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Abstract: This paper is concerned with D- and A-optimal designs for a quadratic

additive model for experiments with mixtures, in which the response depends not
only on the relative proportions but also on the actual amounts of the mixture com-

ponents. It is found that the origin and vertices of the simplex are support points

of these optimal designs, and when the number of mixture components increases,
other support points shift gradually from barycentres of depth 1 to barycentres of

higher depths. It is shown that the D-optimal designs have high efficiency in terms

of A-optimality, and vice versa.
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1. Introduction

Regression models for experiments with mixtures (Cornell (2002) and Chan

(2000)) can be classified according to whether the response depends only on the

relative proportions of the mixture components but not the actual amount of the

mixture, or depends on both. The first type of model is called A mixture model,

an example of which is the quality of a blend of wine which depends only on the

composition of ingredients in the blend but not the actual quantity of wine in

the bottle. An example of the second type looks at the effect of a fertilizer on

a crop which depends not only on the composition but also the total amount of

the fertilizer applied.

Let ai ≥ 0, i = 1, . . . , q, be the actual amount of the ith component in a

mixture, and a1 + · · ·+ aq ≤ A, where A is a possible maximum total amount of

the mixture. Let xi = ai/A, i = 1, . . . , q, be the proportion of the ith component

relative to the maximum total amount A. Thus x = (x1, . . . , xq)
′ belongs to the

q-dimensional simplex Sq = {x ∈ Rq : x1 + · · · + xq ≤ 1, xi ≥ 0, 1 ≤ i ≤ q}.
Consider the model defined on Sq, in which the expected response at x is

ζ
DW2

(x) = β0 +
∑

1≤i≤q

βixi +
∑

1≤i≤q

θixi(1 − xi). (1.1)
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In the spirit of Hilgers and Bauer (1995) and Heiligers and Hilgers (2003), we call

the model (1.1), with the design space Sq, a component amount model; compare

Piepel and Cornell (1985). Note that the form of ζ
DW2

(·) remains the same when

A is replaced by another possible maximum total amount A∗. To see this, let

yi = ai/A
∗ and y = (y1, . . . , yq)

′. From ζ
DW2

(x) = ζ
DW2

(y), it is easy to see that

ζ
DW2

(y) can be expressed in the same form as on the right hand side of (1.1) with

xi’s replaced by yi’s. When x1 + · · ·+xq = 1, the design space will be the (q−1)-

dimensional simplex Sq−1 = {x ∈ Rq : x1 + · · · + xq = 1, xi ≥ 0, 1 ≤ i ≤ q},
and the constant β0 on the right hand side of (1.1) can be absorbed into the

other βis (Cornell (2002), Section 2.2), forming the Darroch and Waller (1985)

quadratic mixture model with 2q terms. The Darroch and Waller quadratic

mixture model is additive in x1, . . . , xq, has fewer terms than the Scheffé (1958)

quadratic mixture model (which has q(q +1)/2 terms) when q ≥ 4, but often fits

data well (Chan (2000, Section 6)). Results on optimal designs for this model

are available (Zhang and Guan (1992), Chan, Guan and Zhang (1998) and Chan,

Meng and Jiang (1998)).

Few results are available on optimal designs for component amount models,

other than Hilgers and Bauer (1995) and Heiligers and Hilgers (2003). The

purpose of the present paper is to obtain optimal designs for the model in (1.1).

Section 2 gives analytic results for D-optimal designs for q = 4 and q ≥ 8, and A-

optimal designs for 8 ≤ q ≤ 21 and q ≥ 26. For other values of q, approximately

optimal designs are found by numerical searching using the computing package

MATLAB. The origin and some vertices of Sq are support points in all cases.

Some points on the edges of Sq are also support points for D-optimal design when

q = 3, and A-optimal design when 3 ≤ q ≤ 7. The results on D-optimality agree

with the numerical findings for q ≤ 20 in Heiligers and Hilgers (2003, p.723).

Proofs of results are given in the Appendix.

