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Abstract: In this article, we propose envelope models that accommodate het-

eroscedastic error structure in the framework of estimating multivariate means

for different populations. Envelope models were introduced by Cook, Li, and

Chiaromente (2010) as a parsimonious version of multivariate linear regression that

achieves efficient estimation of the coefficients by linking the mean function and the

covariance structure. In the original development, constant covariance structure

was assumed. The heteroscedastic envelope models we propose are more flexible

in allowing a more general covariance structure. Their asymptotic variances and

Fisher consistency are studied. Simulations and data examples show that they are

more efficient than standard methods of estimating the multivariate means, and also

more efficient than the envelope model assuming constant covariance structure.

Key words and phrases: Dimension reduction, envelope model, Grassmann mani-

fold, reducing subspace.

1. Introduction

The standard model for estimating multivariate means for p populations can

be formulated as

Y(i)j = µ+ β(i) + ε(i)j , i = 1, . . . , p, j = 1, . . . , n(i), (1.1)

where Y(i)j ∈ Rr is the jth observation vector in the ith population, µ ∈ Rr is

the grand mean over all the observations, β(i) ∈ Rr is the difference between the

mean of the ith population and the grand mean, and the error vector ε(i)j ∈ Rr

follows the normal distribution with mean 0 and covariance matrix Σ(i) > 0.

Throughout this article, subscripts (i) indicate the ith population and subscripts

without parentheses are used to number the observations. The sample size from

the ith population is n(i), and the total sample size is n =
∑p

i=1 n(i). As the

population means average to the grand mean, we have
∑p

i=1 n(i)β(i) = 0. Then

model (1.1) has pr + pr(r + 1)/2 parameters to estimate. This number grows

quickly as r increases, making the model potentially inefficient for large r.
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Over the years, the multivariate nature of this model has not been used

effectively for estimation in standard analyses. For example, if we want to esti-

mate the first element in the β(i)’s, we can simply take the first element in the

Y(i)j ’s and do the analysis neglecting the other measurements. In Cook, Li, and

Chiaromente (2010), a new class of models called envelope models was proposed

that connects the mean function and the covariance structure and, as a result,

the elements in the response vector are linked, and information in one element

is used in estimating the mean for another element. This connection provides

efficiency gains in the estimation of multivariate means.

The rest of this Introduction is devoted to a brief review of the envelope

model. In Section 2, we introduce a heteroscedastic envelope model, derive its

maximum likelihood estimators (MLE), and study the Fisher consistency of the

MLEs. The asymptotic distribution of the MLEs is explored in Section 3. Di-

mension selection, simulations, and an example are discussed in Section 4.

The original development of the envelope model was under a constant co-

variance assumption, so for now we assume Σ(1) = · · · = Σ(p) = Σc, Σc is the

common covariance matrix. Although it differs from the multivariate linear re-

gression framework in Cook, Li, and Chiaromente (2010), we introduce the model

in the context of (1.1) for consistent flow of the discussion.

At (1.1), when r is large, some measurements or linear combination of Y(i)j

could distribute the same among all populations, while the other part of Y(i)j

reflects population differences. In other words, there exists a subspace S ⊆ Rr so

that (i) the distribution of QSY(i)j is the same for all i, j, and (ii) with i fixed,

PSY(i)j and QSY(i)j are independent, where P(·) is a projection onto the sub-

space indicated by its argument and Q(·) = I−P(·). Intuitively, PSY(i)j carries

information about the population difference while the distribution of QSY(i)j is

the same across the populations, and we call PSY(i)j and QSY(i)j the dynamic

and static parts of Y(i)j . We provide more intuition on the dynamic and static

parts later in Figure 1 when we explain the working mechanism of the envelope

model. Conditions (i) and (ii) are equivalent to the following (Cook, Li, and

Chiaromente (2010)):

B ⊆ S, Σc = PSΣcPS +QSΣcQS , (1.2)

where B = span(β(1), . . . ,β(p)), Var (PSY(i)j) = PSΣcPS and Var (QSY(i)j) =

QSΣcQS . The equality in (1.2) is a sufficient and necessary condition for S
to be a reducing subspace of Σc, (Conway (1990)), and thus S is a reducing

subspace of Σc that contains B. The Σc-envelope of B, denoted by EΣc(B), is
defined as the smallest reducing subspace of Σc that contains B. The notation is

shortened to E for subscripts. The minimality guarantees that the dynamic part
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PEY(i)j carries only the information on population differences, and the static

part QEY(i)j carries no information on population differences.

With S = EΣc(B), (1.1) is called the envelope model with (1.2) imposed, and

called the standard model without (1.2) imposed. The two conditions in (1.2)

provide a link between the mean function and the covariance structure, enabling

efficient estimation of the β(i)’s. By Theorem 5.1 in Cook, Li, and Chiaromente

(2010), the envelope estimator is always more efficient than or as efficient as

the standard estimator; efficiency gains can be expected to be substantial when

∥PSΣcPS∥ ≪ ∥QSΣcQS∥, where ∥ · ∥ is the spectral norm of a matrix.

