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Supplementary Material

S1 Main Proofs

S1.1 Proof of Theorem 1

With the aim of deriving the targeted oracle inequalities (2.11), we first
prove the lower bound for symmetric Bregman divergence Dj (8 + §,03)
with g = 0.

Lemma 1. Assume that (C.1) and (C.2) are satisfied, then we have

DB+ 8,8) > 67((3)5e 200,

Proof. We assume that X7 # 0 by identifiability (C.2) for 8. Use the
expression of £,(3), we obtain

0+Y,  0+Y ]
eXI'(B+0) 4 XIB

(6 +Y;)eXi P X0 _ 1
[0+ X[ (B+O)][0 + XI8] X[ —0

1 & 00 +Y;)eXiB g4 XiB
>6"=Y I xx!- s Z)f 5 +€T 5 e~ (1XTONO) L s

S4B +8) ~ @) =~ 3" Xl —

1 n
=0"=Y Xx;x70.

i=1
where the last inequality is from % > e~ (zIVIYD) | Tt remains to prove that
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To show the (S1.1), just note that by (C.1)
o+ X0 P ~XT6 ~ —L|é1 3¢ %T
e_i_:xzwwze v 26 ””11sz(520
9+6X1T'6 3 T
W Z 1 if XZ 6 S 0.
Last, combining inequality min{e1¥79l 1} > ¢~LI0l1 and (S1.1), it im-
plies by the expression of ¢(3) that

. . LN | X X[ 000+ ;)X P
ST(B+0)—((B)] ="~ { (0 + X/ B)?

n <
=1

}56—2L5II1 _ 6T€'(,8)6e_2LH5”1.

]
Next, we give the proof of Theorem 1 based on Lemma 1.

Proof. Let B = 3 — 3" # 0 and b = 3/||3||;, and then ¢(3* + bz) is a
convex function in x due to the convexity of ¢(3). By (2.10), we have
~ 20N 2 (M

STy 1Byl < ﬁ|ybH||1 (S1.2)
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b [U(B" +bx) —((B")] 1br [l —

holds for z € [0, ]|8]1] and b € S(¢, H). . )
By the Lemma 1, we get (bz)? [(,,(3*+bx)—(,(8")] > e 2L*(bx)"(,(8)(bx).
Since x > 0, then

b [0, (8" + bx) — £,(8")] > we 2L7bTL,(B)b. (S1.3)

Assume we know the Hessian matrix at the true coefficient 3%, write
compatibility factor as C(¢,H) =: C((, H,¢,(3")). By the definition of
compatibility factor and the two inequality above, we have

Lae **[0(C, H)]*|ball?/djy < Lae b7, (8)b

(by (S1.3)) < LbT[(,(B" + bx) — (,(8")]
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where the last step is due to the elementary inequality ) 5 >

2M (bl
Then we have

~2Le L(C+ Ddyh

= ACG P o

Lzxe

for any z € [0, ||B|1]. @ is the small solution of the equation {z : ze=%* =

7}. Notice that the maximum of ze=%* is %e‘l, we need to assume 7 < %e‘l.

Again, since £,(03) is a convex in 3, then b’ [(,(8 + bx) — (,(8)] is
increasing in x. Thus the solution of (S1.4) w.r.t. z is a closed interval
z € [0,#]. By the fact that z € [0,3]|1] implies = € [0, %], thus we have
1B]|; < &. Use (S1.4) again, it implies Lze 2% < 7. Then, for Vz € [0, ],

we have
ar ¥ e ((+ Ddiyh

B, <i< = = SL.5
where the last equality is by the definition of 7.
Similarly, by the definition of weak CIF, we have
oo o w6 BTGB + br) — £ (87)]
~ Cy¢ H) bl /(di DIl T Co¢ )bl /(di ) 18],

_ 2CdE TN
— (C+ 1) C(C H)bl|,
Let © = [|B]11, by the identity |8 —8"[l, = |8l Bll4, we have [|3— 87, <

2e207 ¢dy Y I
(C+1)Cq(¢,H)

(by (51.2))

due to the same argument in (S1.5). O

S1.2 Proof of Theorem 2

To show the high probability events X N E. (or KN E,), we will adopt
the sub-Gaussian type concentration inequalities for the exponential family
random variables with restricted parameter space.