2. Main Results

For δ ≥ 0, let Sq−1
δ = {x ∈ Rq : x1 + · · · + xq = δ, xi ≥ 0, 1 ≤ i ≤ q}.

Denote Sq−1
1 by Sq−1. A point x = (x1, . . . , xq)

′ ∈ Sq−1
δ is called a barycentre

of depth j − 1, 1 ≤ j ≤ q, of Sq−1
δ if j of its q coordinates are equal to δ/j

and the remaining coordinates are zero (Galil and Kiefer (1977)). Denote the

collection of all barycentres of depth j − 1 of Sq−1 by Jj . In what follows, if δ

is not mentioned, barycentres will refer to barycentres of S q−1. For convenience,

denote the binomial coefficient q!/(j! (q − j)!) by C(q, j). For any integers 0 <

i1 < i2 < · · · ≤ q, denote by ξ0,i1,i2,... a design in which a weight r0 is assigned

to the origin 0 = (0, . . . , 0)′ ∈ Sq, a weight rj is assigned to each point in Jj

(j = i1, i2, . . .), where C(q, 0)r0 + C(q, i1)ri1 + C(q, i2)ri2 + · · · = 1.
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In the following, optimality will refer to optimality of design for the model

ζ
DW2

(x) in (1.1) defined on the design space Sq.

Theorem 2.1. When q = 4, the design ξ0,1,i with i = 2 and r0, r1, ri defined by

r0 = 1/(2q + 1), C(q, 1)r1 = q/(2q + 1), C(q, i)ri = q/(2q + 1) (2.1)

is D-optimal.

Theorem 2.2. When q ≥ 8, the design ξ0,1,i with i = 3 and r0, r1, ri defined by

(2.1) is D-optimal.

When q = 3, it is verified numerically using MATLAB that D-optimality is

achieved by the design which assigns a weight r0 to the origin (0, 0, 0)′ , a weight

rα to each of the points of the form (α, 0, 0)′ (barycentres of depth 0 of S3−1
α ), and

a weight ri to each point in Ji (i = 1, 2), where α = 0.3825, and the numerical

values of r0, rα, r1, r2 are given in Table 1. This result agrees with that in

Heiligers and Hilgers (2003, p.723).

For 5 ≤ q ≤ 7, it is verified numerically that D-optimality is achieved by the

design ξ0,1,2,3 with weights r0, r1, r2, r3 shown in Table 1.

In Table 1, for comparison, the values of C(q, i)ri, i = 0, 1, 2, 3, of the D-

optimal designs (Zhang and Guan (1992)) for the Darroch and Waller quadratic

mixture model defined on Sq−1 are shown in smaller font in square brackets. The

weights r0 and rα are not applicable to this model, since the origin and the points

of the form (α, 0, . . . , 0)′, 0 < α < 1, do not belong to Sq−1. The same applies to

Table 2. In Tables 1 and 2, “N.A.” stands for “not applicable”.

Table 1. D-optimal designs for the component amount model ζ
DW2

(x) de-

fined on Sq, and for the corresponding mixture model defined on Sq−1.

q C(q, 0)r0 C(q, 1)r1 C(q, 2)r2 C(q, 3)r3 α C(q, 1)rα

3 0.1135 0.4281 0.3777 0 0.3825 0.0807
[N.A.] [1/2] [1/2] [0] [N.A.] [N.A.]

4 1/(2q + 1) q/(2q + 1) q/(2q + 1) 0 N.A. N.A.
[N.A.] [1/2] [1/2] [0] [N.A.] [N.A.]

5 0.0908 0.4530 0.4098 0.0462 N.A. N.A
[N.A.] [0.4984] [0.4506] [0.0510] [N.A.] [N.A.]

6 0.0769 0.4577 0.2528 0.2125 N.A. N.A.
[N.A.] [0.4959] [0.2753] [0.2288] [N.A.] [N.A.]

7 0.0666 0.4644 0.0850 0.3842 N.A. N.A.
[N.A.] [0.4977] [0.0877] [0.4146] [N.A.] [N.A.]

