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Abstract: Power-divergence statistics are proposed for grouped survival data. They

are analogous to the power-divergence family of statistics proposed and studied in

detail by Read and Cressie (1988) and Cressie and Read (1984) for contingency

tables. The proposed statistics are useful for testing validity of parametric model

assumptions in analyses of survival data. It is shown that these statistics have

approximately chi-squared distribution under the null hypothesis. They can be used

to construct parameter estimates that are consistent and asymptotically normal

under usual regularity conditions. Simulation studies indicate that, with a suitable

choice of the tuning parameter, the chi-squared approximation performs quite well

even with small to moderate sample sizes. The approach is illustrated with a data

set from the reaction control system of the Space Shuttle.
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1. Introduction

The power-divergence family of statistics was proposed by Cressie and Read
(1984) for dealing with discrete data, especially data of counts. See Read and
Cressie (1988) for a comprehensive coverage of the subject. Let x = (x1, . . . , xk)
denote a random vector of counts having multinomial (m,p) distribution, where
p = (p1, . . . , pk) is the vector of cell probabilities. Then

∑k
i=1 xi = m and∑k

i=1 pi = 1 and, for any k-vector u = (u1, . . . , uk) with
∑k

i=1 ui = m,

P (x = u) = m!
k∏

i=1

pui
i

xi!
. (1.1)

Consider H0 : p ∈ P0, where P0 represents a set of values hypothesized for p.
Denote by p̂ = (p̂1, . . . , p̂k), the maximum likelihood estimator (MLE) of p under
H0. Then the power-divergence statistics can be written as

CR(λ) =
2

λ(λ+ 1)

k∑
i=1

xi

[(
xi

np̂i

)λ

− 1

]
, (1.2)



232 HUANN-SHENG CHEN, KUNJUNG LAI AND ZHILIANG YING

where λ ∈ (−∞,∞).
An array of choices of statistics for testing H0 are provided by the power-

divergence family. In particular, we find that

CR(1) =
k∑

i=1

(Xi − np̂i)2

npi
( Pearson’s χ2),

CR(0) = 2
k∑

i=1

Xi log
Xi

np̂i
(G2),

CR(−1
2
) = 4

k∑
i=1

(
√
Xi −

√
np̂i)2 (Freeman-Tukey’s F 2), (1.3)

CR(−1) = 2
k∑

i=1

np̂i log
np̂i

Xi

(
Neyman’s modified χ2

)
,

CR(−2) =
k∑

i=1

(Xi − np̂i)2

Xi
( modified G2).

Note that CR(0) and CR(−1) are defined as limits of CR(λ) as λ → 0 and
−1. Thus, the power-divergence family unifies commonly used goodness-of-fit
statistics.

The main purpose of the present paper is to develop a similar class of statis-
tics that are useful in survival analysis. Survival data arise frequently in medical
follow-up studies, actuarial calculation and industrial life testing. The data are
often modeled semi-parametrically, the Cox model, for example, or parametri-
cally. Although semi-parametric models are popular, parametric models often
provide viable alternatives, there are many examples in censored data analysis
and reliability (Nelson(1990)). In reliability theory one finds the exponential and
Weibull distributions and subsequently IFR (increasing failure rate) and DFR
(decreasing failure rate) distributions. Bringing in an understanding of aging
(IFR) or of objects whose reliability properties improve over time (DFR) can
sometimes be more suitable than employing semi-parametric models (Barlow
and Proschan (1981)). See also Kalbfleisch and Prentice (1981), Lawless (1982)
and Cox and Oakes (1984) for some other well-known parametric models that
can be used to fit survival data gathered from medical research and actuarial
sciences. An important aspect then is how to check validity of a specific model
assumption. Some research have been done in this regard. For example, Gail
and Ware (1979) studied grouped censored survival data by comparing with a
known survival distribution, while Akritas (1988) constructed a Pearson-type
goodness-of-fit measure for one-sample data that allows for random censorship.
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The rest of the paper is organized as follows. The family of power-divergence
statistics for grouped survival data is defined in Section 2, where basic nota-
tion is also introduced. In Section 3, power-divergence measures are applied to
obtain a class of estimators under parametric assumptions. It is shown that,
when the model is correctly specified, the resultant estimators are asymptoti-
cally equivalent to the maximum likelihood estimator. In consequence, they are
asymptotically normal and approximate (1−α)×100% confidence regions can be
easily constructed. Use of the proposed power-divergence statistics for checking
parametric model assumptions is discussed in Section 4. Extensive simulation
studies are presented in Section 5. Section 6 illustrates the new approach with a
data example. Concluding remarks are in Section 7. Proofs are relegated to an
appendix.