Figure 1 provides a graphical illustration of the working mechanism of the

envelope model. There are two normal populations, represented by the ellipses

in the plot. Take r = 2 and label the elements in a generic response vector

Y(i) vector as Y1(i) and Y2(i). Then standard inference for E (Y1(1)) − E (Y1(2)),

which corresponds to the first element in β(1), is based on projecting all the

data points onto the Y1 axis; the projection path is indicated by line “A”. We

can imagine that the projections for the two populations will have a large part

overlapped. But in envelope analysis, only the dynamic part PEY(i)j reflects

population differences, and QEY(i)j distributes the same for the two populations.

Consequently, inference on the first element in β(i) is based on projecting the data

first onto the envelope space EΣc(B), and then onto the Y1 axis. The projection

path is indicated by line “B”. We can imagine that the projection of the two

populations are well separated and thus inference is more efficient. The efficiency

gain is a result of ruling out the variations in the static part QEY(i)j . In practice,

ÊΣc(B) has a degree of wobble, which spreads the projections from line “B”. The

asymptotic variance of β̂(i) takes this into consideration.

Up to now, the issue of heteroscedasticity in envelope models has not been

addressed. It was raised in the Discussion of Cook, Li, and Chiaromente (2010)

by Lue and, in the Rejoinder of Cook, Li, and Chiaromente (2010), considered

to be an important topic for future research. In the next section, we introduce

envelope models that accommodate heteroscedastic covariance structure in the

framework of estimating multivariate means.

2. Heteroscedastic Envelope Models

2.1. Formulation

Without assuming constant covariance, we still want to find a subspace S
with the smallest dimension, so that condition (i) and (ii) in Section 1 hold

for each population. With heteroscedastic structure, (i) and (ii) expand to the

following:

B ⊆ S, Σ(i) = PSΣ(i)PS +QSΣ(i)QS , i = 1, . . . , p. (2.1)
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Figure 1. Working mechanism of envelope models.

The equality in (2.1) indicates that S is a reducing subspace for all the Σ(i),

i = 1, . . . , p. Compared with (1.2), (2.1) suggests a new definition of an envelope

that takes a collection of matrices into consideration.

Definition 1. Let M be a collection of real p × p symmetric matrices and let

V ⊆ span(M) for all M ∈ M. The M-envelope of V, EM(V), is the intersection

of all subspaces that contain V and that reduce each member of M.

In our setup, M = {Σ(i) : i = 1, . . . , p}, and V = B. As the Σ(i) are all

positive definite, span(Σ(i)) = Rr for all i. The condition V ⊆ span(M) is then

satisfied by any subspace V of Rr. The envelope EM(B) is the subspace with

the smallest dimension that contains B and reduces M, so it is the smallest

subspace that satisfies (2.1). The existence of EM(B) is guaranteed because

EM(B) = Rr satisfies (2.1). Any common eigenspace of the Σ(i)’s or the direct

sum of the eigenspaces of the Σ(i)’s that contains B satisfies (2.1) (Cook, Li,

and Chiaromente (2010)). The envelope EM(B) is then obtained by taking the

intersection of all the subspaces that satisfy (2.1). For example, if p = 2, v is

a common eigenvector of Σ(i), i = 1, 2, and B = span(v), then span(v) satisfies

(2.1). As span(v) has dimension 1, EM(B) = span(v).

The envelope EM(B) can now be used to divide Y(i),j into its dynamic part

PEY(i),j and its static part QEY(i),j . From now on, we use the subscript E for

EM(B). The working mechanism is similar to that discussed before, but we now
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have a different covariance structure. Intuition on the heteroscedastic envelope

model is provided in the discussion of Figure 2 given near the end of Section 3.2,

and in Section 4.2.

With S = EM(B), model (1.1) is called the heteroscedastic envelope model

with (2.1) imposed, as opposed to the homoscedastic version. Without (2.1) im-

posed, model (1.1) is called the heteroscedastic standard model if it allows differ-

ent covariance structure for different population, and is called the homoscedastic

standard model otherwise.

The four models we mentioned in the preceding paragraph are in fact closely

related. We use u to denote the dimension of EM(B). When u = r, EM(B) =

Rr. All responses and their linear combinations contain differential population

information and there is no static part, so the heteroscedastic envelope model

reduces to the heteroscedastic standard model and the homoscedastic envelope

model reduces to the homoscedastic standard model (Cook, Li, and Chiaromente

(2010)). When we have Σ(1) = · · · = Σ(p), the heteroscedastic envelope model

and the heteroscedastic standard model degenerate to the homoscedastic envelope

model and the homoscedastic standard model. When u = r and Σ(1) = · · · =
Σ(p), the four models are the same.