≥ 8 1/(2q + 1) q/(2q + 1) 0 q/(2q + 1) N.A. N.A.
[N.A.] [1/2] [0] [1/2] [N.A.] [N.A.]
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Table 2. A-optimal designs for the component amount model ζ
DW2

(x) de-

fined on Sq, and for the corresponding mixture model defined on Sq−1. Here
γ = 3 + 13

√
q.

q r0 C(q, 1)r1 C(q, 2)r2 C(q, 3)r3 C(q, 4)r4 α(q) C(q, 1)rα(q)

3 0.0119 0.3378 0.37075 0 0 0.3508 0.2798
[N.A.] [0.3923] [0.6077] [0] [0] [N.A.] [N.A.]

4 0.0187 0.3630 0.4339 0 0 0.3279 0.1845
[N.A.] [0.4142] [0.5858] [0] [0] [N.A.] [N.A.]

5 0.0003 0.3211 0 0.4716 0 0.3213 0.2070
[N.A.] [0.3496] [0] [0.6504] [0] [N.A.] [N.A.]

6 0.0515 0.3346 0 0.5517 0 0.2954 0.0622
[N.A.] [0.3496] [0] [0.6504] [0] [N.A.] [N.A.]

7 0.0473 0.3446 0 0.5507 0 0.2760 0.0582
[N.A.] [0.3496] [0] [0.6504] [0] [N.A.] [N.A.]

8 0.07350 0.3534 0 0.5731 0 N.A. N.A.
[N.A.] [0.3814] [0] [0.6186] [0] [N.A.] [N.A.]

...
...

...
...

...
...

...
...

21 0.0473 0.3820 0 0.5706 0 N.A. N.A.
[N.A.] [0.4010] [0] [0.5990] [0] [N.A.] [N.A.]

22 0.0462 0.3603 0 0.4478 0.1457 N.A. N.A.
[N.A.] [0.3946] [0] [0.4687] [0.1367] [N.A.] [N.A.]

23 0.0453 0.3657 0 0.3209 0.2681 N.A. N.A.
[N.A.] [0.3881] [0] [0.3328] [0.2791] [N.A.] [N.A.]

24 0.0444 0.3770 0 0.1778 0.4008 N.A. N.A.
[N.A.] [0.3818] [0] [0.1974] [0.4208] [N.A.] [N.A.]

25 0.0435 0.3721 0 0.0611 0.5233 N.A. N.A.
[N.A.] [0.3769] [0] [0.0676] [0.5565] [N.A.] [N.A.]

26 0.0428 0.3572 0 0 0.6000 N.A. N.A.
[N.A.] [0.3732] [0] [0] [0.6268] [N.A.] [N.A.]

...
...

...
...

...
...

...
...

→ ∞ 3/γ 5
√

q/γ 0 0 8
√

q/γ N.A. N.A.
[N.A.] [5/13] [0] [0] [8/13] [N.A.] [N.A.]

To express A-optimality for the model ζ
DW2

(x), define r0, r1, ri, i ≥ 2, by

r0 : C(q, 1)r1 : C(q, i)ri = 1 : α(q, i) : β(q, i), (2.2)

α(q, i) =
(

q2(2i2 − 2i + 1)/((q + 1)(i − 1)2)
)1/2

, (2.3)

β(q, i) =
(

i3q(qi−2i+1)C(q, i)/((q+1)(q−1)(i−1)2C(q−2, i−1))
)1/2

. (2.4)

Theorem 2.3. When 8 ≤ q ≤ 21, the design ξ0,1,i with i = 3 and r0, r1, ri
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defined by (2.2)−(2.4) is A-optimal.

Theorem 2.4. When q ≥ 26, the design ξ0,1,i with i = 4 and r0, r1, ri defined

by (2.2)−(2.4) is A-optimal.