2. Power-divergence Statistics for Grouped Survival Data

We introduce some notation. Suppose the follow-up period is the inter-
val between 0 and τ , partitioned into k subintervals (τi−1, τi], i = 1, . . . , k,
where 0 = τ0 < τ1 < . . . < τk = τ . Let ni be the number of subjects at
risk at the beginning of the ith interval and di be the number of failures dur-
ing the interval. To avoid complication, assume that censoring occurs only at
τi. For each i, let Fi = σ{d1, . . . , di−1, n1, . . . , ni} be the σ-field generated by
d1, . . . , di−1, n1, . . . , ni. Thus, conditional on Fi, di has a binomial distribution,

P(di = l | Fi) =

(
ni

l

)
hl

0,i(1 − h0,i)ni−l, l = 0, . . . , ni, (2.1)

where, for each i, h0,i is a positive constant between 0 and 1 and may be regarded
as the discrete hazard rate at the ith interval.

The grouped survival data as just described can be constructed from con-
tinuous survival data. Suppose there are n study subjects whose failure and
censoring times are denoted by Tj and Cj , j = 1, . . . , n, so that observations
consist of T̃j = min(Tj , Cj) and δj = I(Tj ≤ Cj), j = 1, . . . , n. The Tj are
independent with a common distribution function F0. Let nj = #{j : T̃j > τj−1}
and dj = #{j : δj = 1, T̃j ∈ (τi−1, τi]}. If censoring occurs only at τi, it is easily
verified that (2.1) holds with h0,i = [F0(τi) − F0(τi−1)]/[1 − F0(τi−1)].

Mimicking (1.2), we propose the power-divergence family of statistics for
grouped survival data

Dλ(d,n;h) =
2

λ(λ+ 1)

k∑
i=1

{
di

[(
di

nihi

)λ

− 1
]

+ dc
i

[(
dc

i

nihc
i

)λ

− 1
]}
, (2.2)

where d = (d1, . . . , dk), n = (n1, . . . , nk), h = (h1, . . . , hk), dc
i = ni − di and

hc
i = 1 − hi. Because of (2.1), each di can be thought of as a binomial. In this
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connection, (2.2) is simply a sum of Cressie and Read’s (1984) power-divergence
statistics applied to the k intervals. In particular,

D1(d,n;h) =
k∑

i=1

{
(di − nih0i)2

nih0i
+

(dc
i − nih

c
0i)

2

nihc
0i

}

D− 1
2
(d,n;h) = 4

k∑
i=1

{(√
di −

√
nih0i

)2
+

(√
dc

i −
√
nih

c
0i

)2
}

D0(d,n;h) = 2
k∑

i=1

{
di log

(
di

nih0i

)
+ dc

i log

(
dc

i

nih
c
0i

)}

D−1(d,n;h) = 2
k∑

i=1

{
nih0i log

(
nih0i

di

)
+ nih

c
0i log

(
nih

c
0i

dc
i

)}

D−2(d,n;h) =
k∑

i=1

{
(di − nih0i)2

di
+

(dc
i − nih

c
0i)

2

dc
i

}

are analogues of Pearson’s χ2, Freeman-Tukey’s F 2, G2, Neyman’s modified χ2

and modified G2 statistics.

Theorem 1. Suppose (2.1) holds and ni → ∞ for i = 1, . . . k. Then, for
each λ, Dλ(d,n;h0) converges in distribution to χ2

k, the (central) chi-squared
distribution with k degrees of freedom. If ni/n → ri ≥ 0, i = 1, . . . , k, then
when h0i in (2.1) is replaced by hi = h0i + ci/

√
ni, where ci, i = 1, . . . , k, are

constants, Dλ(d,n;h0) converges to χ2
k(η), a non-central chi-squared distribution

with non-centrality parameter η =
∑k

i=1 c
2
i /(h0i(1 − h0i)).

The proof of the preceding theorem is straightforward and is outlined in
the Appendix. The result is directly applicable to testing the hypothesis that
survival times follow a specific distribution. The alternatives hi = h0i + ci/

√
ni

are contiguous to the null hypothesis hi = h0i. Theorem 1 shows that the tests for
h = h0 derived from this family are asymptotically equivalent in the sense that
both type I and type II errors under contiguous alternatives are asymptotically
the same. The results also provide a way of obtaining the power of tests with
contiguous alternatives, but the type II error under non-contiguous alternatives
may be quite different with different choices of λ.

We have assumed that censoring occurs instantaneously at the end of each
interval. The assumption is commonly used in life-table estimators, and in most
discrete time-to-event or grouped survival data analysis where the censoring in-
formation is available only up to intervals. For example, see Guo and Lin (1994),
Prentice and Gloeckler (1978) and Cox (1975). If full information about censor-
ing is absent but censoring is not heavy, Cox (1975) considered an approximation
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to the partial likelihood function, using the assumption that the failures and cen-
soring in any interval are independent Poisson processes. It is shown that under
such conditions, the estimates using the partial likelihood function have negli-
gible bias correction when the number of intervals becomes large. The scheme
discussed in Cox (1975) can likewise be applied to the power divergence family
for grouped survival data while using (2.2).