The coordinate form of the heteroscedastic envelope model is similar to (3.2)

in Cook, Li, and Chiaromente (2010), but the error structure now accommodates

heteroscedastic cases:

Y(i)j = µ+ Γη(i) + ε(i)j ,
(2.2)

Σ(i) =Σ1(i) +Σ2 = ΓΩ1(i)Γ
T + Γ0Ω0Γ

T
0 ,

where Γ ∈ Rr×u is an orthogonal basis for EM(B), and Γ0 ∈ Rr×(r−u) is its

completion such that (Γ,Γ0) ∈ Rr×r is an orthogonal matrix. So we have ΓΓT =

PE and Γ0Γ
T
0 = QE . For i = 1, . . . , p, η(i) ∈ Ru×1 carries the coordinates of

β(i) with respect to Γ, so β(i) = Γη(i) and
∑p

i=1 n(i)η(i) = 0, Ω1(i) ∈ Ru×u and

Ω0 ∈ R(r−u)×(r−u) are symmetric matrices that carry the coordinates of Σ(i) with

respect to Γ and Γ0.

The number of parameters in (2.2) is u(r−u+p)+pu(u+1)/2+(r−u)(r−
u+1)/2+ r−u, as follows. We need u parameters for each η(i), i = 1, . . . , p, but

a total of u(p−1) for all of the η(i)’s as they are linearly dependent, r parameters

are needed to specify µ, u(u + 1)/2 parameters for each Ω1(i), i = 1, . . . , p, and

(r − u)(r − u + 1)/2 parameters for Ω0. We cannot estimate Γ but only its

span, so we are estimating span(Γ) on a r × u Grassmann manifold; therefore,

u(r − u) parameters are needed. Compared with the number of parameters in

the heteroscedastic standard model as we mentioned at the beginning of Section
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1, when u < r, the heteroscedastic envelope model has fewer parameters, which
implies a potential for efficiency gains.

2.2. Maximum likelihood estimators

The MLEs of the heteroscedastic envelope model parameters are derived
using the coordinate form (2.2). Let Ȳ =

∑
i,j Y(i)j/n be the sample grand

mean, and Ȳ(i) =
∑

j Y(i)j/n(i) be the sample mean for the ith population. We

use Σ̂Y =
∑

i,j(Y(i)j − Ȳ)(Y(i)j − Ȳ)T /n for the sample covariance matrix of

Y, and Σ̂res(i) =
∑

j(Y(i)j − Ȳ(i))(Y(i)j − Ȳ(i))
T /n(i) for the sample covariance

matrix of Y restricted within the ith population, i = 1, . . . , p. Then, as shown
in Appendix 1, an orthogonal basis Γ̂ of the MLE of EM(B) can be obtained by
minimizing the following objective function over the Grassmann manifold Gr×u:
Γ̂ = argminG fobj(G), where

fobj(G) = n log |GT Σ̂
−1

Y G|+
p∑

i=1

n(i) log |GT Σ̂res(i)G|, (2.3)

and G is an r × u semi-orthogonal matrix. Having Γ̂, P
Γ̂

= Γ̂Γ̂
T

is the

projection matrix onto span(Γ̂), and Q
Γ̂

= Ir − P
Γ̂
. The MLE for the other

parameters are listed below:

• µ̂ = Ȳ;

• β̂(i) = P
Γ̂
(Ȳ(i)−µ̂), for i = 1, . . . , p, the projection onto the envelope subspace

of the difference between the mean for ith population and the grand mean;

• the sample mean for the ith population is µ̂ + β̂(i) = Q
Γ̂
µ̂ + P

Γ̂
Ȳ(i) for

i = 1, . . . , p;

• Γ̂0 is any orthogonal basis of the orthogonal complement of span(Γ̂);

• η̂(i) = Γ̂
T
β̂(i), Ω̂1(i) = Γ̂

T
Σ̂res(i)Γ̂, for i = 1, . . . , p, and Ω̂0 = Γ̂

T

0 Σ̂YΓ̂0;

• Σ̂2 = Γ̂0Ω̂0Γ̂
T

0 , Σ̂1(i) = Γ̂Ω̂1(i)Γ̂
T
, and Σ̂(i) = Σ̂1(i) + Σ̂2, for i = 1, . . . , p.

2.3. Fisher consistency of the MLEs

As the MLEs are derived under a normality assumption, a natural concern is
on their robustness when this assumption does not hold. In this section, we show
that the MLEs are Fisher consistent even the errors are not normally distributed.
For the sampling scheme, we take f(i) = n(i)/n as fixed as n → ∞, for i = 1, . . . , p.

Proposition 1. Under (2.2), assume that the errors are independent, not nec-
essarily normal, and have finite second moments. Then,

Σ̂Y
p→ ΣY =

p∑
i=1

f(i)Γ(Ω1(i) + η(i)η
T
(i))Γ

T + Γ0Ω0Γ
T
0 ,
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Σ̂res(i)
p→ Σres(i) = ΓΩ1(i)Γ

T + Γ0Ω0Γ
T
0 ,

where ΣY and Σres(i) are population version of Σ̂Y and Σ̂res(i), for i = 1, . . . , p.

By Proposition 1, fobj(G)/n converges in probability to

f̃obj(G) = log |GTΣ−1
Y G|+

p∑
i=1

f(i) log |GTΣres(i)G|.

Proposition 2. Under the conditions of Proposition 1, assume that the subspace

that minimizes f̃obj is unique. Then,

Γ = argmin
G

f̃obj(G),

where Γ is any basis matrix for EM(B) and G is a r×u semi-orthogonal matrix.