As for q = 3, . . . , 7, numerical searching using MATLAB shows that A-

optimality is achieved by the designs that assign a weight r0 to the origin (0, . . . ,

0)′, a weight rα(q) to each of the points of the form (α(q), 0, . . . , 0) for a specific

α(q) ∈ (0, 1), and a weight ri to each point in Ji, where i = 2 when q = 3, 4,

and i = 3 when q = 5, 6, 7. The numerical values of the ri’s, α(q)’s and rα(q)’s,

q = 3, . . . , 7, are given in Table 2. In Table 2, for comparison, the values of

C(q, i)ri, i = 1, 2, 3, 4, of the A-optimal designs (Chan, Guan and Zhang (1998))

for the quadratic Darroch and Waller mixture model defined on S q−1 mixture

are shown in smaller font in square brackets.

For the case 22 ≤ q ≤ 25, it is shown numerically that the designs ξ0,1,3,4

with values of r0, r1, r3, r4 shown in Table 2 are A-optimal.

3. Discussion

The results in Section 2 show that for some values of q, points of the form

(α, 0, . . . , 0) (0 < α < 1) are support points for optimal designs. This does

not contradict a result of Atwood (1969, pp.1573-1574) which states that only

barycentres support optimal designs for n-tic polynomial mixture models defined

on Sq−1 on which the condition x1 + · · · + xq = 1 is satisfied. However, in the

component amount model ζ
DW2

(x) in (1.1) defined on Sq, x1 + · · ·+xq can take

any value lying within 0 and 1. Atwood’s argument shows that for any fixed δ > 0

and for an n-tic polynomial model defined on Sq−1
δ , only barycentres of Sq−1

δ are

possible support points for D- or A-optimal designs. Since S q = ∪δ∈[0,1]S
q−1
δ , it

is possible that barycentres of some Sq−1
δ , δ ∈ (0, 1), are support points for a D-

or A-optimal design for the model ζ
DW2

(x) defined on Sq.

To compare the efficiency of designs, define the D-efficiency eD of the design

ξ relative to the design ξ0, and the A-efficiency eA of ξ relative to ξ0 for the

same regression model by

eD = (det M(ξ)/det M(ξ0))
1/s, (3.1)

eA = trM−1(ξ0)/ tr M−1(ξ), (3.2)

respectively, where s is the number of coefficients in the regression model. Hence

the larger the value of eD or eA in (3.1) or (3.2), the more efficient the design ξ

relative to ξ0, and if ξ0 is optimal, the largest possible value of eD or eA is 1. The

eD values of the A-optimal designs and the eA values of the D-optimal designs
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for the model ζ
DW2

(x) in (1.1) are computed. Table 3 which shows these values

for 3 ≤ q ≤ 10 and for q → ∞ indicates that the D-optimal designs are very

efficient in terms of A-optimality, and the A-optimal designs are very efficient in

terms of D-optimality.

Table 3. D- and A-efficiencies of optimal designs for ζ
DW2

(x).

q eD eA

3 0.962858 0.923901

4 0.967339 0.953793

5 0.923067 0.927907
6 0.953325 0.917221

7 0.963075 0.935227

8 0.971470 0.947673

9 0.972430 0.948973

10 0.972947 0.949354

→ ∞ → 1 → 1

Appendix.

In what follows, let Ia denote the a×a identity matrix, 1a×b denote the a×b

matrix of 1’s, and 0a×b denote the a × b matrix of 0’s. Let Mi be a C(q, i) × q

matrix such that the first i elements in the first row of Mi are 1, the remaining

elements in the first row are 0, and the remaining C(q, i) − 1 rows of Mi are the

different permutations of the first row according to lexicographical order. For

the model ζ
DW2

(x) in (1.1), it is straightforward to show that the model matrix

generated by all points in J1 is (Iq,0q×q) and, for any fixed integer i = 2, . . . , q,

the model matrix generated by all points in Ji is (i−1Mi, (i − 1)i−2Mi).