3. Minimum Power-divergence Estimators

An important subject in parametric survival analysis is the estimation of
unknown parameters under the model assumption. This section intends to deal
with this subject by using the proposed power-divergence measures.

Consider a parametric family indexed by θ ∈ Θ ⊂ Rp. Let H = {h(θ) =
(h1(θ), . . . , hk(θ)) : θ ∈ Θ}, where hi are twice continuously differentiable in
Θ. We use θ0 to denote the true parameter value and h0 = h(θ0). As before,
hc

i (θ) = 1− hi(θ). For each λ, we can define a minimum dispersion estimator θ̂λ

as the minimizer of

Dλ(θ) =
2

λ(λ+ 1)

k∑
i=1


di

[(
di

nihi(θ)

)λ

− 1

]
+ dc

i



(

dc
i

nih
c
i (θ)

)λ

− 1




 . (3.1)

Under the assumption that the censoring occurs only at the end of each interval,
(2.1) will hold and, because λ = 0 corresponds to G2, it follows that θ̂0 coin-
cides with the maximum likelihood estimator. Likewise, θ̂1 may be regarded as
a minimum χ2 distance estimator and θ̂−1/2 as a minimum Hellinger distance
estimator.

Theorem 2. Suppose ni/n→ γi ≥ 0, i = 1, . . . , k. Assume the p× p matrix

V =
k∑

i=1

γi∇hi(θ0)∇hi(θ0)T /(hi(θ0)hc
i (θ0))

is strictly positive definite. Then, in a neighborhood of θ0, θ̂λ is uniquely defined
and

√
n(θ̂λ−θ0) is asymptotically normal with mean zero and variance-covariance

matrix V −1. In addition, V̂ 1/2
n (θ̂λ−θ0) converges to the p-variate standard normal

distribution, where

V̂n =
k∑

i=1

[ni∇hi(θ̂λ)∇hi(θ̂λ)T /(hi(θ̂λ)hc
i (θ̂λ))]. (3.2)

The proof of Theorem 2 is given in the appendix. The assumption that
ni/n → γi ≥ 0 is to ensure stability of the sample; V̂n in (3.2) approximates V
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and depends on λ. The asymptotic normality of θ̂λ shows that an approximate
(1 − α) × 100% confidence region for θ0 is {θ : (θ̂λ − θ)V̂n(θ̂λ)(θ̂λ − θ) ≤ χ2

α;p}.

4. Goodness-of-fit Tests

Another important subject in parametric survival analysis is the goodness
of fit of the parametric model assumption. We demonstrate in this section that
the proposed power-divergence family can be used for model checking.

Let θ̂ be any member in {θ̂λ}. Substituting θ in (3.1) by θ̂ we get Dλ(d,n;
h(θ̂)), which can be used to test the null hypothesis that the parametric family
contains the true distributions, i.e., h0 ∈ {h(θ), θ ∈ Θ}.
Theorem 3. Under the same assumptions as those of Theorem 2, Dλ(d,n;h(θ̂))
converges to χ2

k−p.

It is often of interest to test a parametric hypothesis of form H0 : θ0 ∈ Θ0

versus HA : θ0 ∈ Θ\Θ0, where Θ0 is a q(< p) dimensional sunset of Θ. We apply
the power-divergence statistics by first finding θ̂λ = arg minθ∈ΘDλ(d,n;h(θ̂))
and θ̂

(0)
λ = arg minθ∈Θ0 Dλ(d,n;h(θ̂)). We omit λ and use θ̂ and θ̂(0) to denote

the two parameters. Now, for any λ, not necessarily the same as that in the
definition of θ̂, we can useDλ(d,n;h(θ̂))−Dλ(d,n;h(θ̂(0))) to test H0 against HA.

Corollary 4. Suppose that the true parameter θ0 lies in the interior of Θ0. Then
for any λ, Dλ(d,n;h(θ̂)) −Dλ(d,n;h(θ̂(0))) converges to χ2

(p−q).

5. Simulation Study

We have conducted extensive simulations to evaluate the performance of the
the proposed methods under various circumstances. The main goals of these
simulations are (1) to compare the performance of the power-divergence statis-
tics and the traditional Pearson statistics in the special case of no censoring;
(2) to compare the performance of the power-divergence statistics family when
censoring occurs; and (3) to demonstrate numerically that when parameters are
estimated, the power-divergence statistics are approximately χ2 under random
censoring.

