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Abstract: In many problems, one has several models of interest that capture key
parameters describing the distribution of the data. Partially overlapping models
are taken as models in which at least one covariate effect is common to the mod-
els. A priori knowledge of such structure enables efficient estimation of all model
parameters. However, in practice, this structure may be unknown. We propose
adaptive composite M-estimation (ACME) for partially overlapping models using
a composite loss function, which is a linear combination of loss functions defining
the individual models. Penalization is applied to pairwise differences of parame-
ters across models, resulting in data driven identification of the overlap structure.
Further penalization is imposed on the individual parameters, enabling sparse esti-
mation in the regression setting. The recovery of the overlap structure enables more
efficient parameter estimation. An oracle result is established. Simulation studies
illustrate the advantages of ACME over existing methods that fit individual models
separately or make strong a priori assumption about the overlap structure.
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1. Introduction

Regression modeling aims to explain the association between a response vari-

able and covariates in a dataset. A regression model targets a profile of the

conditional distribution of the response given the predictors. It is of interest to

consider several linear models to describe a more complete picture of the con-

ditional distribution. We can simultaneously fit the models on the dataset and

estimate the parameters. Such joint estimation borrows information across the

models and is referred as to composite estimation.

Composite estimation may be based on combining loss functions as weighted

averages of loss functions tailored to individual models. Given n independent

identically distributed samples, z1 = (x1, y1), . . . , zn = (xn, yn) ∈ Rp × R, con-
sider the K empirical convex loss functions:

1

n

n∑
i=1

Lk(zi, (αk,βk)) ≡
1

n

n∑
i=1

Lk(yi, αk + xT
i βk), k = 1, . . . ,K, (1.1)
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Figure 1. Diabetes patients’ risk factors

where αk’s are the intercept terms across the models and β1, . . . ,βK ∈ Rp are

the parameter vectors for all models of interest. Our composite loss function is

L(zi, (α
T ,βT )) ≡

K∑
k=1

wkLk(yi, αk + xT
i βk), (1.2)

where α = (α1, . . . , αK)T , β = (βT
1 , . . . ,β

T
K)T ∈ RK×p, and w = (w1, . . . , wK)T

is a positive weight vector. Minimizing (1.2) without further assumptions on

parameter overlap is equivalent to minimizing the loss functions separately. As

an example, in composite quantile regression (CQR), each Lk is a check function

used to fit a model to a quantile Zou and Yuan (2008). Combining the check

function for median regression (L1) with the usual least squares loss function

(L2) is another.

Composite estimation is useful when the underlying parameter structures

are partially overlapped. In partially overlapping models, some covariates have

the same effect on the response across at least two models, while others do

not. The CQR and L1-L2 loss functions may have overlapping parameters for

different quantiles or median and expectation. Figure 1 shows a simple example

of the partially overlapping models. Here possible risk factors to diabetes patients

include blood pressure (BP), body mass index (BMI), race, and gender, and the

response is the blood glucose level. Interest is in three patient groups with levels

of blood glucose, 70%, 80%, and 90%. Each parameter vector corresponds to

the check function for each quantile (β1, β2, and β3). The BP has rows of the

same color, which impart the same parameter values across all three quantiles.

We call this arrangement overlapping structure. According to the definition of

overlapping structure, the effects of BMI overlap across patients with 70% and

80% quantiles, and the effects of gender overlap across all three quantiles. The

row of the gender appears white-shaded, which indicates that it is not a risk

factor across all three levels.
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A complete overlapping structure is one extreme of partially overlapping

structures, where all parameters are common to all loss functions. For com-

pletely overlapping models, Bradic, Fan, and Wang (2011) and Zou and Yuan

(2008) used composite loss functions with the goal of improving efficiency of the

regression parameter estimators. They considered the composite loss function as

an approximation to the unknown log-likelihood function of the error distribution

Bradic, Fan, and Wang (2011) while ACME considers each loss component as a

model targeting different profiles of the conditional distribution. The completely

overlapping modeling in composite loss estimation can limit flexibility in statis-

tical modelling. Consider a linear location-scale model whose several covariates

affect the scale of response and error is centered to zero but not symmetric. Dif-

ferent loss functions estimate different parameters defined both by the mean and

variance of the response. The parameters are the same for the covariates which

have no effect on the variance function Carroll and Ruppert (1988). A parameter

vector for L2 is the same as the regression parameter vector of the model while a

parameter vector for L1 is the weighted sum of the regression parameter vector

and the scale parameter vector.

We aim for efficient composite estimation under the partially overlapping

structure, which can overcome the drawback of completely overlapping models

and allow the flexibility of having different parameter values. To adapt such

overlapping structure in the models, we incorporate penalization into (1.2). The

penalty is applied to all absolute pairwise differences between coefficients cor-

responding to each covariate. In addition to this overlapping penalty, we also

employ a penalty for sparse estimation. The objective function for our empirical

composite loss function with double penalties is

K∑
k=1

n∑
i=1

wkLk(yi, αk +xT
i βk) + n

K∑
k=1

p∑
j=1

pλ1n(|βkj |) + n
∑
k<k′

p∑
j=1

pλ2n(|βk′j − βkj |).

(1.3)

The penalty terms in (1.3) applied to each coefficient encourage sparsity by

shrinking small coefficients toward zero. The penalty terms applied to the differ-

ence in the coefficients enable recovery of the overlapping structure by shrinking

small differences toward zero. Penalization of the differences is used not for vari-

able selection, but for selecting the overlapping structure across the multiple loss

functions. The fused lasso Tibshirani et al. (2004) also has a sparse penalty term

combined with a penalty term for pairwise differences to identify local consistency

of coefficients in a single model.

In the sequel, we propose and study adaptive composite M-estimation (ACME)

based on (1.3); it simultaneously shrinks toward the true overlapping model struc-

ture while estimating the shared coefficients in that structure. For the models
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from Figure 1, ACME automatically chooses risk factors strongly associated with

high blood glucose levels and estimates their same effects across different levels.