For the design ξ0,1,i, we require

r0 + C(q, 1)r1 + C(q, i)ri = 1, (A.1)

and the moment matrix associated with ξ0,1,i is given by

M(ζ
DW2

, ξ0,1,i)=











1 k111×q k211×q

k11q×1 r1Iq + ri i
−2 M ′

iMi (i − 1) ri i−3 M ′
iMi

k21q×1 (i − 1) ri i−3 M ′
iMi (i − 1)2 ri i

−4 M ′
iMi











, (A.2)

where k1 = r1 + ri i−1 C(q − 1, i − 1), k2 = (i − 1) ri i−2 C(q − 1, i − 1), and

M ′
iMi = C(q − 2, i − 1)Iq + C(q − 2, i − 2)1q×q. Applying a formula for the
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determinant of a partitioned matrix (Morrison (1976), Section 2.11) twice, we

find that

detM(ζ
DW2

, ξ0,1,i) = (i − 1)2q i−4q det(M ′
iMi) r0 rq

1 rq
i .

By the method of Lagrange multipliers, it can be shown that for a fixed i, and

under the constraint (A.1), the only critical point of detM(ξ0,1,i) is a maximum

point attained at the r0, r1, ri that satisfy (2.1).

As for A-optimality, it follows readily from Morrison (1976, Section 2.11)

that the inverse of the moment matrix M(ζ
DW2

, ξ0,1,i) in (A.2) is given by

M−1(ζ
DW2

, ξ0,1,i)

=











r−1
0 −r−1

0 11×q 01×q

−r−1
0 1q×1 r−1

0 1q×q + r−1
1 Iq −i(i − 1)−1 r−1

1 Iq

0q×1 − i(i − 1)−1 r−1
1 Iq i2(i − 1)−2(r−1

1 Iq + i2 r−1
i (M ′

iMi)
−1)











,

where (M ′
iMi)

−1 = (Iq − (i − 1)i−1(q − 1)−11q×q)/C(q − 2, i − 1).

Consequently, we have

trM−1(ζ
DW2

, ξ0,1,i) =
q + 1

r0
+

q(2i2 − 2i + 1)

(i − 1)2r1
+

i3q(qi−2i+1)

(i−1)2(q−1)C(q−2, i−1)ri
.

(A.3)

By the method of Lagrange multipliers, it can be shown that the only

minimum point of trM−1(ζ
DW2

, ξ0,1,i) is attained at the r0, r1, ri that satisfy

(2.2)−(2.4).

If x = (x1, . . . , xq)
′, let f(x) = (1, x1, . . . , xq, x1(1 − x1), . . . , xq(1 − xq))

′.

Since Sq = ∪δ∈[0,1]S
q−1
δ , according to the well-known equivalence theorems for

optimality (Kiefer (1974, 1975)), a design ξ is D-optimal and A-optimal for the

model ζ
DW2

(x) in (1.1) defined on Sq if and only if

fD(ζ
DW2

, ξ;x) = (2q + 1)−1f ′(x)M−1(ζ
DW2

, ξ)f(x) − 1 ≤ 0 (A.4)

and

fA(ζ
DW2

, ξ;x) = f ′(x)M−2(ζ
DW2

, ξ)f(x) − trM−1(ζ
DW2

, ξ) ≤ 0, (A.5)

respectively, for all x ∈ Sq−1
δ and for all 0 ≤ δ ≤ 1. Furthermore, the second

equality in (A.4) or in (A.5) occurs at all points in the support of a D- or A-

optimal design.
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Both fD(ζ
DW2

, ξ;x) and fA(ζ
DW2

, ξ;x) are fourth degree polynomials in

x1, . . . , xq, symmetric in any pair of coordinates, and approach infinity as any

one of x1, . . . , xq approaches infinity. If x ∈ Sq, x must be either the origin or

belongs to Sq−1
δ for some δ ∈ (0, 1]. Let x ∈ Sq−1

δ , where δ > 0. Fix all but two of

xi, i = 1, . . . , q, say x1 and x2. Then x2 = K−x1 for some constant K, and both

fD(ζ
DW2

, ξ;x) and fA(ζ
DW2

, ξ;x) can be expressed as fourth degree polynomials

of the single variable x1. Thus each of fD(ζ
DW2

, ξ;x) and fA(ζ
DW2

, ξ;x) have

at most three maximum points, two at the end points (x1 = 0,K) and one in the

interior of the range [0,K] of x1. Since both fD(ζ
DW2

, ξ;x) and fA(ζ
DW2

, ξ;x)