5.1 Power-divergence and Pearson statistics

Some classical statistics, such as the Pearson statistics, are commonly used in
goodness-of-fit tests when there is no censoring. Our proposed power-divergence
statistics family provides an alternative way for goodness-of-fit testing to both
censored and uncensored data. It is of interest to compare the proposed method
with the classical goodness-of-fit statistics under the condition that no censoring
had occurred.
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We test

H0 : F (t) = 1 − exp{−t} versus H1 : F (t) = 1 − exp{−tγ}. (5.1)

The alternative is the Weibull distribution with shape parameter γ. Equivalently,
we can test the hazard function

H0 : h(t) = 1 versus H1 : h(t) = γtγ−1. (5.2)

Assuming no censoring, since (5.1) and (5.2) are equivalent, the power-divergence
statistics Dλ derived for (5.2) can be compared to the classical chi-squared tests
CR(λ) derived for (5.1). A notable difference between the two tests is that, when
the number of interval is k, the tests CR(λ) applied to (5.1) have k − 1 degrees
of freedom and the tests Dλ applied to (5.2) have k degrees of freedom. In our
simulation, we chose the Pearson’s chi-squared test CR(1) to compare with the
proposed tests Dλ.

The comparison can be based on the power and the achieved α levels of
the tests. Following Akritas (1988), we chose γ = 1/(1 + b/

√
N), with b =

0,−4,−2, 2, 4, N = 120 with k = 7, and N = 50 with k = 3, where the value
k was the number of intervals. For each combination of the alternative, we
generated 1,000 samples. We grouped the data so that the intervals had the same
probability under the null hypothesis. The simulation results are summarized in
Table 1. When b = 0, the data were generated from the null distribution, hence
the values in the table correspond to the achieved level. From the simulation
results, it appears that almost all the power-divergence tests achieve higher α
values than does the Pearson chi-squared test. Among the power-divergence
tests, the achieved powers are similar to each other. When the sample size
increases from 50 to 120, the powers of the tests increase.

Additionally, we compared the power-divergence tests and the Pearson chi-
squared test with

H0 : F (t) = 1 − exp{−t} versus H1 : F (t) = 1 − exp{− t

β
}, (5.3)

H0 : h(t) = 1 versus H1 : h(t) = 1/β. (5.4)

Table 1. Achieved power at 5% for Dλ(d,n;h(θ0)) and the Pearson chi-
squared test CR(1) when h(t) = γtγ−1, γ = 1/(1 + b/

√
N).

N = 120, k = 7 N = 50, k = 3
λ λ

b CR(1) −2 −1 −0.5 0 1 CR(1) −2 −1 −0.5 0 1
0 0.029 0.069 0.046 0.035 0.033 0.030 0.023 0.040 0.027 0.021 0.019 0.017

−4 0.986 0.989 0.988 0.987 0.990 0.986 0.945 0.981 0.964 0.958 0.956 0.931
−2 0.269 0.406 0.358 0.330 0.314 0.258 0.170 0.266 0.206 0.184 0.174 0.139

2 0.176 0.211 0.186 0.177 0.174 0.185 0.083 0.101 0.096 0.096 0.084 0.091
4 0.591 0.596 0.577 0.584 0.591 0.595 0.224 0.248 0.243 0.253 0.243 0.245
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We let β = 1/(1 + b/
√
N) and kept the other aspects of the foregoing simulation

unchanged. To save space, we do not include the results obtained from (5.3)
and (5.4), but similar conclusion can be drawn. The simulation results indicate
that the proposed power-divergence statistics provide a viable analysis to the
goodness-of-fit test when there is no censoring.

5.2. Achieved power and levels for the power-divergence family when
data are censored

We conducted simulations for the cases that data are censored under random
censorship model. We considered the power-divergence statistics family under the
composite hypotheses of Theorem 3. The studies were to compare the achieved
nominal levels as the number of intervals, the degree of censoring and the sample
size are varied, and to compare the powers of the tests for different alternative
hypotheses. We examined the tests Dλ for λ = −2,−1,−1/2, 0, 1/2, 1 and 2.

Achieved levels of tests.
The exponential and the Weibull distributions were used as the null distribu-

tions in the simulations. We generated right censored data by assuming that the
censoring hazard function was proportional to the failure time hazard function.
We considered sample sizes n = 30, n = 50 and n = 100; the levels of the tests
were set to 1% and 5%; the number of intervals were chosen as k = 5 and k = 7;
the shape and scale parameters of the Weibull distribution were specified as 2
and 1, respectively. For each combination, 1000 replications were performed. For
each replication, there were approximately 40% − 45% uncensored values.

Table 2. Achieved level at 5% for power-divergence tests Dλ(d,n;h(θ̂λ))
using the null distribution Weibull(γ, β) with (γ, β) = (2, 1). The sample
size is n and the number of intervals is k.