Our procedure yields estimators with improved efficiency by information combi-

nation across the models. It correctly selects both the true overlap structure and

the true non-zero parameters with probability 1 in large samples. The parameter

estimators hereby are oracle in the sense that they have the same distribution as

the oracle estimator based on knowing the true model structure a prior.

The rest of the paper is organized as follows. In Section 2, we introduce

notation for the distinct parameter vector across models, based on overlap in

the βk’s, and define the oracle estimator. The large sample properties of the

oracle estimator are established under partially overlapping models. Section 3

presents ACME for partially overlapping models and describes its implementation

along with a discussion of its theoretical properties. Section 4 contains numerical

results from an extensive simulation study, and Section 5 reanalyzes a well-known

dataset on annual salaries of professional baseball players. Proofs and some

numerical results are presented in a web-appendix.

2. Oracle M-estimator for Overlapping Models

2.1. Models and notations

We first consider the K separate models with their corresponding loss func-

tions in (1.1). The risk function for the kth model is the expectation of the kth

loss function, Rk(αk,βk) = Ez[Lk(y, αk + xTβk)] for βk ∈ Rp, k = 1, . . . ,K.

The true parameter vector for the kth model is the minimizer of the correspond-

ing risk function, Rk(αk,βk), with (α0
k,β

0T
k )T = argmin

(αk,β
T
k )T∈Θ⊂Rp+1

Rk(αk,βk). We

estimate the parameter vector of each model by minimizing its corresponding

loss function. We consider a stack of all parameter vectors across all models,

and write the K · (p + 1)-dimensional true parameter vector as (α0T ,β0T )T =

(α0
1, . . . , α

0
K ,β0T

1 , . . . ,β0T
K )T .

We describe the underlying parameter structure across the multiple models

using set notation. Let Ak = {j ∈ {1, . . . , p} : β0
kj ̸= 0} be the index set of

the non-zero parameters in the kth model and Ac
k = {1, . . . , p}\Ak be its com-

plement, with the underlying sparse structure for all models as A0 ≡ {Ak}Kk=1.

With A0, we can decompose the parameters as the true zero parameters βAc
k
=

[βkj ]j∈Ac
k
∈ R|Ac

k|, k = 1, . . . ,K, and the true non-zero and intercept param-

eters, (αT ,βT
A)

T = (αT ,βT
A1

,βT
A2

, . . . , βT
AK

)T , where βAk
= [βkj ]j∈Ak

. Let

Okk′ = {j ∈ {1, . . . , p} : β0
kj = β0

k′j ̸= 0} be the index set of the same-valued non-

zero parameters between β0
k and β0

k′ for k ̸= k′, with the underlying overlapping

structure available as G0 ≡ {Okk′}k<k′ . We can identify the underlying sparse

and overlapping structure with the sparsity sets and the overlap sets.
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For joint estimation, the composite loss function is taken as the linear com-

bination of all loss functions with weights, as in (1.2), and the composite risk

function as R(αT ,βT ) = E
∑K

k=1wkLk(αk,βk) =
∑K

k=1wkRk(αk,βk). The min-

imizer of R(αT ,βT ), (α0T ,β0T )T = argmin(αT ,βT )T∈Θ⊂RK·(p+1) R(αT ,βT ), is the

true parameter vector for all K models. The true non-zero and intercept pa-

rameter vector is the minimizer of the composite risk function restricted to the

non-zero parameters with the overlapping constraint:

(α0T ,β0T
A )T = argmin

(αT ,βT
A)T

K∑
k=1

wkRk(αk,βAk
) (2.1)

subject to βAkj = βAk′j ∀j ∈ Okk′ , ∀k < k′,

where Rk(αk,βAk
) = EzLk(y, αk + xkTβAk

) and xk
i = [xij ]j∈Ak

.

The oracle M-estimator of (αT ,βT )T for partially overlapping models is

the unpenalized M-estimator obtained under the assumption that the spar-

sity and overlapping structure is known in advance, say (α̂oT , β̂oT )T . It can

be decomposed into its zero parameter and non-zero parameter parts: β̂o
Ac

k
=

[βo
kj ]j∈Ac

k
= 0|Ac

k| ∈ R|Ac
k|, k=1, . . . ,K, and (α̂oT , β̂oT

A )T = (α̂oT , β̂oT
A1

, . . . , β̂oT
AK

)T

∈ RK+
∑K

k=1 |Ak|, where β̂o
Ak

= [βo
kj ]j∈Ak

. Since we know the sparsity pattern

of the models, Ac
1, . . . ,Ac

K , we estimate the corresponding parameters as ze-

ros. Analogous to the definition of the true parameters in (2.1), the oracle

estimator to the non-zero parameters minimizes the empirical weighted mul-

tiple loss functions with the overlapping structure constraint: (α̂oT , β̂oT
A )T =

argmin(αT ,βT
A)T (1/n)

∑n
i=1

∑K
k=1wkLk(yi, αk +xkT

i βAk
) subject to βAkj = βAk′j

∀j ∈ Okk′ , for any k < k′.

2.2. Distinct parametrization and distinct oracle M-estimator

The common parametrization in Section 2.1 includes the duplication of the

same valued parameters from the overlapping structure. The left panel of Figure 2

shows an example of such redundant parametrization. We use two 4-dimensional

parameter vectors, β1,β2 ∈ R4, to describe the models. The first and second

parameter pairs have the same values respectively (β11 = β21 and β12 = β22).