are symmetric in x1 and x2, interchanging the roles of x1 and x2 shows that both

fD(ζ
DW2

, ξ;x) and fA(ζ
DW2

, ξ;x) attain their maximums either when (x1, x2) =

(0,K), (x1, x2) = (K, 0), or x1 = x2 = K/2. Repeating the above with the roles

of x1, x2 replaced by the other xis, i 6= 1, 2, shows that both fD(ζ
DW2

, ξ;x) and

fA(ζ
DW2

, ξ;x) attain their maxima when some or none of xi is 0 and the non-

zero xi’s, i = 1, . . . , q, take equal values. In other words, if δ > 0, fD(ζ
DW2

, ξ;x)

and fA(ζ
DW2

, ξ;x) attain their maxima on Sq−1
δ only at barycentres of Sq−1

δ . If

δ = 0, Sq−1
δ reduces to the origin at which fD(ζ

DW2
, ξ;x) and fA(ζ

DW2
, ξ;x) may

also attain a maximum. Thus, only barycentres of Sq−1
δ (δ ∈ [0, 1]) are possible

support points for D- or A-optimal designs for the model ζ
DW2

(x) defined on

Sq.

Consequently, in order to prove that (A.4) or (A.5) is satisfied for all x ∈ S q,

it suffices to prove that they are satisfied at x = 0 = (0, . . . , 0)′ and at all

barycentres of Sq−1
δ for all δ ∈ (0, 1].

To prove the results for D-optimality, we observe that for the design ξ0,1,i in

which the measures r0, r1, ri are defined by (2.1), we have

fD(ζ
DW2

, ξ0,1,2;x) = (2q + 1)−1

[

1

r0

{

1 − 2
q
∑

k=1

xk +
(

q
∑

k=1

xk

)2
}

+
1

r1

{ q
∑

k=1

(x2
k −

2i

i − 1
x2

k(1 − xk) +
i2

(i − 1)2
x2

k(1 − xk)
2)

}

+
i4

ri

{

(i − 2)! (q − i − 1)!

(i − 1) (q − 2)!

q
∑

k=1

x2
k(1 − xi)

2

−(i − 2)! (q − i − 1)!

i (q − 1)!

(

q
∑

k=1

xk(1 − xk)
)2
}

]

− 1. (A.6)
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Proof of Theorem 2.1. Suppose that q = 4, i = 2, and ξ0,1,2 is the design
in which the measures r0, r1, r2 are defined by (2.1). We prove that (A.4) is
satisfied.

When δ ∈ [0, 1] and x is a barycentre of depth j of Sq−1
δ , it follows from (A.6)

that j3fD(ζ
DW2

, ξ0,1,2;x) = δ
[

2(8 − j)δ3 + 4(−7 + j)jδ2 + (13 − j)j2δ − 2j3
]

=

δP1(j, δ), say. Hence fD(ζ
DW2

, ξ0,1,2;x) = 0 when δ = 0, that is, x = 0. It is

straightforward to show that for each j = 1, 2, 3, 4, the function P1(j, δ) attains
its maximum in {δ : δ ∈ [0, 1]} at δ = 1, and P1(j, 1) = −3j3 + 17j2 − 30j + 16.
The last cubic polynomial in j equals 0 when j = 1, 2, and is negative for all
j ≥ 3. Thus fD(ζ

DW2
, ξ0,1,2;x) ≤ 0 for all δ ∈ [0, 1] and j = 1, 2, 3, 4, and

fD(ζ
DW2

, ξ0,1,2;x) = 0 if and only if either x = 0, or δ = 1 and j = 1, 2. Hence

(A.4) is satisfied and the design ξ0,1,2 is D-optimal, and only the origin and points
in J1 and J2 are possible support points. This proves Theorem 2.1.

Proof of Theorem 2.2. Suppose that q ≥ 8, i = 3, and ξ0,1,3 is the design
in which the measures r0, r1, r3 are defined by (2.1). We show that (A.3) is
satisfied.