Lemma 2 (Lemma 6.1 in Rigollet (2012)). Let {Y;}!', be a sequence of
random variables whose distribution belongs to the canonical exponential
family with f(y;0;) = c(y;) exp(y0; — ¥(6;)). We assume the uniformly
bounded variances condition: there exist a compact set € and a constant

Cy, such that slégw(ﬁz) < CF for alli. Let w := (wy,--- ,w,)" € R" be a



non-random and define the weighted sum S¥ =: > w;Y;, we have
i=1

P{|S¥ —ESY| > t} < 2exp{— (S1.6)

e
Moreover, we have E|SY—ES”|* < Dy ¢ |wl|s where Dy = k(2C3)*T (k/2)
and I'(+) stands for the Gamma function.

Since dispersion parameters # is assumed to be known, this NB distri-
bution belongs to exponential families. With assumption (C.1) and (C.3),
the boundedness of sup ¢)(6;) holds uniformly by noticing that

0,€Q
3 12 o2t 2LB
max sup ¢ (6;) = max sup (y; + ) = sup (e + —) =" + = C%p.
i geQ i >0 0 |t|<LB 0 0
(S1.7)

Now, we can apply concentration inequality Lemma 2 to go on the
proof. The first step is to evaluate the event IC := { <2 +1)\1} from the
inequality in (2.12). By assuming By := ByA;, we have

C_

1 .
P(z* > M) < P(||¢ s )\ —2)\,B
<Z_C+11)_ (€ (B7) _C 1 2B)
z (Y — EY)0 ¢—1
< > — .
—;P< —  n(6+EY;) —§+1A1 20 B

and define Cg¢ p, = g+1 — By > 0 for some small constant B;.

It is worth noting that Bunea (2008) and Blazere et al. (2014) also
proposed assumption Ao B = O()\;) for two turning parameters in Elastic-
net estimates. By using Lemma 2, we have

P {
i=1

n 6+ EY;

2 2
Cé- B; )\1

x2.02 2
2 L% Consequently,

where [[wV[[3 := Zlm <
1=
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Cor> 1 (S1.8)
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The expression of tuning parameter \; is solved by the equality in (S1.8),

: C, gL
we obtain A\ = C‘L_B\/m.
§,B1 n

The second step is to evaluate the probability of the event of truncated
random variables:

= {C*((, H,0,(8") = C2(¢, H)}

and

Ew = {Cq(C> H, gn(/@*)) > th(C, H)}’
where C?(¢, H) and C, (¢, H) are some constant such that these two events
could hold with high probability.
Let b., b, be the random points such that the infimum of in the fol-
lowing ¢;-ball restricted compatibility factor and weak cone invertibility
factors,

&y P (b70,(8°)b)  diy(b.l,(B")b.)

C*(¢,H,0,(B")) := inf =: - >0, (s €R),
R N P [Go)al? ber)
. * 1/apTj (3%\p « 1/4pT 7 (3%\p
Clc H. 1, (8Y) o= juf G000 i 00000 (¢ gy
e ([Ballr- B, [[(Bualls - [Ball,

are attained respectively, where A := {b€ RP:0# b € S(¢,H),||b|; = 1}.
Consider the event &, and &, let

&y (671, (8")b) di /b 0,(B")b
Se(bY) .= " and S¥(b,Y) := & & .
6 =" ou s 6. Y= 5l Tl
For all b € A, the difference of S5(b,Y) and ESS(b,Y) is bound by
S¢(b,Y) —ES¢(b,Y <d?f“bH% 0,(8) —El,(B*
1S,(B,Y) R(b,Y)] < 5 max |(6,(8%) — E6,(87)), ]
bullf sk

< djy (14 ) max|((u(8") — Bla(87)),4]

where the last inequality is from (2.10).
Note that the term dj;(1 + ¢)? is a constant, so it sufficient to bound

n XT*

. . . N . 1 :L‘ijl‘ikee i
max (6 (B) — Ela(87)) x| = max | 121 W(YZ - EY))

by Lemma 2. Then,
P{|S.(b,Y) —ESS(b,Y)| >t, Vb€ A} (S1.9)