Proposition 2 indicates that the estimator ÊM(B) is Fisher consistent, the

basis of the Fisher consistency of the β̂(i)’s and Σ̂(i)’s.

Proposition 3. Under the conditions of Proposition 2, β̂(i) and Σ̂(i) are Fisher

consistent, for i = 1, . . . , p.

The proofs of Proposition 1, Proposition 2, and Proposition 3 are in Ap-

pendix 2.

3. Asymptotic Distribution

In this section, we study the asymptotic distributions for the β̂(i)’s under

model (2.2). As the form of the asymptotic variances is too complicated to inter-

pret straightforwardly, we look into a special case that provides some intuition.

For the limit distribution of the β̂(i)’s, we use “vec” as the “vector” oper-

ator that rearranges the elements of a matrix into a vector column-wise, and

“vech” as the “vector half” operator that extracts the unique elements of a

symmetric matrix (Henderson and Searle (1979)). If
√
n(θ̂ − θ)

D→ N(0,A),

we write avar(
√
nθ̂) = A. Let Bdiag{Ai}pi=1 denote a block diagonal matrix

with ith block diagonal Ai, i = 1, . . . , p, and define the (p − 1) × 1 vector

vf = (f(1)/f(p), . . . , f(p−1)/f(p))
T . For a population characterizing quantity A,

M(A) is

M(A) = f(p)(vf ⊗ vf
T )⊗A−1

(p) +Bdiag{f(i)A−1
(i) }

p−1
i=1 .

We use B to denote the r(p−1)× u(r−u) matrix (η(1) ⊗ΓT
0 , . . . ,η(p−1) ⊗ΓT

0 )
T ,

D to denote the r× r matrix
∑p

i=1fiΣ
−1
(i) , and C to denote the r × u(p − 1)
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matrix
(
f1Γ(Ω

−1
(p) −Ω−1

(1)), . . . , fp−1Γ(Ω
−1
(p) −Ω−1

(p−1))
)
. Then the asymptotic dis-

tribution of

ĥ =
(
β̂
T

(1), . . . , β̂
T

(p−1)

)T

is given in the following; justification is given in Appendix 3.

Proposition 4. Under (2.2),
√
n(ĥ− h) converges in distribution to a r(p− 1)

dimension multivariate normal distribution with mean 0 and covariance matrix

avar(
√
nĥ) = (Ip−1 ⊗ Γ){M(Ω(1))−CTD−1C}−1(Ip−1 ⊗ Γ)T +BTM(Σ(1))B.

We look at a special case to gain some insights. Assume that u = 1, p = 2,

f(1) = f(2) = 1/2, Ω1(i) = σ2
i Iu, for i = 1, . . . , p and Ω0 = σ2

0Ir−u. Then we can

focus on β̂(1) as β̂(2) = −β̂(1). From Proposition 4, we have

avar[
√
nβ̂(1)] = 2−1(σ2

1+σ2
2)ΓΓ

T+η2(1)

[
σ−2
0 η2(1) +

2∑
i=1

1

2

(
σ2
0

σ2
i

+
σ2
i

σ2
0

− 2

)]−1

Γ0Γ
T
0 .

The asymptotic variance under the heteroscedastic standard model is

avar[
√
nβ̂(1)sm] = 2−1(Σ(1) +Σ(2)) = 2−1(σ2

1 + σ2
2)ΓΓ

T + σ2
0Γ0Γ

T
0 ,

here we add a subscript “sm” to indicate the heteroscedastic standard model.

Taking an arbitrary linear combination of β̂(1), lT β̂(1), where lT l = 1,

avar[
√
nlT β̂(1)sm]/avar[

√
nlT β̂(1)] is given by

2−1(σ2
1 + σ2

2)l
TΓΓT l + σ2

0l
TΓ0Γ

T
0 l

2−1(σ2
1 + σ2

2)l
TΓΓT l + η2(1)

[
σ−2
0 η2(1) +

∑2
i=1

1
2

(
σ2
0/σ

2
i + σ2

i /σ
2
0 − 2

)]−1
lTΓ0Γ

T
0 l

.

Notice that the numerator is always no less than the denominator, so this ratio

is greater or equal to 1, which means that the heteroscedastic envelope model is

more efficient, or at least as efficient as the heteroscedastic standard model. If we

fix σ1 and σ2, and let σ0 increase, this ratio diverges to infinity, which means that

when the static information accumulates, the advantage of the heteroscedastic

envelope model over the heteroscedastic standard model can grow without bound.

But if we fix σ0 and σ2, and let σ1 grow, then the ratio converges to a constant,

1+ (σ0/σ2)
2lTΓ0Γ

T
0 l, which means that if we increase the information about the

dynamic part, the efficiency gains by enveloping has a finite limit, and this limit

depends on the ratio of σ0/σ2.