λ non-censored
n k −2 −1 −0.5 0 0.5 1 2 mean sd

30 5 0.050 0.010 0.025 0.055 0.025 0.025 0.045 0.452 0.101
30 7 0.050 0.065 0.100 0.060 0.070 0.100 0.055 0.408 0.085
50 5 0.020 0.015 0.040 0.030 0.010 0.025 0.055 0.448 0.078
50 7 0.050 0.060 0.050 0.035 0.060 0.060 0.065 0.410 0.076

100 5 0.010 0.010 0.005 0.020 0.010 0.010 0.015 0.449 0.051
100 7 0.050 0.035 0.040 0.045 0.045 0.030 0.030 0.420 0.048

Table 2 summarizes the achieved levels of the tests for the Weibull distribu-
tion. The mean and standard deviation of the uncensored percentages are also
reported; to conserve space, only those associated with nominal levels of 5% are
presented. From the table, we find that the achieved levels are consistent with
the specified asymptotic level. The results for exponential null distribution are
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not presented here but they show a similar pattern. Overall it can be concluded
that the asymptotic approximations are acceptable for small to moderate sample
sizes.

Achieved power of tests.
We conducted simulations to examine the achieved powers of the tests against

specific alternatives. We tested the exponential when the failure times were gen-
erated by a Weibull distribution. Also, we tested the Weibull when the underly-
ing failure times were generated by a log-normal distribution. The sample sizes
utilized were 30 and 100, the number of interval was 7, and the number of repli-
cations was 1000. We only report the achieved powers of the asymptotic 5% level
tests here, although the achieved powers of 1% level asymptotic tests were also
obtained. Table 3 shows the results for testing the Weibull when the true failure
time distribution is log-normal with parameters µ = 0.8, 1.4, 2.0 and σ = 1. Ex-
amining the simulation results, one sees that power increases with sample size.
The powers of power-divergence statistics in the family are comparable to each
other, and hence the choice of λ can not be decided by the powers of the tests.
For testing exponentiality, the true failure time distribution was the Weibull dis-
tribution with shape parameters α = 0.2, 0.4, . . . , 2.0, and scale parameter 1. The
results are not presented here, but they also show that the power increases with
sample size, and the powers for different λ are similar.

Table 3. Achieved power at 5% for power-divergence tests Dλ(d,n;h(θ̂λ))
using the Weibull null distribution against an alternative log-normal(µ, σ)
with σ = 1. The number of interval is 7.

λ Uncensored
µ −2 −1 −0.5 0 0.5 1 2 mean sd

n = 30 0.8 0.125 0.115 0.125 0.120 0.115 0.100 0.120 0.564 0.089
1.4 0.370 0.345 0.335 0.335 0.320 0.330 0.335 0.561 0.095
2.0 0.440 0.455 0.470 0.470 0.460 0.485 0.450 0.565 0.100

n = 100 0.8 0.140 0.130 0.155 0.120 0.135 0.120 0.135 0.572 0.050
1.4 0.400 0.340 0.355 0.385 0.380 0.315 0.410 0.569 0.048
2.0 0.465 0.455 0.470 0.475 0.460 0.440 0.470 0.577 0.045

5.3. Sampling distribution of Dλ(θ̂).

We also studied moderate sample properties of Dλ(θ̂). We simulated failure
times from the Weibull with shape parameter 0.6 and scale parameter 1. Each
simulation generated 100 failure times, which were divided into 5 groups. About
20% of the samples were censored. The parameter λ was chosen as 1, 0, and
−1/2. The simulation was repeated 1000 times for each λ. Figure 1 gives the
Q-Q plots of the Dλ(d,n;h(θ̂λ)) versus the theoretical distribution, a chi-squared
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distribution with three degrees of freedom. The plots shows that for all three λ
chosen, the power-divergence statistics performed well in the case of moderate
censoring as well as in the case of no censoring.

Figure 1. Plots of empirical Dλ(d,n;h(θ̂λ)) versus χ2 with 3 degrees of
freedom. The diagonal lines are 45◦. Three parameter values λ = −1/2, 0, 1
are chosen and both no censoring and 20% censoring are considered.
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6. An Example

We investigated the hazard rate of the oxidizer in the reaction control system
(RCS) of the Space Shuttle. The data were collected by engineers in the Johnson
Space Center. The variable “soak time” was a surrogate for time-to-failure. It
referred to the amount of time an oxidizer valve in the RCS was under pressure
in a N2O4 environment. The data consisted of 258 observations, each a record
of a valve used in the RCS. The design of the study was based on random right
censoring. Valves entered the study at different times. After a certain period,
the condition of each valve was determined. During the operation period, valves
might be destroyed or fail due to inadequate maintenance or manufacturing fail-
ure. Censoring occurred when the valve failed for reasons other than Nitrate
failure, or termination of study. In the data set, 153 out of 258 valves were
censored.