< P{max |((87) = BE(87)14] = t/diy(1+ )

< P*P{I(6a(87) = BL(B7))jul 2 t/d5(1+ ()}

nt?
203 pld;; (1 + c>L2J2} (5110)

< 2% exp{—

where the last inequality is by using Lemma 2 with ||w||3 < L*/n.
We try to define

P(.) = P{C*(¢, H) 2 C}(¢, H)} = P{S;(b.,Y) — ES;(b.,Y) > —t}.

Since the inequality (S1.9) is free of b, thus by the (S1.9) for A 3 b, we
have

>1— P{S5(b.,Y) —ES(b.,Y) < —t} — P{S5(b.,Y) — ESS(b.,Y) > t}
nt?
> P{|S¢(b,Y) —ESS(b,Y)| >t, ¥be A} > 1 —2p” exp{— b
2d3,Crp(1 + )L

Hence, we could find C2?(¢,H). For example, the ¢ can be chosen as
sESS(b.,Y) or others. The probability of the intersection of two events K
and &, is at least

nt?

1> 12 9 expi—
PRN&) 2 P(R)+P(Ee) =1 2 1= = = 2p” exp{ z[dchB(Hg)LQ]Q}'

Next, we consider similar arguments for concerning &,. For all b € A, the
absolute difference of S¥(b,Y) and ES¥(b,Y") is bounded by

a4 pl2 _— _——
159(b,Y) — ES2(b,Y)| < 2 Wb @8y — BEL(5%)
Touls- b1l 5%

dy (1 + ¢)?|1bu |13 " )
< max |((,(8") — El,(87))
[ball - [bll, ik |(En(57) (B

d}‘{l/q(l + C)2d%(1*1/Q) HbH”q ) )
max | (€, (%) — E,(57)),
lball, x| (€ (8%) = ELu(87))

< djy(1+ ()" max (0u(B") = ELa(8")),4

(By Hélder’s inequality) <

where the second last inequality is from (2.10).



Let u = %ES}{’(EW Y'). The same derivation show that

nu?

P(€u) = P{S(bu,Y) ~ BS(bu, V) 2 —u} 2 1 = %P e ooy
H

2}

and

TLU2

2d;, Crp(1 + ) L2

PIKCNES) > PIK)+P(Ey)—1 > 1—]%—21)2 exp{— .

S1.3 Proof of Lemma 3

Proof. Judging from the convexity of the loss function and the elastic-net
penalty, the chief ingredients of the proof is similar in spirit to the one
used by Theorem 6.4 in Bithlmann and van de Geer (2011) for initially
restricting the penalized estimator in a ball centred at its true value, and
see also Lemma II1.4 in Blazere et al. (2014).

Put t = m and B8 :=tB+ (1 —-1)8",s0 B— 3" =t(B—0").
Therefore,

M M

t= s = ' :
M+|B=p1 M+:lI8-81h

Then B B
1B—=B81 <M(1—t)< M, ie B€Sy.

By the definition, 3 satisfies
Pl(B) + MIBl1 + Aol Bl3 < Pul(B7) + MIB |1 + AaollB7[13. (S1.11)

By convexity of the optimization function (2.1), combined with (S1.11), we
get

P l(B)+M 1Bl 20185 < Pal(B)+ M 1811+ 22118117 < Pul(B%)+MlIB* 14218713
Thus
P(I(B)—1(B))+M 1Bl +XalBI5 < (Pa—P)(1(B")—1(B)+MlIB* 1 +211875-

On the event A, using Proposition 1, we have

(B~ B)(1(B) ~h(8) < 21|81,

Since B € Sy, by definition of B, it yields

(B~ P)(1o(B) ~ b(8")) < 218 — Bl +<0).
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These two inequalities imply

P p ALy = n * *
P(I(B) ~1(8)) + MIBI+ XalBIE < 1B l-+0 24+ M8 |+ Aall B
) (S1.12)