These conclusions can also be seen in Figure 2. The background of the plots

is similar to that in Figure 1, we just added heteroscedastic structure to the
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Figure 2. Demonstration of efficiency gains by envelopping.

covariance matrix. In the left panel, σ0 is greater than both σ1 and σ2. Here we

may image that by enveloping, efficiency is gained as the projections of the two

population following line “B” is better separated than the projections following

line “A”, because there is considerable variation in the direction of E⊥
M(B) which,

in envelope analysis, is taken away. In the right panel, σ0 is smaller than both σ1
and σ2, and we can imagine that the performance of the heteroscedastic envelope

model and the heteroscedastic standard model is very similar, as it is shown in

the plot that for a fixed data point: the projection following line “A” differs little

from the projection following line “B”; the data does not contain much static

information, so enveloping makes little difference.

4. Simulations and Data Example

4.1. Dimension selection and computing

In this section, we introduce information criteria and likelihood ratio testing

(LRT) for the selection of u, the dimension of EM(B). Both methods work

reasonably well in our numerical experiments.

The two most commonly used information criteria are Akaike’s information

criterion (AIC) and the Bayesian information criterion (BIC). For AIC, with a

fixed dimension u, u = 0, . . . , r, AIC = 2N(u)− 2L(u), where N(u) = u(r − u+

p) + pu(u + 1)/2 + (r − u)(r − u + 1)/2 + r − u is the number of parameters in

the model and L(u) is the log likelihood function, which has the form

L(u) = −nr

2
(1+log 2π)−n

2
log |Γ̂

T
Σ̂

−1

Y Γ̂|−n

2
log |Σ̂Y|−1

2

p∑
i=1

n(i) log |Γ̂
T
Σ̂res(i)Γ̂|.
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Table 1. The number of times out of 100 replications that the criteria selected
u correctly.

(u, n) (3, 80) (3, 160) (3, 320) (6, 80) (6, 160) (6, 320) (9, 80) (9, 160) (9, 320)
AIC 15 33 23 49 71 66 86 93 100
BIC 83 100 99 82 100 100 34 95 100
LRT1 85 94 96 79 99 96 84 92 95
LRT2 88 94 97 80 98 98 88 89 96

We compute AIC for all possible values of u and select the value that minimizes

AIC. For BIC, with a fixed dimension u, u = 0, . . . , r, BIC = log(n)N(u) −
2L(u). Again, we search through all possible values and select u at the value

that minimizes BIC.

LRT is performed as a sequential testing of hypotheses, starting from u =

0 at a prechosen common significance level α, and picking u to be the first

hypothesized value that is not rejected. For testing the hypothesis u = u0, the

test statistic is Λ(u0) = 2[L(r) − L(u0)], and the reference distribution is chi-

squared with degrees of freedom N(r)−N(u0). The test of u = 0 is the same as

the likelihood ratio test that the populations means are equal or, equivalently,

that β(1) = · · · = β(p−1) = 0.

To compare the performance of model selection criteria, we set a simulation

with the same settings as the upper left panel of Figure 4.3, but we used dif-

ferent sample sizes and different u’s. When u = 3, we need 67 parameters for

heteroscedastic envelope model; when u = 6, we need 88 parameters, and when

u = 9, we need 118 parameters. We used 80, 160, and 320 to represent small,

moderate, and large sample sizes. With each u and n combination, we simulated

100 datasets and compared the frequency at which the criteria selected the cor-

rect u. The results are reported in Table 1, where LRT1 represents the likelihood

ratio testing procedure introduced above with α = 0.05, and LRT2 represents a

single test on H0 : u = u0. LRT2 alone is not used for selecting u, but it provides

intuition on the performance of LRT. From Table 1, we notice that the LRT is

most stable with small sample size, but asymptotically it makes error with the

rate α. BIC is consistent, but it is sometimes slow to respond to sample size

(Cook and Forzani (2009, Figure 3)). AIC tends to overestimate u, and it works

better for larger u as shown in Table 1.

The numerical Grassmann optimization of (2.3) can be performed by using

the MATLAB package sg-min 2.4.1 by Lippert (http://web.mit.edu/~ripper/

www/sgmin.html). It uses the analytical first derivative and numerical second

derivative of the objective function, and offers several methods including Newton–

Raphson to perform the optimization. We find it very stable.

http://web.mit.edu/~ripper/www/sgmin.html
http://web.mit.edu/~ripper/www/sgmin.html
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4.2. Simulations

In this section, we demonstrate the performance of the heteroscedastic en-

velope model, with comparison to the heterscedastic standard model and the

homoscedastic standard model. To connect with the discussion of the special

case at the end of Section 3, the data were generated from two normal popula-

tions following model (2.2), with r = 10, u = 1 and u = 2, Ω1(i) = σ2
i Iu, for

i = 1, 2, and Ω0 = σ2
0Ir−u. The matrix (Γ,Γ0) was obtained by orthogonalizing

an r × r matrix of random uniform (0, 1) variables, and the elements in η(1)

were sampled from a standard normal population. We sampled equal numbers

of observations for each population, and η(2) = −η(1). The sample size n was

fixed at 100, 200, 300, 500, 800, and 1,200 and, for each sample size, 200 replica-

tions were performed to compute the actual estimation standard deviations for

elements in β̂(1). The estimation standard deviations for β̂(2) are the same, as

β̂(2) = −β̂(1). Bootstrap standard deviations were obtained by computing the

standard deviations for 200 bootstrap samples as a way to estimate the actual

estimation standard deviations for β̂(1). The results are shown in Figure 3. No

computational problems arose as long as Σ̂Y and Σ̂res(i) were positive definite,

i = 1, . . . , p. Then, (2.3) has no points at which a determinant is 0.