We can use one parameter, θ11, for β11 and β21, and another parameter, θ21, for

β12 and β22 as in the right panel of Figure 2. Furthermore, this parametrization

excludes the zero-valued parameters, β23 and β14. We call such parametriza-

tion distinct parametrization or non-redundant parametrization. The underlying

sparse and overlapping structure is imposed on the non-redundant parametriza-

tion. The parametrization is lower-dimensional formulation for the true param-

eter vector and the oracle M-estimator.
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Figure 2. Illustration of distinct parametrization with β0
14 = β0

23 = 0.

To define our distinct oracle estimator, we borrow notation from Bondell and

Reich (2007). Consider the union of the index sets of the non-zero parameters of

all models,
∪K

k=1Ak = {j1, . . . , jQ}; it corresponds to the index set of covariates

with a non-zero true parameter in at least one model. Denote its cardinality as

Q = |
∪K

k=1Ak|(≤ p). Given a variable, xjq , jq ∈
∪K

k=1Ak, we consider the unique

true non-zero parameter values among the elements of {β0
Akjq

: ∀k s.t. jq ∈ Ak}.
They are called the true distinct parameters to the variable, xjq .

Suppose we have the Gq(≤ K) true distinct parameters denoted as θ0q1, . . .,

θ0qGq
for the variable, xjq . We denote the true distinct parameter vector across

all covariates as θ0 = (θ0
0,θ

0
1, . . . ,θ

0
Q)

T = (θ001, . . . , θ
0
0K , θ011, . . . , θ

0
1G1

. . . , θ0Q1, . . .,

θ0QGQ
)T ∈ RK+

∑Q
q=1 Gq , where θ0

0 is the true intercept vector, α0. This parameter

vector is the non-redundant enumeration of the true parameters in terms of

overlapping structure for all models along the predictors.

We define the distinct composite loss function with the non-redundant

parametrization as L(zi,θ) =
∑K

k=1wkLk(yi,θ0k+xkT
i βAk

(θ)), where [βAk
(θ)]j

is an element of θ to βAkj , j ∈ Ak. The distinct composite loss function is a

random convex function on RK+
∑Q

q=1 Gq . The distinct composite risk function is

the expectation of the distinct composite loss function withR(θ) = Ez[L(z,θ)] =∑K
k=1wkRk(θ0k,βAk

(θ)). The minimizer of the distinct composite risk function

is the true distinct parameter vector.

The distinct oracle M-estimator of θ is defined as the minimizer of the

distinct loss function: θ̂o = (θ̂0
0, θ̂

0
1, . . . , θ̂

0
Q)

T = argminθ(1/n)
∑n

i=1 L(zi,θ) ∈

RK+
∑Q

q=1 Gq . We assume that the dimension of the distinct oracle M-estimator,

K +
∑Q

q=1Gq, is less than the sample size, n. The distinct oracle M-estimator

can be viewed as the non-redundant enumeration of the oracle M-estimator,

(α̂oT , β̂oT
A )T , in terms of overlaps. Specifically, every element of θ̂o

q corresponds

to one or some nonzero elements among β̂o
1jq

, . . . , β̂o
Kjq

.
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2.3. Asymptotic properties of distinct oracle M-estimator

We establish the asymptotic properties of the distinct oracle M-estiamtor.

Some assumptions on the K separate loss functions are required.

A1. (α0
k,β

0T
k )T = argmin(αk,β

T
k )T∈Θ⊂Rp+1 ELk(y, αk + xTβk), k = 1, . . . ,K are

bounded and unique.

A2. ELk(y, αk + xTβk) < ∞ for each (αk,β
T
k ) ∈ Rp+1, k = 1, . . . ,K.

A3. (a) Lk(y, αk + xTβk) is differentiable w.r.t. (αk,β
T
k )

T at (α0
k,β

0
k) for Pz-

almost every z = (x, y) with derivative ∇(αk,β
T
k )TLk(y, αk + xTβ0

k) and

Jk(α
0
k,β

0
k)≡E[∇(αk,β

T
k )TLk(y, αk+x

Tβ0
k) ·∇(αk,β

T
k )TLk(y, αk+x

Tβ0
k)

T ]<∞.

(b) The risk function Rk(αk,βk) = E[Lk(y, αk + xTβk)] is twice differen-

tiable w.r.t. (αk,β
T
k )

T at (α0
k,β

0T
k )T with a positive definite Hessian matrix,

Hk(α
0
k,β

0
k).

A4. The loss function, Lk(y, αk + xTβk), is convex with respect to (αk,β
T
k )

T

for Pz-almost every z.

Similar conditions can be found for one model setting in Section 2.1 of Rocha,

Wang, and Yu (2009). The assumption, A1, ensures that the parameter for the

kth model, (α0
k,β

0T
k )T , is well defined. The second assumption, A2, guarantees

that the pointwise limit of the loss function is the risk function. From A3, we can

consider local quadratic asymptotic approximations to the risk function around

the parameter, approximating the loss function to the risk function at each point

near the parameter. A4 is used to apply Convexity Lemma Pollard (1991) for

the uniformity of approximation.

Lemma 1. If Lk(y, αk + xTβk), k = 1, . . . ,K, satisfy A1, . . ., A4, then the

composite loss function, L(zi, (α
T ,βT )) satisfies A1, . . ., A4.

Lemma 2 is essential to proving consistency and asymptotic normality of the

distinct oracle M-estimator and the
√
n-consistency, selection and overlapping

consistency, and asymptotic normality of ACME.

Lemma 2. If Lk(y, αk + xTβk), k = 1, . . . ,K, satisfy A1−A4, then

(a) there exists a K · (p+1) dimensional random vector W ∼ N(0, J(α0T ,β0T ))

such that, for each u ∈ RK·(p+1),

n∑
i=1

[
L(zi, (α

0T ,β0T ) +
uT

√
n
)− L(zi, (α

0T ,β0T ))
]

−
[1
2
uT ·H(α0T ,β0T ) · u+W T · u

]
p→ 0.
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(b) for every compact set K ⊂ RK·(p+1),

sup
u∈K

∥∥∥∥ n∑
i=1

[L(zi, (α
0T ,β0T ) +

uT

√
n
)− L(zi, (α

0T ,β0T ))]

−
[1
2
uT ·H((α0T ,β0T )) · u+W T · u

]∥∥∥∥ p→ 0.