Note that P(I(8) — I(8")) > 0 from the definition of 3%, and by using the
triangular inequality, we obtain

MB =Bl < MIBIL + MBI < [PUB) = UB)) + MlIBIL] + M8

)\ p )\ n *k * P
by (S1.12)] < SHB =Bl + =2+ 20)18° [ + Oll 813 = XalIBI3)-
(S1.13)

From the assumption 8By +4M = A; and (H.2), then the quadratic part
in last expression is bounded from above by

P
* P * ) * 0 P * Al pe *
M(IB15-1BI13) = Y X85 + 5,)(8;=5;) < 2B+M)Xo|| BB := 2 1B=6"1x
j=1
where the inequality in above expression is by the fact
B + B; = t(Bj — f37) +2B" < M + 2B uniformly in j.
Therefore, (51.13) implies

2
4

A18n
4

MlB =B < ==B -8 + + 201871

Cancelling A\; in the inequality above, it gives HB — B < e, + 8|81
We have

e * P * * M

B =B <188l < ea+ 8187 = -
Plugging in the definition of ¢, we have % < %, which derives
18— Bl < M. O

S1.4 Proof of Proposition 1 and 2

We deduce Proposition 2 by showing the following key lemma.

Lemma 3. Let A\ > 2(1]\%16‘{1%/210521” (A>1). Then P(B) >1— (2p)*
under (H.1).
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Lemma 3 and Proposition 1 jointly tell us that P(A), P(B) — 1 as
p — 0. If A\; are chosen such that

200AML |2log2p ~ 2log 2p
> 4(2L AN/2
)\1 _max( M—i—eEn n ) ( CYLB"" 7) n )

thus we obtain
P(ANB) > P(A) +P(B) —1>1-2(2p)*,

which finishes the proof of Proposition 2.
It remains to show the Lemma 3 and and Proposition 1 used in the
proof of Proposition 2.

Proof of Lemma 3

The proof rests on the following lemma.
Lemma 4. Given M > 0, if A > 1, under (H.1), we have

50AML [2log(2p) a2
P(Zu(B7) 2 < (2p)™*. S1.14
(M(B)_(M+gn) ) < (2p) ( )
where Zy (B%) = ;lfgp {1 Hi*bgﬁﬁ;f(ﬁ Iy
(S

In order to apply following McDiarmid’s inequality (also called bounded
difference inequality, see Theorem 3.3.14 of Giné and Nickl (2015)), we
replaced X; by X, meamwhile maintaining the others fixed.

Theorem 1 (McDiarmid’s inequality). Let A be a measurable set. Assume
f A" = R is a multivariate measurable function with bounded differences
conditions

sup | f(x1, . xn) — f(21, 00 2, x;,xiﬂ, ey < .
Let X1,.., X, be independent random wvariables with values in the set A.
Then, for allt > 0, we have

P(f(X1, . X)) —Bf(Xy, .. Xp) > t) < 72/ X,

First, we will to show that Z,;(8") is fluctuated of no more than

n(zj\%rj\fn). Let us check it. Put

1< , I &
2521)(]7}/] and Pn:<ﬁ Z 1Xj’1/3+1X/ivY~Ll>7

i=1 j=Lg
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it deduces
(P —B)(2(87) —LB)] [P — P)(1(87) — 1(B))]
* p m
BESu 18" = Bll1 +en BeS 18" = Bll1 +en
< sup 12(8%, X;) — (B, Xi) — 1(B", X's) + (B8, X)|
_BGS]\/[ n(H,B*—,B”l—i—En)
1| 6XP | | x5 - X7 1| 6eXP | |xTp - X7
< sup — =" T a= + sup — —| - -
BeSy T 9+6X1T16 Hﬂ _ﬁ||1+5n BeSy T 0—|—6X1T13 1 ||/3 _16||1+5n

20L ||B" — B 20LM
< sup . <
pesy N ||B° =Bl +en T n(M +ey)

with X783 (X'IB) being an intermediate point between X8 (X7 3) and
BT X; (8" X';) from the Taylor’s expansion of function f(x) := log (6 + €*),
and the first inequality stems from

|f(z)] —sup|g(z)] < |f(x) — g(z)| (and take suprema over x again).