In all four panels, the results for homoscedastic standard model were almost

the same as the heteroscedastic standard model and their lines overlapped with

each other. For that reason the results for the homoscedastic standard model

are not shown. In the two right panels, the asymptotic standard deviation for

the homoscedastic envelope model and the heteroscedastic envelope model are

quite close, so it is difficult to see the line for homoscedastic envelope model

because of the chosen line types. The upper left panel is for σ1 < σ0, σ2 < σ0,

and u = 1. For better visibility, we cut the vertical axis at 0.45, while the line

for the standard model reaches as high as 0.96 for n = 100. We notice that the

heteroscedastic envelope model is much more efficient than the standard models

even with relatively small sample size and the reason can be explained by the

left panel of Figure 2. The heteroscedastic envelope model is also more efficient

than the homoscedastic envelope model by more accurately capturing the error

structure. It is also indicated in the plot that the bootstrap standard deviations

estimate the actual estimation standard deviations well. In the upper right panel

of Figure 3, we omitted the results from bootstrap as the lines almost overlap.

From this plot, it is hard to tell the difference between the estimation standard

deviations for the homoscedastic and heteroscedastic standard model as the two

lines almost overlap with each other, but the heteroscedastic envelope model is

more efficient than both of them for all the sample sizes. The magnitude of

the difference between the actual standard deviations is almost the same as the
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Figure 3. Estimated standard deviations for a randomly picked element
in β̂(1). Lines — mark the heteroscedastic envelope model, lines · · · · · ·
mark the homoscedastic envelope model, and lines – · – mark the standard
models. Lines with ◦ mark the sample standard deviations of the method
indicated by the line type, the line with ∗ marks the bootstrap standard
deviations of heteroscesdastic envelope model, and lines without ◦ or ∗ mark
the asymptotic standard deviations.

difference between the asymptotic estimation standard deviations. This matches

our discussion at the end of Section 3 and of the right panel in Figure 2, that the

heteroscedastic envelope model does not achieve much reduction when σ0 < σ1
and σ0 < σ2, as the majority of the variation comes from the dynamic part of Y.

This also agrees the discussion in the Rejoinder of Cook, Li, and Chiaromente

(2010), that one achieves more reduction when ∥Σ2∥ ≫ ∥Σ(1)∥. The lower

panels have the same simulation settings as the upper panels, but u = 2. The

results are similar to the upper panels. We expect that the difference between

the heteroscedastic envelope model and the standard models for u = 2 is smaller

than that for u = 1, because the dynamic part has a larger dimension and there

is less space for efficiency gains in the first place. This is confirmed in the plots.

Not shown here, in our simulation with u = 3 the difference is smaller, in the

σ0 < σ1 and σ0 < σ2 case, the lines that mark actual standard deviations overlap

with each other.

The results with more than two populations, p > 2, are qualitatively similar

to those for p = 2. An example with p = 3 is provided in Section 4.3.
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Figure 4. The line types for the horizontal lines are the same as in Fig-
ure 3. The solid line with circles represents the results of normal errors,
the other three lines around it represent the results from other three errors
distributions.

To test the sensitivity of the MLEs to non-normal errors, we did a simulation

using the same setup as that in the left panel of Figure 3, but we used a centered t

distribution with degrees of freedom 6, a centered uniform (0, 1) distribution, and

a chi-squared distribution with degrees of freedom 4 to represent distributions

with heavier tails, shorter tails, and skewness. The results are shown in Figure

4; as the results from different error types are so close, we did not mark the

curves for the different distributions. We conclude that moderate departures

from normality, as reflected by the distributions used on our simiulations, do not

materially affect the performance of the heteroscedastic envelope. This agrees

with our discussion in Section 2.3, that the MLEs are Fisher consistent regardless

of the error distribution.

4.3. Two data examples

The athletes data (Cook (1998)) contains measurements of plasma ferritin

concentration and white cell counts from 102 male and 100 female athletes col-

lected at the Australian Institute of Sport. So we have two populations, male

and female, and r = 2. Box’s M test (Johnson and Wichern (2007)) was used

to test homogeneity of covariance matrices, with H0 : Σ(1) = · · · = Σ(p), and

Ha : not H0. The test yielded a p-value of 2.3e − 06, which indicates that the
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covariance structure is different for male and female athletes. We then fitted a

heteroscedastic envelope model, and u = 1 was inferred by AIC, BIC, and LRT

with α = 0.01. The ratios of the estimation standard deviations for elements in

β̂(1) are 1.02 and 2.37 for homoscedastic standard model versus heteroscedastic

envelope model, and 1.00 and 2.32 for heteroscedastic standard model versus

heteroscedastic envelope model. To achieve such efficiency gains in a standard

analysis, we may need to increase the original sample size by a factor of 5. The

standard deviation ratios for the homoscedastic envelope model versus the het-

eroscedastic envelope model are 1.02 and 1.02.