Lemma 2 generalizes Lemma 2 of Rocha, Wang, and Yu (2009), which con-

siders the setting of a single loss function. The distinct oracle M-estimator is a

special type of M-estimators based on the distinct loss function. Lemma 3 shows

consistency of the distinct oracle M-estimator.

Lemma 3. If A1−A4 are satisfied for all K loss functions, then θ̂o converges in

probability to θ0 as n → ∞.

Theorem 1. If A1−A4 are satisfied for all K loss functions, then

√
n(θ̂o − θ0)

d→ N(0,H(θ0)−1J (θ0)H(θ0)−1)), as n → ∞,

where [H(θ0)]ij =
∂2R(θ)
∂θi∂θj

∣∣∣
θ=θ0

, and J (θ0) = E[∇θL(z,θ0)∇θL(z,θ0)T ].

The non-redundant oracle estimator across models asymptotically follows a

normal distribution, similar to some oracle estimators based on a single model.

3. Adaptive Composite M-estimation for Overlapping Structure

We establish the theoretical properties of ACME when A1−A4 hold for all

models. We develop the asymptotic theories based on the objective function

in (1.3), which is denoted as Qn(α
T ,βT ). In particular, we focus on the or-

acle properties of ACME for partially overlapping models. For pλ1n(|t|) and

pλ2n(|t|) we consider folded concave penalties, one-step folded concave penalties,

and weighted L1 penalties Fan, Xue, and Zou (2014); Zou and Li (2008).

Lemma 4. If λ1n → 0, λ2n → 0 for folded concave, one-step folded concave

penalty functions, and
√
nλ1n → 0,

√
nλ2n → 0 for weighted L1 penalty functions,

there is a local minimizer of Qn(α
T ,βT ) such that

√
n|(α̂T , β̂T )T − (α0T ,β0T )T | = Op(1).

If both pλ1n(t) and pλ2n(t) are weighted L1 penalty functions, then (α̂T , β̂T )T is

the unique global minimizer.

Lemma 4 demonstrates the existence of a
√
n-consistent penalized M-

estimator with a proper choice of λn. Theorem 2 implies that the ACME achieves
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selection consistency and overlapping consistency. The notion of overlapping

consistency is analogous with that of selection consistency. For any index j ∈ Okk′
for any k < k′, both β̂kj and β̂k′j have the exactly same values with probability

tending to 1.

Theorem 2. Suppose that λ1n → 0, λ2n → 0,
√
nλ1n → ∞, and

√
nλ2n → ∞

for folded concave, one-step folded concave penalty functions. For weighted L1

penalty functions, suppose
√
nλ1n → 0,

√
nλ2n → 0, n(s+1)/2λ1n → ∞, and

n(s+1)/2λ2n → ∞. If there exists at least one j ∈ Okk′ for some k < k′, then

P (
K∩
k=1

∩
j∈Ac

k

{β̂kj = 0} ∩
∩
k<k′

∩
j∈Okk′

{β̂kj = β̂k′j}) → 1 as n → ∞.

Let Âk = {j ∈ {1, . . . , p} : β̂kj ̸= 0} denote the non-zero coefficient index

set corresponding to the kth loss function. Denote Ĝ as the estimated grouping.

The selection and overlapping consistency can be written as P ({Âk = Ak, k =

1, . . . ,K} ∩ {Ĝ = G0}) → 1.

Let θ̂A0(G0) denote our distinct ACME from (1.3) provided we know the

true overlapping structure, G0, and the true sparse structure, A0. We study the

asymptotic distribution of θ̂A0(G0) since our estimator recovers the true sparsity

and overlapping structure with probability tending to one; its dimension is the

dimension of the distinct oracle estimator.

Theorem 3. If the assumptions in Theorem 2 are satisfied, then

√
n(θ̂A0(G0)− θ0)

d→ N(0,H(θ0)−1J (θ0)H(θ0)−1)).

Theorem 3 states that the distinct estimator has the same asymptotic dis-

tribution as the distinct oracle estimator in Theorem 1. The ACME across the

multiple models follows a normal distribution in terms of non-zero non-redundant

enumeration as the penalized estimators of a single model for the non-zero pa-

rameters follow a normal distribution Fan and Li (2001).

The asymptotic distribution of the distinct ACME in Theorem 3 leads to

theoretically optimal weights to achieve the efficiency across the multiple mod-

els. The criterion for the choice of weights is to maximize the efficiency of the

estimator Bradic, Fan, and Wang (2011). We can use the determinant of the

asymptotic covariance matrix of the estimator or its trace as the criterion; its

asymptotic covariance is a function of the unknown matrices of J (θ0) and H(θ0),

and both depend on the weight vector, w. Completely overlapping models also

have an asymptotic normal distribution and their asymptotic covariance depends

on the weight vector Bradic, Fan, and Wang (2011). In this setup, the asymptotic

covariance matrix can be simplified as the multiplication of a scalar function and
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a function of predictors. Since the scalar function only takes the weight vector as

its variable, the weight vector can be decoupled from the asymptotic covariance

matrix. Bradic, Fan, and Wang (2011) chooses the weight vector by minimizing

the scalar function. However, such decoupling cannot be obtained for partially

overlapping models, due to the complex form of the asymptotic covariance.