Apply McDiarmid’s inequality to Z,(8%), thus we have

242
P(Zu(B) ~ BZu(8") 2 A) < exp(~" L Xy

Now, we put A > (OAML) \/ QIOi(zp) for A > 0, therefore

M+5n

P(Zu(B") = BZu(B") = \) < (2p) ", (S1.15)

The next step is to estimate the sharper upper bounds of EZy,(3") by
the symmetrization theorem and the contraction inequality below. It can
be found in van der Vaart and Wellner (1996), Biihlmann and van de Geer
(2011).

Lemma 5 (Symmetrization Theorem). Let e1,...,&, be a Rademacher se-
quence with uniform distribution on {—1, 1}, independent of X1, ..., X,, and

f € F. Then we have

where E[-] refers to the expectation w.r.t. Xy, ..., X, and E {-} w.r.t. €, ..., €,.

n

ZEif(Xi)

=1

E [sup
feF

ST — {f(X»}]u <9E [E {sup

i—1 feF
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Lemma 6 (Ledoux-Talagrand contraction). Let 1, ..., z, be the non-random
elements of X and €1, ...,e, be Rademacher sequence. Let F be a class of
real-valued functions on X. Consider c-Lipschitz functions g;, i.e.

gi(s) — g:(t)| < ¢|s —t|, Vs, t € R.

Then for any function h : X — R, we have

Ec

fer |4 ferx

sup Zgi g {f(z)} — gi {h(xZ)}]H < 2cE. [sup

Z&{f (zi) — h(x Z)}“

Note that (P, — P) {l2(8") — 12(8)} = Py, {l2(8") — L2(8)} —E{(2(8") — 12(8)},
after using symmetrization theorem, the expected terms is canceled. To see
contraction theorem, for

132 0log(6 + X B7) —log(0 + X B — nE[1,(8%) — 1(B)]]

nZy(B*) = sup h=i ~
( ) BESM HIB - /6 Hl + &

as the suprema of the normalized empirical process (a local random Lips-
chitz constant), it is required to check the Lipschitz property of g; in Lem-

. o7 o7
A _ log[0+etIB=B"ll1+en))
and g,(t) = =5 7s,— Then
The function g¢;(t), (|t| < LB) here is 6-Lipschitz. In fact
Oe! .
959) = 90 = 5 ls —t] < Bls—t], 1,5 € [~LB,LB)/(18~ 8"l =)

where t € [-LB, LB]/(||8 — B*||1 + ¢,) is an intermediate point between t
and s, by applying Lagrange mean value theorem for function g¢;(t).
Via the symmetrization theorem and the contraction inequality we have

Qxﬂm—ﬂ>)

1B=B7T: +2n
B=8h
1B—B: +2n

)

EZy(B7) < %QE (sup Z

BeSum |2y

40
< —E (sup max
n

BES) 1SI<p

Z €iXij
i=1

40 M
due t — B, <M <—
[due to |3 — 871 < M] S M+ 2 (1121]3%




12

n

Z EiXij
i=1

460 M
—— " E|E.
) ( B

)

40 M 49]\/[ 40M L 2log 2p
———FE(E, ; 2log 2p-vVnlL? = :
T 2P | 2 ) < oy VIR B TR = [

where E, is the conditional expectation E[-|X].
From Proposition 1, with E [¢; X;;] = 0 we get

Thus, for A > 1 we have

40M L 2log2p = 40AML |2log2p
EZy(8%) < \/ < \/ ) S1.16
u(B) < (M +¢,) n  — (M+e,) n ( )

So we can conclude from (S1.15) and (S1.16) that

50 AML [log2p 2
P(Z ) > < P(Z N> AN+EZ *)) < (2
( M(B)_(M—kgn)v - ) < P(Zy(B*) > AN+ EZy(B8%)) < (2p)
(S1.17)
Finally, we complete the proof of Lemma 3 by letting 5 A (51‘\’21]‘;’ f) ‘ /2105 2p
and setting 8 = 3 in Zy,(3%).