When δ ∈ [0, 1] and x is a barycentre of depth j of Sq−1
δ , it follows from

(A.6) that 2j3(q − 3)fD(ζ
DW2

, ξ0,1,3;x) = δ[(−27 + 18q − 9j)δ3 + (36 − 30q +

18j)jδ2 − (15 − 14q + (15 − 2q)j)j2δ + 4(3 − q)j3] = δP2(q, j, δ), say. Hence
fD(ζ

DW2
, ξ0,1,3;x) = 0 when δ = 0, or when x = 0.

When j = 1, P2(q, j, δ) = 2(δ − 1)[δ(9 − 6q) + 2(q − 3) + 9δ2(q − 2)] ≤ 0, and
the last equality holds if and only if δ = 1.

When j = 2, P2(q, j, δ) = δ(96− 180δ +144δ2 − 45δ3) + (−32 + 72δ − 60δ2 +
16δ3)q ≤ δ(96 − 180δ + 144δ2 − 45δ3) + (−32 + 72δ − 60δ2 + 16δ3)8 < 0 for all
δ ∈ [0, 1].

When j = 3, P2(q, j, δ) = 18(δ − 1)δ(6 − 4δ + δ2)(q − 3) ≤ 0, and the last
equality holds when δ = 1.

Now consider the case 4 ≤ j ≤ q. The function P2(q, j, δ) is a cubic polyno-
mial in δ, and the coefficient of δ3 is (−27 + 18q − 9j) ≥ −27 + 18q − 9q > 0.
We show that ∂P2(q, j, δ)/∂δ = 3(−27 + 18q − 9j)δ2 + 2(36j − 30jq + 18j2)δ +
(−15j2 + 14j2q − 15j3 + 2j3q) = Aδ2 + Bδ + C, say, does not have a real zero,
so that P2(q, j, δ) is strictly increasing for all δ. From the equation B2 − 4AC =
(16−12j)q2 +(−24+30j +6j2)q+(9−36j−9j2) = 0, q can be found in terms of
j, and since (16−12j) < −32 < 0, B2−4AC ≥ 0 only for the range of values of q
that lie between the two roots of the equation B2−4AC = 0. The larger of these
two roots is q∗ =

(

3j2 + 15j − 12 +
√

j(9j3 − 6j2 − 151j + 324)
)

/(12j − 16) <
(

3j2 + 15j − 12 + (3j2 − j − 15)
)

/(12j − 16) < j, where the last two inequal-
ities hold because j ≥ 4. Hence B2 − 4AC ≥ 0 only if q < q∗ < j. Since
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q < q∗ < j contradicts 4 ≤ j ≤ q, we always have B2 − 4AC < 0. Thus

∂P2(q, j, δ)/∂δ 6= 0 for all δ. It follows that P2(q, j, δ) is strictly increasing in δ

for all δ, and P2(q, j, δ) ≤ P2(q, j, 1) = (j − 1)(j − 3)[(6q − 9) − (2q + 3)j] < 0.

Therefore, fD(ζ
DW2

, ξ0,1,3;x) ≤ 0 at all barycentres of Sq−1
δ and for all

δ ∈ [0, 1], and the last equality holds if and only if either x = 0 or x ∈ J1 ∪ J3.

Thus (A.4) is satisfied, and Theorem 2.2 is proved.

To prove the results for A-optimality, we observe that if ξ0,1,i is the design in

which the measures r0, r1, ri are defined by (2.2)−(2.4), we have the following:

f ′(x)M−2(ζ
DW2

, ξ)f(x)

=
q + 1

r2
0

− 2(
q + 1

r2
0

+
1

r0r1
)

q
∑

k=1

xk +
2i

(i − 1)r0r1

q
∑

k=1

xk(1 − xk)

+(
q + 1

r2
0

+
2

r0r1
)(

q
∑

k=1

xk)
2 − 2i

(i − 1)r0r1

q
∑

k=1

xk

q
∑

k=1

xk(1 − xk)

+
q
∑

k=1

{ax2
k + 2bx2

k(1 − xk) + 2cxk(1 − xk) + dx2
k(1 − xk)