To address the problem, we suggest a data dependent approach to select

weights. We first obtain the separate penalized M-estimators as the initial sep-

arate estimators with β̂
(0)
k = argmin(αk,β

T
k )T∈Θ⊂Rp+1

∑n
i=1 Lk(yi, αk + xT

i βk) +

n
∑p

j=1 pλ1n(|βkj |), k = 1, . . . ,K. The preliminary M-estimators achieve sparse

estimation, but do not attain overlapping estimation. Next we calculate data-

driven weights, w = (w1, . . . , wK)T based on the preliminary estimators. We

set wk to be proportional to the reciprocal of the empirical loss function of the

initial estimators with wk ∝ [(1/n)
∑n

i=1 Lk(yi, αk + xT
i β̂

(0)
k )]−1, k = 1, . . . ,K.

We recommend this weight ratio for the same leverage of each loss function to

the composite loss function. For computational efficiency, they are rescaled to

have sum to one as
∑K

k=1wk = 1. We adopt this choice of weights in the nu-

merical studies of Section 4, which yields excellent performance. We assume

positive weights because the presence of a zero weight automatically removes the

parameter vector of the corresponding model.

Next we solve the optimization problem, (1.3), with the plug-in weights.

Zero-estimated parameters in the preliminary step can be estimated as non-zero

in the ACME procedure. For implementation, we adopt one-step SCAD penalties

and select a suitable algorithm with respect to the composite loss of interest. For

example, we use a coordinate descent alrogithm for the L1-L2 composite loss.

The optimization problem for ACME with the CQR can be recast as a linear

programming problem with some slack variables Wu and Liu (2009). To obtain

the optimal tuning parameters for λ1n and λ2n, we use five-fold cross validation.

A two-dimensional grid search is performed for the selection of (λ1n, λ2n). A

proper choice of the tuning parameters is required to simultaneously recover the

sparsity and overlapping structure.

4. Simulation Studies

We performed simulation studies under a classical linear model and a linear

location-scale model. Each dataset in Sections 4.1−4.2 was generated from these

two models. We obtained ACME for both least absolute deviations (LAD) re-

gression and least squares (LS) regression with a composite L1-L2 loss function.

We compared it with separate LAD and LS estimators such as ordinary unpe-

nalized LAD and LS estimators (Ordinary), adaptive Lasso penalized LAD and

LS estimators (AdLasso), and one-step SCAD penalized LAD and LS estimators

(SCAD). We also compared with penalized composite quasi-likelihood (PCQ) in
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Bradic, Fan, and Wang (2011), which was developed for a classical linear model.

PCQ assumes the completely overlapping structure across all loss functions. We

employed one-step SCAD penalty for PCQ.

For comparison, we report the median of model errors (MME), the standard

error of model errors (SE), the number of correctly classified non-zero estimators

(TP), and the number of incorrectly classified zero estimators (FP). The model

error of each estimator is defined as ME(β̂) = (β̂ − β0)TE(XTX)(β̂ − β0). We

also evaluated the overlapping performance across the LAD and LS models. The

overlapping structures are categorized into four types: truly grouped estimators,

truly grouped non-zero estimators, truly grouped zero estimators, and truly un-

grouped estimators, with the index set of the categories as TG, NG, ZG, and

UG, respectively. We measured the performance of the overlapping recovery us-

ing overlapping ratios corresponding to these four categories. More details are

provided in the web-appendix.

4.1. Classical linear regression model

We considered the classical linear model from Fan and Li (2001): yi = xT
i β

0+

ϵi, where β0 = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0). The covariate xi was multivariate

normal with zero mean and covariance, Cov(xij1 , xij2) = 0.5|j1−j2|, 1 ≤ j1, j2 ≤
12. We took the error term, ϵ1, . . . , ϵn, to follow a normal distribution (N(0, 3)), a

double exponential distribution (DE), and a t distribution with d.f. 4 (t(4)). We

considered both LAD regression and LS regression. The true models were com-

pletely overlapped since the true parameter vector of the LS regression was the

same as the true parameter vector of the LAD regression. For these models, both

PCQ and ACME used the composite L1-L2 loss function. Our choice of weight

for ACME was (w1, w2) ∝ (1/MAE(α̂SCAD
lad , β̂SCAD

lad ), 1/MSE(α̂SCAD
ls , β̂SCAD

ls )),

with MAE(α̂SCAD
lad , β̂SCAD

lad ) as the mean of absolute errors of the SCAD-LAD

estimator, and MSE(α̂SCAD
ls , β̂SCAD

ls )) as the mean of squared errors of the

SCAD-LS estimator. The results were obtained from 100 simulated datasets

with n = 100 and n = 500.

From the first three columns of Tables 1−2, the performance of ACME is the

best for both L1 and L2 under DE error with n = 100, 500 and under t(4) with

n = 100 in terms of MME. Under N(0, 3) with n = 100, 500, the MMEs of the

PCQ are smaller than those of ACME, but ACME outperforms the others. In

this setting, PCQ is generally comparable to ACME because PCQ achieves the

oracle overlapping structure. All estimators successfully selected the significant

variables, β0
1 , β

0
2 , β

0
5 , as evidenced by TP. ACME performed the best in terms of

FP in most cases.

For the overlaps, we had TG= {1, 2, . . . , 11, 12}, NG={1, 2, 5}, ZG={3, 4, 6,
. . . , 12} and UG= ∅. In the first three rows of Table S1 in the web-appendix,
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Table 1. Simulation results with model errors and numbers of correct non-
zeros/incorrect zeros (n = 100).