The range of observed soak times was 2 to 9792. We took logs and grouped
them into non-overlapping intervals (τk−1, τk], k = 1, . . . , 10. The partition τ0 <

τ1 < · · · < τ10 was chosen so that the number of failures was approximately
evenly distributed among the ten intervals. We first considered the Weibull. For
different choices of the tuning parameter λ, ranging from −2 to 2, we calculated
the corresponding power-divergence statistics and Dλ(d,n;h). The values of
Dλ(d,n;h) ranged from 22.19 to 46.70, depending on the choice of λ. With
eight degrees of freedom, the corresponding p-values were far less than 0.05.
Clearly soak time was not distributed as a Weibull. Using a partition with six
intervals, we found similar results.

To find a suitable parametric family, we considered H
(1)
0 : h ∈ {h = (h1, . . .,

hk)|hi = h(ti) = exp(β0 + β1ti + β2t
2
i )/(1 + exp(β0 + β1ti + β2t

2
i ))}, a model

considered by Efron (1988). The hypothesis says that the discrete hazard rate hi

is quadratic after a logit transformation, i.e., log[hi/(1 − hi)] = β0 + β1ti + β2t
2
i .

The second column of Table 4 shows the power-divergence statistics under H(1)
0 .

The tests reject the hypothesis at level 0.05 for all λ. With the same intervals, we
tested the hypothesis H(2)

0 : h ∈ {h = (h1, . . . , hk)|hi = h(ti) = exp(β0 + β1ti +
β2t

2
i + β3t

3
i )/(1 + exp(β0 + β1ti + β2t

2
i + β3t

3
i ))}, that the hazard rate was cubic

logistic regression in the logarithm of soak time. Table 4 also shows the power-
divergence tests under H(2)

0 . The test statistics had acceptable significance levels
for all −2.0 ≤ λ ≤ 5.0, and minimum values with λ between 2 and 3. Note that
when |λ| becomes too large or too small, the chi-squared rejection region tends
to be misleading. As the results suggest, we can accept the hypothesis that the
data follow a cubic logistic model. The test statistic had minimum value when
λ = 2.5. In this case, the minimum power-divergence estimates for the β′s were
β̂0 = −2.083, β̂1 = 2.148, β̂2 = 2.266 and β̂3 = 1.145, respectively.
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Table 4. The power-divergence statistics Dλ(d,n;h(θ̂λ)) under quadratic
and cubic logistic models.

Quadratic Cubic

λ Dλ(d,n;h(θ̂λ)) p-value Dλ(d,n;h(θ̂λ)) p-value
4.0 17.983 0.012 5.513 0.480
3.0 16.331 0.022 5.396 0.494
2.5 15.793 0.027 5.381 0.496
2.0 15.438 0.031 5.398 0.494
1.5 15.265 0.033 5.448 0.488
1.0 15.284 0.033 5.535 0.477
0.5 15.512 0.030 5.665 0.462
0.0 15.980 0.025 5.844 0.441

Table 4 shows the evidence that the cubic logistic model fits better than
the quadratic logistic model. Note that the difference between Dλ(d,n;h(θ̂λ))
under the hypotheses H(1)

0 and H(2)
0 is also significant. This is compared to a χ2

1

distribution since the cubic model has one more parameter than the quadratic
model, and is significant at the 0.001 level. A second partition with six intervals
again gave the same conclusion.

0 2 4 6 8

log(soak time)

su
rv

iv
a
l

0
.1

0
.5

1
.0

life-table
quadratic logistic
cubic logistic

Figure 2. The survival function of soak time using life-table estimate, quad-
ratic logistic model and cubic logistic model.

The life-table survival estimate is Ŝi =
∏

1≤j<i(1− ĥj) with ĥi = di/ni. Fig-
ure 2 compares the life-table estimate versus the survival function based on the
hypotheses H(1)

0 and H(2)
0 , where the ĥj are substituted for the maximum likeli-
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hood estimates obtained under the null hypotheses H(1)
0 and H

(2)
0 , respectively.

It suggests that the cubic logistic regression is a better fit for the data, consistent
with our finding using power-divergence statistics.

7. Discussion and Conclusion

Since there are many power-divergence statistics, it is of interest to find a
most desirable one. The selection of λ, however, is a complex issue. As pointed
out by Read and Cressie (1988), there is no clear-cut conclusion to this problem
and the choice depends on two criteria: efficiency and robustness. There is
some discussion of these criteria for discrete multivariate data, for example, see
Simpson (1987, 1989) and Lindsay (1994). In general, λ controls the trade-off
between efficiencies and robustness. Read and Cressie (1988) suggested that
λ = 2/3 is an excellent compromise between X2(λ = 1) and G2(λ = 0), and they
recommend it for use in practice. Generally, λ with |λ| > 5 is not recommended.

