.252O(1)/ak + 2λ2 =: D, where D is also a moderately large

constant compared with the strongest signal threshold B. Then, we can only

detect a few parts of the overall signals. To deal with this problem, we use a

new approach (inspired by Section 3.1.2 in Bunea (2008)) to find a constant-free

weakest signal detection threshold that relies only on the tuning parameter λ1.

Under some mild conditions on the design matrix, we show that the lower bounds

can be sharpen considerably.

First, we assume that the covariates are centered and standardized as in (3.1).

This crucial method of processing covariates is also employed when studying

the grouping effect in Section 3.1. Second, let ρkl = (1/n)
∑n

i=1XikXil, for

k, l ∈ {1, 2, . . . , p} be the correlation constants between covarates k and l. For a

constant h ∈ (0, 1), we have the following condition.

Identifiable Condition: maxk,l∈H,k 6=l |ρkl| ≤ h/θd∗H , (θ/n)
∑n

i=1X
2
ik = 1.

This assumption of a maximal correlation constant of two distinct covariates

on the true set H measures the dependence structure using a constant h in the

whole predictor. A lower h indicates a higher degree of separation, which makes

it easier to detect weak signals. Bunea (2008) explained the intuition as follows:“

If the signal is very weak and the true variables are highly correlated with one

another and with the rest, one cannot hope to recover the true model with high
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probability”. Interestingly, the grouping effect states that the elastic-net is able to

simultaneously estimate highly correlated true variables, and this grouping effect

is valid without the premise that the signal is enough strong. If both signals are

faint under the level of the detection bounds, then the elastic-net estimates are

both zero, and the grouping effect is also true.

Additionally, we require two conditions because we have to build some con-

nections between P (H 6⊂ Ĥ), P (Ĥ 6⊂ H) and the `1-estimation error in Theo-

rem 3. Let ai (bi) be the intermediate point between XT
i β̂ and XT

i β
∗, by the

first-order Taylor expansion of the function f(t) = (et/θ + et) (g(t) = 1/(θ + et)),

and L1, L2 ∈ [1,∞). By (H.1)–(H.3), it leads to for all i,

|ai| or |bi| ≤ |X∗Ti β̃ −X∗Ti β
∗|+ |X∗Ti β∗|

≤ |X∗Ti β̂ −X∗Ti β
∗|+ |XT

i β
∗| ≤ L(M +B).

Next, we pose some weighted correlation conditions (WCC):

Weighted Correlation Condition (1):

sup
k,j∈H,

|ai|≤L(M+B)

1

n

(∣∣∣∣ n∑
i=1

XijXik
θ2eai

(θ + eai)2

∣∣∣∣ ∨ ∣∣∣∣ n∑
i=1

θXijXik

(
1− θeai

(θ + eai)2

)∣∣∣∣
)
≤ hL1

d∗H
.

Weighted Correlation Condition (2) holds with a high probability:

P

 sup
k,j∈H,

|bi|≤L(M+B)

∣∣∣∣ 1n
n∑
i=1

XikXijYi · θ2ebi

(θ + ebi)
2

∣∣∣∣ ≤ hL2

d∗H

 = 1− εn,p,

where εn,p is a constant satisfying limn,p→∞εn,p = 0.

By (H.1) and (H.2), ai, bi are uniformly bounded random variables, and are

viewed as ignorable constants in an asymptotic analysis, as are θeai/(θ + eai)2 and

(1−θeai/(θ + eai)2). We can check WCC(2) using a similar approach to that if the

concentration phenomenon for the suprema of the multiplier empirical processes.

The conditions above can be obtained by taking a linear transformation of the

covariates, that is, by scaling the covariates. WCC(1) is a technical condition used

by Bunea (2008) for the case of a logistic regression. This assumption means that

the maximum weighted-correlation version of ρkl (k 6= l) is less than hL1/θd
∗
H .

However, the NBR is more complex than a logistic regression since its Hessian

matrix depends on random responses; thus WCC(2) should be assumed with a

high probability.

We now have the following constant-free weakest signal detection threshold
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for correct subset selection.

Theorem 6. If the assumptions in Theorem 3 hold with εn = 0, under the

identifiable condition, WCC( 1,2) with h ≤ a+ 2λ2/(20.25Li + 8a) ∧ 1/8, for

i = 1, 2. Let p = exp{1/(1−A2) log(2A
2−1δ)},

P (H = Ĥ) ≥ 1− 2

(
1 +

d∗H
p

)
δ − 2pe−nλ

2
1/32C

2
LBL

2 − εn,p,

provided that the minimal signal condition minj∈H |β∗j | ≥ 2λ1 is satisfied.