N(0,3) DE t(4) LLS
Estimation MME MME MME MME

(TP, FP) (TP, FP) (TP, FP) (TP, FP)

LAD Oracle 0.1192 0.0484 0.0482 0.4853
(3, 0) (3, 0) (3, 0) (10, 0)

Ordinary 0.5643 0.34 0.2493 0.9383
(3, 9) (3, 9) (3, 9) (10, 8)

AdLasso 0.2713 0.1115 0.1008 0.7472
(3, 2.52) (3, 1.84) (3, 2.44) (9.97, 2.42)

SCAD 0.2632 0.091 0.1014 0.6476
(3, 2.48) (3, 1.59) (3, 2.17) (9.96, 1.56)

PCQ oracle 0.0738 0.067 0.0386 6.8094
(3, 0) (3, 0) (3, 0) (7, 0)

PCQ 0.1395 0.1356 0.0981 14.3802
(3, 1.97) (3, 3.72) (3, 3) (9.59, 7.1)

ACME oracle 0.0786 0.0642 0.0411 0.6278
(3, 0) (3, 0) (3, 0) (10, 0)

ACME 0.1761 0.085 0.0694 0.6717
(3, 1.62) (3, 1.16) (3, 1.4) (9.78, 1.03)

LS Oracle 0.0727 0.0881 0.0428 2.866
(3, 0) (3, 0) (3, 0) (7, 0)

Ordinary 0.3892 0.3871 0.2794 10.0807
(3, 9) (3, 9) (3, 9) (7, 11)

AdLasso 0.1569 0.1647 0.1054 6.0877
(3, 1.79) (3, 1.88) (3, 1.83) (6.88, 3.26)

SCAD 0.1436 0.1719 0.1038 6.4209
(3, 1.96) (3, 2.11) (3, 2.06) (6.88, 4.82)

PCQ oracle 0.0738 0.067 0.0386 1.6273
(3, 0) (3, 0) (3, 0) (7, 0)

PCQ 0.1395 0.1356 0.0981 8.3698
(3, 1.97) (3, 3.72) (3, 3) (7, 9.69)

ACME oracle 0.0786 0.0642 0.0411 1.48
(3, 0) (3, 0) (3, 0) (7, 0)

ACME 0.1434 0.1238 0.0802 5.3363
(3, 1.63) (3, 1.41) (3, 1.51) (6.85, 2.38)

ACME has reasonable ratios of NG as well as ZG. Most ZGs are higher than

NGs since the two penalty terms for overlapping and sparsity encourage increase

in the ZG ratio. We can view the NG ratio as a more accurate measure on the

performance of the overlapping penalization than the ZG ratio. The ZG ratio of

ACME is almost 30% higher than that of all separate estimators under n = 100

and n = 500. ACME has almost two thirds the NG ratio, except for the nor-
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Table 2. Simulation results with model errors and numbers of correct non-
zeros/incorrect zeros (n = 500).

N(0,3) DE t(4) LLS
Estimation MME MME MME MME

(TP, FP) (TP, FP) (TP, FP) (TP, FP)

LAD Oracle 0.0255 0.0072 0.0072 0.0453
(3, 0) (3, 0) (3, 0) (10, 0)

Ordinary 0.1074 0.0409 0.0403 0.0589
(3, 9) (3, 9) (3, 9) (10, 7.99)

AdLasso 0.0453 0.0134 0.0148 0.0544
(3, 1.69) (3, 1.52) (3, 1.79) (10, 1.17)

SCAD 0.0393 0.0126 0.0132 0.0489
(3, 1.53) (3, 1.42) (3, 1.58) (10, 0.85)

PCQ oracle 0.014 0.0082 0.0074 5.6941
(3, 0) (3, 0) (3, 0) (7, 0)

PCQ 0.0174 0.0224 0.0148 8.8911
(3, 1.12) (3, 3.38) (3, 2.56) (9.99, 7.85)

ACME oracle 0.0156 0.0088 0.0071 0.059
(3, 0) (3, 0) (3, 0) (10, 0)

ACME 0.0311 0.0108 0.01 0.0542
(3, 0.82) (3, 1.17) (3, 1.14) (10, 0.3)

LS Oracle 0.0135 0.0133 0.0096 0.6803
(3, 0) (3, 0) (3, 0) (7, 0)

Ordinary 0.0712 0.0671 0.0471 1.7359
(3, 9) (3, 9) (3, 9) (7, 11)

AdLasso 0.0229 0.0238 0.0178 1.0036
(3, 1.16) (3, 1.27) (3, 1.39) (7, 2.31)

SCAD 0.0191 0.024 0.012 1.1313
(3, 1.22) (3, 1.56) (3, 1) (7, 3.39)

PCQ oracle 0.014 0.0082 0.0074 1.4777
(3, 0) (3, 0) (3, 0) (7, 0)

PCQ 0.0174 0.0224 0.0148 1.5568
(3, 1.12) (3, 3.38) (3, 2.56) (7, 10.84)

ACME oracle 0.0156 0.0088 0.0071 0.2633
(3, 0) (3, 0) (3, 0) (7, 0)

ACME 0.0189 0.0206 0.0132 0.7471
(3, 0.92) (3, 1.32) (3, 1.28) (7, 1.01)

mal distribution with n = 100. Ordinary, AdLasso, and SCAD have zero NG

ratios because the separate estimation does not involve any overlapping penal-

ization. PCQ possesses complete overlapping because the dataset is assumed to

be generated from a classical linear model. Hence, PCQ successfully recovers the

overlapping structure.
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4.2. Linear location-scale model

Under linear location-scale models, LS regression and LAD regression are

partially overlapping models as some covariates affect the scale of the response.

Our dataset was generated from a linear location-scale model: yi = xT
i β

0 +

xT
i γ

0ϵi, where β0 = (3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and γ0 = (0, 0, 0,

0, 3,−3, 3,−3, 3,−3, 0, 0, 0, 0, 0, 0, 0, 0)T . The covariate, xi = (xi1, . . . , xi18)
T ,

was generated from a multivariate standard normal distribution, N(0, I18×18).

We took that the error term, ϵi, as a shifted gamma distribution, Γ(0.25, 2)−0.5.

This distribution is skewed to the right and centered to mean 0. The true parame-

ter vector of the LS regression model was β0
ls = β0 and the true parameter vector

of LAD regression model was β0
lad = (3, 3, 3, 3, 1.762, 4.238, 1.762, 1.238,−1.238,

1.238, 0, 0, 0, 0, 0, 0, 0, 0)T . As in Section 4.1, we used the composite L1-L2 loss

function. We did 100 repetitions for n = 100 and n = 500.