There are other issues that need to be examined. In a study of the Hellinger
estimator and test for categorical data, Simpson (1987, 1989) showed that the
maximum likelihood estimator for discrete data is sensitive to outliers and the
Hellinger distance estimator has breakdown point at 50%. The Hellinger test
leads to similar results. How to extend these findings from discrete multivariate
data to survival data needs to be explored. Very few results are available for
robustness of tests for survival data. Robustness of the Hellinger estimator for
continuous survival data was studied in Yang (1992). Further study of parallel
robustness results for survival data would be valuable, especially in situations
where the data is continuous or grouped subject to censoring. Investigation of
this topic is still in progress.

Appendix

Lemma 1. Suppose that (2.1) holds and ni → ∞ for i = 1, . . . k. Let Xi = (di −
nih0i)/

√
nih0i(1 − h0i), then (X1, . . . ,Xk)

D→N(O, Ik). If further, ni/n→ ri ≥ 0,
i = 1, . . . , k, and the h0i in (2.1) are replaced by hi = h0i + ci/

√
ni, where ci

are constants, then (X1, . . . ,Xk) D→N(ψ, Ik) with ψ = (c1/
√

(h01(1 − h01)), . . .,
ck/

√
(h0k(1 − h0k)) ).

Proof. By induction, we show that the characteristic function φ of (X1, . . . ,XK)
satisfies

φ(t1, . . . , tk) = E
[
exp

( k∑
i=1

itiXi

)]
→ exp

(
−

k∑
i=1

t2i /2
)
. (A.1)

Thus, by the Lévy Continuity Theorem, the first part of Lemma 1 holds. By the
DeMoivre-Laplace Central Limit Theorem, (A.1) holds if k = 1. Suppose it holds
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in the case of k − 1. Notice that

φ(t1, . . . , tk) = E
{

exp
( k−1∑

i=1

itiXi

)
E
[
exp(itkXk)|X1, . . . ,Xk−1

]}
.

By the assumption that conditioning on Fk, dk is binomial b(nk, h0k), and the
DeMoivre-Laplace Theorem, E [exp(itkXk)|X1, . . . ,Xk−1] = exp(−t2k/2) + o(1).
Thus by the Lebesgue Dominated Convergence Theorem,

φ(t1, . . . , tk) = exp(−t2k/2)E
[
exp

( k−1∑
i=1

itiXi

)]
+ o(1)

= exp
(
− 1

2

k∑
i=1

t2i

)
+ o(1).

Hence (A.1) holds. The second part of Lemma 1 can be shown by observing that

di − nih0i√
nih0i(1 − h0i)

=
di − nihi√
nihi(1 − hi)

√
nihi(1 − hi)√
nih0i(1 − h0i)

+
√
nici√

nih0i(1 − h0i)
.

Since hi → h0i, the asymptotic normality of (X1, . . . ,Xk) follows.

Proof of Theorem 1. We first show that for λ = 1,

D1(d,n;h0) =
k∑

i=1

{
(di − nih0i)2

nih0i
+

(dc
i − nih

c
0i)

2

nihc
0i

}

=
k∑

i=1

d2
i h

c
0i − 2dinih0ih

c
0i + n2

ih
2
0ih

c
0i

nih0ihc
0i

+
k∑

i=1

h0i(dc
i )

2 − 2nih0ih
c
0id

c
i + n2

ih0i(hc
0i)

2

nih0ihc
0i

=
k∑

i=1

(
di − nih0i

)2

nih0ih
c
0i

,

which converges to χ2
k by Lemma 1. Next, assume that λ 	∈ {0,−1}. By definition

of Dλ(d,n;h0), we obtain

Dλ(d,n;h0) =
2

λ(λ+ 1)

k∑
i=1

{
di

[( di

nih0i

)λ − 1
]
+ dc

i

[( dc
i

nih
c
0i

)λ − 1
]}

=
2

λ(λ+ 1)

k∑
i=1

{
nih0i

[( di

nih0i

)λ+1 − 1
]}
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+
2

λ(λ+ 1)

k∑
i=1

{
nih

c
0i

[( dc
i

nihc
0i

)λ+1 − 1
]}

=
2

λ(λ+ 1)

k∑
i=1

{
nih0i

[(
1 +

di − nih0i

nih0i

)λ+1 − 1
]}

+
2

λ(λ+ 1)

k∑
i=1

{
nih

c
0i

[(
1 +

dc
i − nih

c
0i

nih
c
0i

)λ+1 − 1
]}
.

Let ui = (di − nih0i)/nih0i, vi = (dc
i − nih

c
0i)/nih

c
0i and expand in a Taylor series

to get

Dλ(d,n;h0) =
2

λ(λ+ 1)

k∑
i=1

{
nih0i

[
(λ+ 1)ui +

λ(λ+ 1)
2

u2
i +Op(u3

i )
]}

+
2

λ(λ+ 1)

k∑
i=1

{
nih

c
0i

[
(λ+ 1)vi +

λ(λ+ 1)
2

v2
i +Op(v3

i )
]}

=
k∑

i=1

ni

{
h0iu

2
i + hc

0iv
2
i + op(

1
ni

)
}

=
k∑

i=1

{(di − nih0i)2

nih0i
+

(dc
i − nih

c
0i)

2

nihc
0i

}
+ op(1)

=D1(d,n;h0) + op(1),

which converges to χ2
k.