2}

+e{
q
∑

k=1

xk(1 − xk)}2, (A.7)

where

a =
1

r2
1

+
i2

(i − 1)2r2
1

,

b =
−i

(i − 1)r2
1

+
−i3

(i − 1)3r2
1

+
−i5

(i − 1)3r1riC(q − 2, i − 1)
,

c =
i4

r1ri(i − 1)2(q − 1)C(q − 2, i − 1)
.

d =
i2

(i − 1)2r2
1

+

(

i2

(i − 1)2r1
+

i4

(i − 1)2riC(q − 2, i − 1)

)2

,

e =
−2i5

(i − 1)3r1ri(q − 1)C(q − 2, i − 1)
+

−2i7(q − 1) + i6q(i − 1)

(i − 1)3r2
i (q − 1)2(C(q − 2, i − 1))2

.

Proof of Theorem 2.3. Suppose q ≥ 8, and ξ0,1,3 is the design in which the

measures r0, r1, r3 are defined by (2.2)−(2.4).

Barycentres of Sq−1
δ are the only possible support points for an A-optimal

design. Any barycentre of Sq−1
δ can be written as δx, where x is a barycentre of

Sq−1. Therefore, to prove Theorem 2.3 it suffices to show that (A.4) holds for
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all δx, where δ ∈ [0, 1] and x is a barycentre of Sq−1, and that equality in (A.4)

holds if and only if either x = 0, or δ = 1 and x ∈ J1 ∪ J2.

Using (A.3) and (A.7), it follows, from straightforward but lengthy calcu-

lation using the computing package Mathematica, that if x ∈ Jj, 1 ≤ j ≤ q,

j3fA(ζ
DW2

, ξ; δx) = δ[(K1 +K2j)δ
3 +(K3 +K4j)jδ

2 +δ(K5 +K6j)j
2δ+K7j

3] =

δP3(q, j, δ), say, where K1, . . . ,K7 depend only on q. Hence fA(ζ
DW2

, ξ;0) = 0.

Lengthy calculations show that P3(q, j, δ) < P3(q, j, 1) for all δ ∈ [0, 1). In

P3(q, j, 1), j can take any value (although j − 1 has the geometric meaning of

being the depth of barycentres only if j is an integer and 1 ≤ j ≤ q). For any

q = 8, . . . , 21, it can be shown from lengthy calculations that P3(q, j, 1) > 0 when

j = 0, P3(q, j, 1) = 0 when j = 1, 3, P3(q, j, 1) < 0 when j = 2, 4. Since P3(q, j, 1)

is a cubic polynomial in j, it has at most three zeros, and consequently P3(q, j, 1)

is positive for all j ≤ 0 and negative for all j ≥ 4. Hence (A.5) is satisfied for all

x ∈ Sq, and the second equality in (A.5) holds if and only if δ = 1 and x ∈ J1∪J3.

This proves that the design ξ0,1,3 is A-optimal when q = 8, . . . , 21, and only the

origin and points in J1 and J3 are possible support points. This proves Theorem

2.3.

The proof of Theorem 2.4 is similar to that of Theorem 2.3 and is omitted.
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Scheffé, H. (1958). Experiments with mixtures. J. Roy. Statist. Soc. Ser. B 20, 344-360.

Zhang, C. and Guan, Y. (1992). Generalized additive mixture model and its D-optimal designs

(in Chinese). J. Northeast University of Technology 13, 86-93.

Department of Probability and Statistics, Guangzhou University, Guangzhou, People’s Republic

of China.

E-mail: chongqi@gzhu.edu.cn

Department of Industrial and Manufacturing Systems Engineering, The University of Hong

Kong, Pokfulam Road, Hong Kong.

E-mail: plychan@hku.hk

Department of Mathematics, Northeastern University, Shenyang, People’s Republic of China.

Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong.

E-mail: khli@cuhk.edu.hk

Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong.

(Received October 2002; accepted January 2004)


	1. Introduction
	2. Main Results
	3. Discussion
	Appendix.