Proof of Proposition 1

Applymg the Lagrange form of Taylor’s expansion log (6 + e*) = log (6 + e*)+

77 (¥ —a) for some real number a between a and w, let X! B be a point be-
t1 51 (1 —t)B

tween X;‘F,@ and X' 3%, i.e. 8= : + : for {tj}fz1 C
thp (1 - tp)ﬁg

[0,1]. Observe that

n

(B~ B)(L(B7) — 1(B)) = — D (Vi — EV) XI[(B" = B) — log "9111;{{’;2 }}>]

R S U VA _eXp{XzTB}XiT(/B*_B)
- — ;Gﬁ EY;) X/ [(8" - B) Troxp (5]

]

— __1 - (Y; _ EY) 9X?</3* - ﬁ)

Z =ty S1.18
(e O-+exp{ X; B} S
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If we have B € Sy, (87) for some finite My, thus 8 € Sy, (8%) via

p
1B = B°(1 <D 18, = Bi| < 1B Bl < M,

J=1

Note that the random sum in (S1.18) is not independent, but the weight-
S {m}gg1 are uniformly stochastic bounded with upper bound 1.
We have to alternatively analysis the suprema of the multiplier empirical
processes instead of A, if we can derive some concentration inequality for

the process

. 5N YOX[ (B — B
fn(Y7X;/6 ) = sup _Z T (ﬁl /6 ) % .
B1.B268m, (B*) | TV 525 (9+6Xp{XZ :62})"/61 -8 ”l

with exponential decay rate, where Y = (Zy,---,Z,)" with {Y :=Y; —
EY;}7,.

In the proof below, we will verify that f(Z,X) is Lipschitz with re-
spect to Euclidean norm via conditioning of design matrix X. Then we
apply the concentration inequalities of Lipschitz functions for strongly log-
concave distribution distributions. We check the ¢5-Lipschitz condition for
(Y, X, B8%) wr.t. Y by using the convexity of maximum function. Let
Z = (Zy,-,Z,)T be a copy of Y. Then

fn(Z>X>/B*) - fn(Y>X> /8*)

1 X1 (B — B) (Y — Z£)0
< sup _Z i (/81 Tﬁ )( i z)*
BrBacSuy (8°) | = (0+exp{ X; B2})[|B1 — B7Ilx

IR (X7 (B, — B)0)? . 5
< — Ye - Z¢
= o1 gt (39 1 Z [(6+exp{XT B} 181 — 871 ]2 Z( A

11Xl |5 2
< (Y = Z7)".

where the second last inequality is obtained by Cauchy’s inequality.

Thus the function f, (Y, X, 3*) is \%—Lipschitz w.r.t. Euclidean norm
of Y. By using concentration inequalities of Lipschitz functions for ~-
strongly log-concave discrete distributions [See Theorem C.8 in Appendix
C. Note that the Theorem 3.16 in Wainwright (2019) is for continuous case],
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it implies for ¢t > 0

ynt? )
AfIX1%
provided that (H.4) holds. [It should be noted that (H.4) can be removed
if we use Theorem 2 in Maurer and Pontil (2021) to show the sub-Gaussian

concentration (S1.19).]
By (H.1): [||X|||leo < L, we get

P(fn(Yaxa/B*> - Ean(Y7X75*> > t|X) < eXp{_ <8119>

2

2
P(fn(Y7X7 /6*) - Efn(Y,X, /6*) Z t) S Eexp{—ﬁ} S eXp{—%}.
(S1.20)

The details of the value v can be founded in Appendix C.
It remains to obtain the upper bound of Ef,, (Y, X, 8*) which is proved
by the symmetrization theorem with difference functions.