The cases of λ = 0 and λ = 1 can be proved by slightly modifying the Taylor
expansion, hence the details are omitted here. Furthermore, the arguments can
be directly applied to the case that h0j is replaced by hj = h0j + c/

√
nj using

the second part of Lemma 1.

Proof of Theorem 2. Using an expansion similar to the proof in Theorem 1,
it can be shown that

Dλ(θ) =
k∑

i=1

{
ni

(hi(θ0) − hi(θ)√
hi(θ)hc

i (θ)

)2
+ o(ni)

}
.

Furthermore from some elementary probability arguments, for some constant M ,

sup
||θ−θ0||≤M

|Dλ(θ)
n

−
k∑

i=1

γi

(hi(θ0) − hi(θ)√
hi(θ)hc

i (θ)

)2| = o(1).

Since h(θ) is continuous, for any ε,

inf
||θ−θ0||>ε

k∑
i=1

γi

(hi(θ0) − hi(θ)√
hi(θ)hc

i (θ)

)2
> 0.



246 HUANN-SHENG CHEN, KUNJUNG LAI AND ZHILIANG YING

Hence by the definition of θ̂λ, in a neighborhood of θ0, θ̂λ is uniquely defined and
θ̂λ → θ0 almost surely.

By definition, the minimum dispersion estimator θ̂λ satisfies ∇Dλ(θ)|θ=θ̂λ
=

0. It follows ∇Dλ(θ)|θ=θ̂λ
= ∇Dλ(θ)|θ=θ0 + ∇2Dλ(θ)|θ=θ∗(θ̂λ − θ0), for some θ∗

between θ0 and θ̂λ. Then the score

∇Dλ(θ)|θ=θ0 =
2

λ+ 1

k∑
i=1

ni∇hi(θ0)
{[ dc

i

nihc
i (θ0)

]λ+1 −
[ di

nihi(θ)

]λ+1}

= 2
k∑

i=1

ni∇hi(θ0)
{ dc

i

nihc
i (θ0)

− di

nihi(θ)
+Op(n−1

i )
}

= 2
k∑

i=1

∇hi(θ0)
hi(θ0)(1 − hi(θ0))

{
hi(θ0) − di

ni

}
+Op(1).

One can further show that

∇2Dλ(θ)|θ=θ∗ = 2
k∑

i=1

ni∇hi(θ0)∇hi(θ0)T

hi(θ0)(1 − hi(θ0))
+ op(n). (A.2)

Hence, by the assumption that hi(θ) are twice differentiable in Θ, it is not difficult
to show that

θ̂λ − θ0

=
{ k∑

i=1

ni∇hi(θ0)∇hi(θ0)T

hi(θ0)(1 − hi(θ0))
+ op(n)

}−1{ k∑
i=1

ni∇hi(θ0)
(
di/ni−hi(θ0)

)
hi(θ0)(1−hi(θ0))

+Op(1)
}

=
{ k∑

i=1

ni∇hi(θ0)∇hi(θ0)T

nhi(θ0)(1 − hi(θ0))

}−1{ k∑
i=1

ni∇hi(θ0)
(
di/ni − hi(θ0)

)
nhi(θ0)(1 − hi(θ0))

}
+ op(n−1/2).

Since conditioning on Fi, di has binomial distribution b(ni, hi(θ0)),
√
n(θ̂λ − θ0)

converges in distribution to N(0, V −1). The asymptotical normality of V̂ 1/2
n (θ̂λ−

θ0) thus follows.

Proofs of Theorem 3 and Corollary 4. By a Taylor expansion of Dλ(d,n;
h(θ0)) at θ̂,

Dλ(d,n;h(θ0)) =Dλ(d,n;h(θ̂)) + ∇Dλ(d,n;h(θ))|θ=θ̂(θ0 − θ̂)

+
1
2
(θ0 − θ̂)T∇2Dλ(d,n;h(θ))|θ=θ∗(θ0 − θ̂).

Note that by Theorem 2 and the definition of θ̂, Dλ(d,n;h(θ0)) = χ2
k +op(n−1/2)

and ∇Dλ(d,n;h(θ))|θ=θ̂ = 0. Also from (A.2) and the Central Limit Theorem,
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(θ0 − θ̂)T∇2Dλ(d,n;h(θ))|θ=θ∗(θ0 − θ̂)/2 = χ2
p + op(n−1/2). By a quadratic form

decomposition theorem (see, e.g., Rao(1973, p.187)), Dλ(d,n;h(θ̂)) = χ2
k−p +

op(n−1/2), hence Theorem 3 follows. The Corollary can be easily shown by the
same arguments.
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