3.4. De-biased elastic-net and confidence interval

Introduced by Zhang and Zhang (2014), the de-biased Lasso was further

studied in van de Geer et al. (2014) and Janková and van de Geer (2016) within

some generalized linear models. Following the the de-biasing idea, we deal with

the de-biased estimator b̂ =: β̂−Θ̂ ˙̀(β̂), which is asymptotically normal, based on

the established oracle inequality in Section 2. Let β̂ be defined as in optimization

problem (1.1). Let Θ̂ be an approximated estimator of the inverse of the Hessian

−῭(β∗)(e.g., the CLIME or nodewise Lasso estimator for the estimated Hessian

matrix). If ˙̀(β̂) is continuously differentiable, by Taylor’s expansion of vector-

valued functions, we have

˙̀(β∗) = ˙̀(β̂)− ῭(β∗)(β̂ − β∗)− r(‖β̂ − β∗‖2)
= ῭(β∗)[β∗ − β̂ − ῭(β∗)−1 ˙̀(β̂)]− r(‖β̂ − β∗‖2)
= ῭(β∗)[β∗ − β̂ + Θ̂ ˙̀(β̂)]− ῭(β∗)[῭(β∗)−1 + Θ̂] ˙̀(β̂)− r(‖β̂ − β∗‖2)
=: ῭(β∗)[β∗ − β̂ + Θ̂ ˙̀(β̂)] +Rn,

where r(‖β̂ − β∗‖2) = op(‖β̂ − β∗‖2) is a vector-valued function.

Include
√
nΘ̂ in the equation above if

√
nRn = op(1). Then

√
n(b̂− β∗) ≈ Θ̂[

√
nRn −

√
n ˙̀(β∗)]

d−→ N(0, Θ̂ΣΘ̂T )

where the notation ≈ means asymptotic equivalence under some regular con-

ditions. Here, Σ is the asymptotic variance of
√
n ˙̀(β∗), where Var ˙̀(β∗) =

(1/n)
∑n

i=1 θe
XT
i β
∗
/(θ + eX

T
i β
∗
)XiX

T
i . We can subsitute in a consistent esti-

mator for Σ in the high-dimensional case.

The asymptotic confidence level of 1− α for β∗j is then given by

[
b̂j − c(α, n, σ), b̂j + c(α, n, σ)

]
, c(α, n, σ) := Φ−1

(
1− α

2

)√
(Θ̂Σ̂Θ̂T )j,j

n
,
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where Φ(·) denotes the c.d.f. of N(0, 1).

By the KKT conditions in Lemma 1, the de-biased elastic-net estimator is

expressed as

b̂ = β̂ − Θ̂ ˙̀(β̂) = β̂(Ip − 2λ2Θ̂)− Θ̂λ1sign(β̂).

A theoretical analysis of the de-biased elastic-net estimator (includeing precision

matrix estimation, confidence interval, and hypothesis testing) is beyond the

scope of the this study, please refer to the proofs in Janková and van de Geer

(2016) for some additional details. A simulation study for the de-biased elastic-

net is presented in Appendix S4, showing that the de-biased elastic-net has less

bias than that of the de-biased Lasso. In the simulation, it is important to

estimate the nuisance parameter θ and estimate the inverse of the Hessian.

4. Conclusions

We study sparse high-dimensional NBR problems using several consistency

results, such as prediction or `q-estimation error bounds. NBRs are widely used

in modeling count data. We show that under a few conditions, the elastic-net

estimator has oracle properties, which means that when the sample size is large

enough, our sparse estimator is very close to the true parameter if the tuning

parameters are properly chosen. We also show the sign consistency property

under the beta-min condition. We discuss the detection of weak signals, and give

a constant-free weakest signal threshold for correct subset selection under some

correlation conditions of the covariates. The asymptotic normality of the de-

biased elastic-net estimator is also discussed, although doing so further is beyond

the scope of this study. These results provide a theoretical understanding of

the proposed sparse estimator and provide practical guidance for the use of the

elastic-net estimator.

Note that the oracles inequalities in Sections 2.4 and 3 can be extended to

many `1 or `1 + `2 regularized M-estimation regressions with the corresponding

empirical process (2.19) having stochastic Lipschitz properties as presented in

Proposition 1. For example, the analysis of the stochastic Lipschitz properties of

the average negative log-likelihood empirical process can be employed to elastic-

net or Lasso penalized COM-Poisson regressions (see Sellers and Shmueli (2008)).

As shown in the simulation, the two-step estimation of θ̂ is not well behave. Like

the misspecified models in Example 5.25 of van der Vaart (1998), θ, which is

a nuisance parameter, is not an important estimate in the consistency results.

It would be interesting and important to find a better estimator of θ in the

further research, because θ is a crucial quantization when constructing confidence
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interval.

Supplementary Material

All proofs and simulation results are in the Supplementary Material.
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