Lemma 7 (Symmetrization theorem with difference functions). Leteq, ..., &,
be a Rademacher sequence with uniform distribution on {—1,1}, indepen-
dent of Yi,..., Y, and g; € G;. Then we have

E sup < 2E | E. sup
g1, ,9n €Y1, ,Gn g1, ,9n€G1, ,.On

where E[-] refers to the expectation w.r.t. Xy, ..., X, and E. {-} w.r.t. €, ..

n

Z [9:(Yi) — E{gi(Yi)}]

=1

n

Zﬁigz‘(yz')

i=1

o En-
Proof. Let {Y/}?_, be an independent copy of {Y;}? ;. The E’ denote the
exportation w.r.t. (Y/), then let F,, = o (Y{,---,Y}). So
E( sup Z[QZ(YZ)—E{QZ(YZ)}] )
g1

7"'7gn€g17"'7gn i=1

=E ( sup B lgi (X0) — g (V)| F,
g1, 7gn€g17"‘ 7gn i=1
<E sup E Z[gl (Y:) — g; YD) |F) | (Jensen’s inequality of absolute function)
g1, ,9n€G1,+,.Gn i=1
<E (E’ sup Z[gZ (V) — g: (Y))]| |F, | (Jensen’s inequality of max function)
91, Gn€G1 G |53
=E sup lg: (Vo) —g: Y]] )
<fl:"‘ 7fn€g1,"' ,gn ;
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n

> agi(Vr)

=1

?

 (9: (i) — gi (Y;’))D <2E [E sup

g1, ,9n €91, ,Gn

=E sup
g1, ,9n€G1,

where the last equality is from &;[g; (Vi) — g; (Y7)] < g (V) — g: (Y/), and

(2 (2
the referred Jensen’s inequalities are conditional expectation version.  []
Yi0XT (81—-B%)
(0+exp{X] B2})[1B1—B* 1

Conditioning on X, then Lemma 7 implies by letting g;(Y;) =

2 - Y0 X (3, — B
Efn[(Y,X,,B*”X] S ’E sup Z € 29 Tz (/61 /8 ) |X
n B1,B2€8Mm,(B*) |, ((9+€Xp{XZ~ ﬁ2})”/61 - 1
<2p i Y, X 6 X
S - sup max € X5 -
n B1,8268 1, (B*) 1SI<P |15 ’ ‘9+eXp{XZﬂ2}

Now we are going to use a maximal inequality mentioned in Lemma
14.14 in Bithlmann and van de Geer (2011), and we will give a proof in end
of Appendix S2.

Proposition 1 (Maximal inequality). Let X1, ..., X,, be independent ran-
dom vector that takes on a value in a measurable space X and fi, ..., f, real-
valued functions on X which satisfies for all j =1,...p and alli=1,....,n

Efij(Xi) =0, [f;(Xy)| < ay.
(f?f‘é) ny

By Proposition 1, with E[¢;Y; X;;|X, Y] = 0 we get

Then

1<5<p

> v/2log(2p) max

n

Z Ez‘Y%Xij

i=1

max
1<5<p

BA(Y.X,3) = EE£((Y, X, 07)|X] = -F (E

)

2
< —+/2log 2pE
n

2L
[By Jensen’s inequality and (H.1)] < —+/2log2p
n
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2L ~ ~ 2log 2
< —+/2log2p\/nC% 5 = 2LCE\/ 08 2P
n n

(1+0)u?
0

where the last inequality stems from

B(Y?|X,) = Var(¥;| X)) +E(V|X) = i+ < O3y = err WO

using (H.1) and (H.2). Thus, we get

Ef.(Y,X,8) < 2LCy51/ 2105 P (S1.21)

In equation (S1.20), if we choose t = AL+/2y % such that

~ 2log 2 t2 2
P(fo(Y,X, ) >t +2LC 51/ 5 Py < eXp{—ZZQ Y = (2p) 7
(S1.22)

where A > 0 is positive constant.
Thus with 2L > L(2C; 5 + Ay/27)/2%22 we have by (S1.22)

n

L~ VOXI(B )

P sup — "
(ﬂthGSMo(ﬁ*) n < (0+exp{ X] B})II8, — B*[x
In (S1.18), observe that B,8 € S, (B*), then with probability at least

1— (2p)~**, we have (P”_P‘)‘gl_(gzl)ll_ll(ﬁ)) < 22 which gives

-4

A 2
< —1) >1—(2p)~ 4.