From the last columns of Tables 1−2, the ACME has the second smallest

MME for LAD regression, and the smallest MME for LS regression with n =

100, 500. The SCAD has the smallest MME for LAD and the SCAD has the

second smallest MME for LS. The separate estimators and the ACME show

much better performance for the LAD regression than the LS regression due to

the skewed error distribution. From this point of view, it is desirable to have a

trade-off between LAD and LS estimation performance in ACME. The ACME

sacrifices LAD estimation performance about 5% with n = 100, and 10% with

n = 500, while it gains in LS estimation performance almost 15% with n = 100,

and 30% with n = 500. Overall, ACME has very competitive performance in

terms of MME, sparsity and overlapping structure recovery. The performance of

PCQ is poor as expected since the LAD and LS regression models are assumed

to be completely overlapped.

The grouping performance results under this model are summarized at the

bottom of Table S1 in the web-appendix. We have TG= {1, 2, 3, 4, 11, . . . , 18},
NG= {1, 2, 3, 4}, ZG= {11, . . . , 18} and UG= {5, 6, . . . , 10}. ACME has much

higher TG, NG, and ZG ratios than separate estimation. Both NG and ZG ratios

increase as the sample size increases. ACME also has higher UG ratio, whose

oracle target is zero, but the ratio drops to 0.005 from 0.2217 as the sample

size is increased to n = 500 from n = 100. PCQ shows good performance for

underlying grouped variables (TG, NG, ZG), while it groups the variables which

are not truly overlapped (UG).

5. Baseball Data Analysis

We analyzed the major league baseball (MLB) players’ annual salary dataset,

obtained from http://lib.stat.cmu.edu. We were interested in the salary

determinants of low-paid, median-paid, and highly-paid players respectively. We

http://lib.stat.cmu.edu
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obtained ACME for three quantile regression models to the quantiles, 0.25, 0.5,

0.75. The dataset consists of the records and information on 263 North American

MLB players in 1986 season and their salary in 1987 season. This dataset was

previously studied by He, Ng, and Portnoy (1998) and Li, Liu, and Zhu (2007).

They assumed that salary is a function of only the number of home runs in the

previous year (HR) and the number of years in MLB (YEARS).

In addition to HR and YEARS, we considered covariates such as their perfor-

mance in the previous years and their league, division, and position information.

The response is the annual salary on opening day in 1987, in thousands of dol-

lars. The first seven predictors were the number of hits (HIT), the number of

runs (RUN), the number of runs batted in (RBI), the number of walks (WALK),

the number of put outs (PUTOUT), the number of assists (ASSIST), and the

number of errors (ERROR). We employed seven dummy variables for league and

division, and position information: National East (NE), National West (NW),

American East (AE), Infielder (IN), Outfielder (OUT), Catcher (CC), and Des-

ignated Hitter (DH). We treated American West (AW) and Utility Players (UP)

as the base groups of the league and division, and position, respectively. We

dropped the players’ batting in 1986 (BAT) since BAT is highly correlated with

such other variables as HIT, HR, RUN, RBI, and WALK. Especially, the cor-

relation between the BAT and HIT is 0.9640. Most of the correlations among

the performance records during career are almost 0.9, which indicates severe

collinearity.

Our goal was to determine important covariates on the first, second, and

third quantiles of the players’ salaries. We used a CQR loss function for the

analysis with the quantile vector, τ = (0.25, 0.5, 0.75), corresponding to the low-

paid, median-paid, and highly-paid players. We performed separate quantile

regression estimation methods, PCQ, and ACME. The separate regression meth-

ods included ordinary, adaptive Lasso and one-step SCAD penalized quantile

regression estimation.

ACME provides interpretable results by grouping the similar effects across

the different quantiles. The results are summarized in Table 3. ACME selects

HIT, YEARS, PUTOUT, league and division, and positions across the three

quantiles. The second quantile regression model is partially overlapped with the

third quantile regression for the three covariates: HIT, YEARS, and PUTOUT;

they are seen to have the same strength of impacts on the median-paid and

highly-paid baseball players’ salary; their effects are weaker in the case of low-

paid players’ salaries. HR was found to be significant only for the highly-paid

players. The other coefficients, such as RUN and RBI, go to zero across all

quantiles. WALK and ASSIST are non-zero in the preliminary estimator for the

third quantile, but they go to zero in the ACME procedure.
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Table 3. Regression coefficients for the baseball dataset.