Water striders are insects that live on the surface of ponds or streams. They

can be easily identified because of their ability to walk on water. Like other

insects, water striders have six legs and two antennae. Before the adult stage,

the water strider grows through five stages of nymphal forms, called instars, at

the end of which they shed their skins, also their skeletons. This water strider

dataset contains eight measures of characteristics – the lengths of fomora and tib-

iae of the middle and hind legs and the lengths of four antennal segments – for

three water strider species L. dissortis, L. rufoscutellatus, and L. esakii, with 90

samples for each species. This is part of a larger dataset analyzed by Klingenberg

and Spence (1993) to study heteroschrony, and they found “a remarkable vari-

ety of heterochronic changes among different species” using principal component

analysis of the eight characteristics. We consider species differences by compar-

ing the means of the characteristics. To avoid the effect of female and male, we

only look at the data from the first three instars, when sex is hard to determine,

leaving us 30 samples for each species. Box’s M test gave a p-value of less than

0.001, indicating heteroscedastic error structure. For the dimension of the het-

eroscedastic envelope model, LRT inferred u = 6 while AIC suggested u = 5 and

BIC suggested u = 4. We took u = 6 since LRT is more stable with small sam-

ple size as mentioned in Section 4.1. The ratios of the standard deviations from

the homoscedastic standard model versus the heteroscedastic envelope model for

the elements in the β̂(i)’s fell between 5.11 and 16.77, with an average of 9.95.

A comparison with the heteroscedastic standard model produced similar results:

the standard deviation ratios of the heteroscedastic standard model versus the

heteroscedastic envelope model ranged from 4.92 to 16.21, with an average of

9.58. To achieve such efficiency gains in the standard analysis, we may need

more than 280×30 samples. Comparing with the homoscedastic envelope model

of u = 6, the standard deviation ratios from the homoscedastic envelope model

versus those from the heteroscedastic envelope model ranged from 4.81 to 15.95,

with an average of 9.48. Therefore, considering the heteroscedastic nature of the

covariance matrix does bring us additional efficiency gains. However, in prac-

tice, the inferred dimensions of the homoscedastic and heteroscedastic envelope
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models may not agree. In this example, LRT suggested u = 4 for homoscedastic

envelope model, but the standard deviation ratios did not change much, they fell

between 4.79 and 15.95 with an average of 9.47.

5. Discussion

When there are multiple populations, we do not need to envelope on all of

the β(i)’s if our interest is in just a few of them. For example, suppose we have

three populations and three characteristics in Y. Suppose also that two of the

populations are placed in the Y1Y2 plane as the left panel of Figure 2, and the

elliptical contour for the third population is in a different plane with neither its

major axis nor the minor axis aligning with the envelope for the Y1Y2 plane.

Then EM(B) = Rr if we envelop on all the β(i)’s, and no gains are offered. But

if we are interested in a contrast between β(1) and β(2), and just envelop on β(1)

and β(2), according to the discussion in Section 3, we have significant gains. This

idea is parallel to the partial envelope idea in Su and Cook (2011).
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Appendix 1: Derivation of the MLEs for the Heteroscedastic Envelope

Model

The derivation is easier if we change the parameterization in (2.2) to the

following form (Cook and Forzani (2009)):

Y(i)j = µ+ ΓΩ̄1ν(i) + ε(i)j ,

Σ(i) =Σ1(i) +Σ2 = ΓΩ1(i)Γ
T + Γ0Ω0Γ

T
0 ,

where Ω̄1 =
∑p

i=1 n(i)Ω1(i)/n, η(i) = Ω̄1ν(i) and
∑p

i=1 n(i)ν(i) = 0.

During the derivation, we useˆover a quantity both for intra-derivation steps

and final estimators. The log likelihood function L based on observation Y(i)j ’s,

i = 1, . . . , p, j = 1, . . . , n(i) is

L = −nr

2
log(2π)− n

2
log |Ω0| −

1

2

p∑
i=1

n(i) log |Ω1(i)|

−1

2

p∑
i=1

n(i)[Γ
T (Ȳ(i) − µ− ΓΩ̄1ν(i))]

TΩ−1
1(i)[Γ

T (Ȳ(i) − µ− ΓΩ̄1ν(i))]
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−1

2

p∑
i=1

n(i)[Γ
T
0 (Ȳ(i) − µ)]TΩ−1

0 [ΓT
0 (Ȳ(i) − µ)]

−1

2

p∑
i=1

n(i) tr(ΓΩ
−1
1(i)Γ

T Σ̂res(i))−
1

2

p∑
i=1

n(i) tr(Γ0Ω
−1
0 ΓT

0 Σ̂res(i)).