Ordinary (SE) Sig. AdLasso SCAD PCQ ACME

(Intercept) -245.5120 (73.4387) 3.5418 -219.1371 -515.5512 -222.0246

HIT 0.7907 (1.7183) 0 1.2864 2.9716 1.2815

HR -5.3061 (4.9069) 0 0 2.0697 0

RUN 1.8274 (2.7044) 1.2953 0 0 0

RBI 2.4403 (2.6514) 0.2118 0 0 0

WALK 0.7804 (1.5287) 0 0 2.4083 0

YEARS 30.2551 (4.3717) (**) 25.0385 31.0540 34.7556 31.2286

PUTOUT -0.0890 (0.0978) 0 0.0015 0.1878 0.0118

ASSIST -0.1639 (0.2459) 0 0 -0.0423 0

ERROR -4.0178 (4.5298) 0 0 -5.4835 0

NE -0.3179 (50.4264) 0 0 119.9565 0

NW 14.4817 (46.9023) 0 24.2768 49.2665 19.6613

AE 45.4914 (48.4438) 0 38.5924 94.8061 40.6199

IN 158.2192 (70.4252) (**) 0 131.8874 146.3136 130.0462

OUT 103.3899 (71.0636) 0 163.0241 104.6079 160.9292

CC 192.0264 (75.5660) (**) 0 144.9067 180.0394 147.7828

DH -79.9613 (122.5664) 0 -10.3131 -37.9423 -11.7313

(Intercept) -433.8376 (70.6211) -377.3501 -350.5207 -389.9337 -345.8087

HIT 4.0231 (1.5517) (**) 2.9242 2.9508 2.9716 2.9707

HR 6.6351 (6.2462) 2.5825 0 2.0697 0

RUN -1.8305 (2.7047) 0 0 0 0

RBI -1.4046 (2.5405) 0 0 0 0

WALK 2.0973 (1.3878) 1.7366 0 2.4083 0

YEARS 40.8095 (4.6872) (**) 38.4487 42.1105 34.7556 42.5428

PUTOUT 0.2477 (0.1416) (*) 0.2641 0.3109 0.1878 0.2662

ASSIST -0.2267 (0.2770) -0.0258 0 -0.0423 0

ERROR -1.8804 (4.0841) -0.5691 0 -5.4835 0

NE 108.5532 (52.4478) (**) 93.8747 128.5615 119.9565 130.8570

NW 12.7587 (47.3871) 0 29.9324 49.2665 32.3740

AE 40.8497 (45.3921) 23.4914 81.1657 94.8061 73.9340

IN 190.6089 (78.3024) (**) 89.7357 54.3756 146.3136 66.6862

OUT 136.6861 (62.7354) (**) 95.4291 104.7711 104.6079 103.4506

CC 145.0478 (81.5529) (*) 103.9739 80.8829 180.0394 90.0636

DH -1.8963 (133.4392) 0 0 -37.9423 0

(Intercept) -391.8350 (81.0963) -361.7759 -399.4956 -245.9810 -374.7126

HIT 4.8975 (2.1460) (**) 4.1554 3.4490 2.9716 2.9707

HR 13.3862 (7.9316) (*) 12.4493 9.6505 2.0697 13.0354

RUN -2.4222 (3.7428) -1.4637 0 0 0

RBI -1.9237 (3.7097) -1.6779 0 0 0

WALK 3.2575 (1.9991) 3.5655 1.9914 2.4083 0

YEARS 39.3092 (6.4817) (**) 41.4364 40.8961 34.7556 42.5428

PUTOUT 0.2982 (0.1529) (*) 0.3053 0.2727 0.1878 0.2662

ASSIST -0.6020 (0.3831) -0.5430 -0.3295 -0.0423 0

ERROR -1.7205 (6.3196) -0.4648 0 -5.4835 0

NE 172.1072 (61.4199) (**) 151.9045 156.2564 119.9565 183.7244

NW 46.0431 (60.8648) 33.0716 54.2641 49.2665 66.9276

AE 112.6242 (70.0346) 95.4571 101.6325 94.8061 82.9392

IN 224.1558 (100.9911) (**) 164.4403 137.2256 146.3136 120.8592

OUT 62.4650 (87.4832) 42.4966 86.4714 104.6079 149.6180

CC 49.1510 (106.0594) 17.4022 63.3216 180.0394 91.7776

DH -129.9760 (216.2998) -174.4692 -69.4182 -37.9423 7.7997

Note. (**) indicates significant level 0.05 and (*) indicates significant level 0.1.
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Table 4. Test errors of baseball dataset for three quantiles

Ordinary AdLasso SCAD PCQ ACME

Q1 75.9326 75.9482 72.7219 81.9500 74.2914
Q2 106.4342 105.3914 106.0978 103.6183 105.4999
Q3 92.7157 92.3668 93.7098 93.7860 91.9224

The players’ position was shown to be another important factor on the annual

salary. Across all quantiles, the outfielders (OUT) are seen as the most-paid

position. The catchers’ (CC) and the infielders’ (IN) salaries are the second

and third highest, and the designated hitters (DH) and the utility players (UP)

have the second-lowest and lowest salaries. Similar to position, we can analyze

the league and division factor on the players’ salaries. Table 3 also reports

the standard errors of the ordinary coefficients and their significance. They

were obtained from the Markov chain marginal bootstrap (MCMB) with 500

repetitions (Kocherginsky, He, and Mu, 2005). ACME selects all variables known

to be significant by MCMB under the significance level of 0.1.

Table 4 shows the test errors for all estimation procedures from 10 repeti-

tions. In each iteration, randomly selected 28 data points were assigned as a test

set and the remaining 235 data points were assigned as a training set. ACME

outperformed the ordinary quantile regression models at all quantiles. Compared

with the other penalized estimators, ACME had better performance at two of the

three quantiles. The performance of PCQ was substantially biased at the first

quantile. Because PCQ assumes complete overlapping models, the first quantile

regression modeling was dragged upward toward other two quantiles.

6. Concluding Remarks

We have proposed adaptive composite estimation for partially overlapping

models, first introducing the notion of partially overlapping regression models

on a given dataset. Overlapping structure has the same effect of a covariate

on the response across multiple models. Partially overlapping models have at

least one overlapping structure. We have also considered the sparse structure

of the regression parameters for all models. ACME achieves both goals with a

doubly penalized composite loss function. Its regular penalty function encourages

sparse structure recovery while the other penalty function induces the overlapping

structure recovery. The arguments of the second penalty function are all pairwise

differences of the coefficients for each covariate across the models. We have shown

its selection and overlapping consistency under the proper choice of the tuning

parameters. We have also established the asymptotic normality of non-redundant

ACME, given the true sparse and overlapping structure. In numerical studies,

ACME has outperformed the separate penalized M-estimation and the composite
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M-estimation under the complete overlapping structure assumption. Our study

has focused on a moderate number of covariates and a moderate number of loss

functions due to computational burden. Extension to high-dimensional covariates

and models requires future research.

Supplementary Materials

Supplementary materials available at the Statistica Sinica journal website

include additional results for simulated examples, and proofs of theorems.
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