Only the fourth term here involves the ν(i)’s, which have the constraint∑p
i=1 n(i)ν(i) = 0, so we apply the Lagrange multiplier, set the derivative at zero,

and get

ν̂(i) = Ω̄
−1
1 ΓT (Ȳ(i) − µ),

for i = 1, . . . , p. Substituting back, and maximizing over µ, we have µ̂ = Ȳ,

where Ȳ =
∑

i,j Y(i)j/n. Substituting this into the log likelihood function, we

have

L = −nr

2
log(2π)− n

2
log |Ω0| −

1

2

p∑
i=1

n(i) log |Ω1(i)|

−1

2

p∑
i=1

n(i) tr(ΓΩ
−1
1(i)Γ

T Σ̂res(i))−
1

2

p∑
i=1

n(i) tr(Γ0Ω
−1
0 ΓT

0 Σ̂Y(i)),

where Σ̂Y(i) =
∑ni

j=1(Y(i)j − Ȳ)(Y(i)j − Ȳ)T .

Now if we fix Γ, by Lemma 4.3 in Cook, Li, and Chiaromente (2010), the

maximum value of the log likelihood function function is

L = −nr

2
(1+ log 2π)− n

2
log |ΓT Σ̂

−1

Y Γ| − n

2
log |Σ̂Y| − 1

2

p∑
i=1

n(i) log |ΓT Σ̂res(i)Γ|,

so the objective function to minimize over the r × u Grassmann manifold is

fobj(G) = n log |GT Σ̂
−1

Y G|+
p∑

i=1

n(i) log |GT Σ̂res(i)G|.

Appendix 2: Proofs of Proposition 1, Proposition 2, and Proposition 3

Proof of Proposition 1. Since the errors are independent and have finite

second moments, and also because that the number of populations is finite, we

have Σ̂Y
p→ ΣY. We use I for population indices. Then

ΣY = Var (Y)

= E (Var (Y|I = i)) + Var (E (X|I = i))

=

p∑
i=1

f(i)(ΓΩ1(i)Γ
T + Γ0Ω0Γ

T
0 ) +

p∑
i=1

f(i)Γη(i)η
T
(i)Γ

T
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=

p∑
i=1

f(i)Γ(Ω1(i) + η(i)η
T
(i))Γ

T + Γ0Ω0Γ
T
0 .

Since Σ̂res(i) =
∑n(i)

j=1(Y(i)j−Ȳ(i))(Y(i)j−Ȳ(i))
T /n(i) andY(i)j = µ+Γη(i)+ε(i)j ,

Σ̂res(i) =

n(i)∑
j=1

1

n(i)
(ε(i)j − ε̄(i))(ε(i)j − ε̄(i))

T p→ ΓΩ1(i)Γ
T + Γ0Ω0Γ

T
0 = Σres(i).

Proof of Proposition 2. Let G0 ∈ Rr×r−u be the completion of G, so that
(G,G0) ∈ Rr×r is an orthogonal matrix. Let H = GT

0 Γ(
∑p

i=1 f(i)η(i)η
T
(i))

1/2,
then

f̃obj=log |GT
0 ΣYG0|+

p∑
i=1

f(i) log |GTΣres(i)G|

=log |GT
0 ΣresG0|+log |Ir−u+HT (GT

0 ΣresG0)
−1H|+

p∑
i=1

f(i) log |GTΣres(i)G|

≥log |GT
0 ΣresG0|+

p∑
i=1

f(i) log |GTΣres(i)G|

≥
p∑

i=1

f(i) log |GT
0 Σres(i)G0|+

p∑
i=1

f(i) log |GTΣres(i)G|

≥
p∑

i=1

f(i) log |Σres(i)|

=

p∑
i=1

f(i) log |Ω1(i)||Ω0|.

When G spans EM(B), the three inequalities hold simultaneously, and the second
inequality holds only when span(G) = EM(B). So we have Γ = argminG f̃obj(G).

Proof of Proposition 3. The Fisher consistency of η̂(i), Ω̂(i), and Ω̂0 follows

from the theory of MLE, and Proposition 2 gives the Fisher consistency of Γ̂.
Then as β̂(i) and Σ̂(i) are simple functions of η̂(i), Ω̂(i), and Ω̂0: β̂(i) = Γ̂η̂(i) and

Σ̂(i) = Γ̂Ω̂1(i)Γ̂
T
+ Γ̂0Ω̂0Γ̂

T

0 , β̂(i) and Σ̂(i) are Fisher consistent, for i = 1, . . . , p.

Appendix 3: Proof of Proposition 4.

As there is overparameterization in Γ, the asymptotic distribution can be
derived by using Proposition 4.1 in Shapiro (1986). The parameters are

ϕ=
(
ηT
(1), . . . ,η

T
(p−1), vec

T (Γ),µT , vechT (Ω1(1)), . . . , vech
T (Ω1(p)), vech

T (Ω0)
)T

,
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and the function to estimate is

g =
(
βT
(1), . . . ,β

T
(p−1),µ

T , vechT (Σ(1)), . . . , vech
T (Σ(p))

)T
.

We then have
√
n(ĝ−g)

D→ N(0,V0), whereV0 = H(HTJH)†HT , J is the Fisher

information under the heterpscedastic standard model, and H = (∂hi/∂ϕ
T
j )i,j is

the gradient matrix. The asymptotic variance for ĥ corresponds to the upper left

r(p− 1)× r(p− 1) block of V0. After some lengthly but straightforward matrix

algebra, we get the form of avar(
√
nĥ) displayed in Proposition 4.
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