A

P{(B, ~B)(L(8") ~ h(B)) < 2B~ B} = 1 - (2) .

S1.5 Proofs of big Theorem 3.

For this subsection, the proof techniques follow the guidelines in Wegkamp
(2007), Bunea (2008).

Stepl: Check B —B* €V(3.5,%, H) from Stabil Condition

’) 9

Using the mere definition of elastic-net estimate B, we have

Pol(B) + M D 1B+ 2 ) 1B S PAl(BY) + M > 181+ 2 > 18
= = - " (51.23)
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So we obtain

p
P((B)-1(8") < (Po=P)(UB")~1(B)+A1 Y (15|~ |@|>+AQZ<\/3 P=1551%).

=1 =

(S1.24)

In order to bounded the empirical process, we break down the empirical
process into two parts which is or is not a function of Y;. On the event
AN B, the Proposition 1 and Proposition 2.21 implies.

(P —P)(l(ﬁ*)—l(fi))Z(P —P)(ll(ﬂ*)—ll(ﬁ)) + (P —P)(lz(ﬁ*)—lz(fi'n))

)\ p
SZZ Zlﬁy 5|+en— Z!By ﬁ|+

(S1.25)

P .

By summing & > |3, — Byl and Ay 3 |85 — B;|* to both sides of the in-
j=1 jEH

equality (S1.24), and combining with the inequality (S1.25), it gives

A S * e * % *
S 1B = B+ (BUB) — 1(B))+he Y 155 = B;
j=1 jeH
P
2 * * 2 A En * 2 2 *

<MY (8; = B+ 181 = 185D + = + %1875 = 1BE) + X2 Y18, — 851

j=1 jed

(S1.26)

On the one hand, |3;—8;|+|3;|—|6;] = 0 for j ¢ H and |5;|—|5;| < |8;—05;|
for j € H. On the other hand, the sum of last two terms in (S1.26) is
bounded by

Ml(I87B =8B+ 18— B < 20 Y (IBIP=B58:) = 2 > B1(B:—5;)

jeEH JjEH JjEH
SZ)\QBZ‘B;_BJ| < )\12‘5 5]
JjEH JjEH

due to the setting 8BA\y < 8By +4M = ).
Therefore the inequality (S1.26) is rewritten as

A o= . .
S 218 = B+ PUB) — UB)+A D 1B — B

=t X jen (S1.27)
<2\ ) 18- B+ +Z/\12|6;‘—Bj|.

JjEH JjEH

)\15n
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Using the definition of 8%, it implies I(8) — {(8")+\2 3 |8; — B[ > 0.

jeH
Hence
p ~ ~ )\18n
M8 = Bl < 45N Y 1B = Bl +
j=1 jeH

Sowehave Y |8; — 81| < 3.5 |B; — Bi|+%. Thus B—B" € V(3.5,%, H)
jeHe jeH
under the event AN B.

Step2: Find a lower bound for P(/(3) — [(3"))

The next proposition is a crucial result which provides a lower bound for
P(I(B3) — I(B")) based on the definition of the minimizer 3.

Proposition 2 (Quadratic lower bound for the expected discrepancy loss).
Under the (H.1) and (H.3), we have

P(I(B) — (")) > aE*[X*" (B — B"))°

1 0e”(e?+0) } .

th = min
e {|I‘§L(M4rlB),|y\§K} 2 [0ter]”

Proof. Let X*T 3 is an intermediate point between X*7' 3 and X*3* given by
the first order Taylor’s expansion of [(YV, X,3) = Y XT3 — (0 +Y)log(d +

X'B ), we have by the fact that X* is an independent copy of X:

~

P(I(B) — U(B")) = E[E{I(B) — U(B")| X}]| 55 = E{E{I(B) — 1(B")| X" H|5-5
— E'E {[YX*T(Q* —B)+ (Y +0)[log(6 + X B) —log(0 + X 78] |X*} 525
=B [E([X)XT(8 = B) + (B(Y|X) + 6)log(0 + ) — log(0 + )] | ,_
heX T B(X T 1 )

_ e X T B T g X T T (g%
=BT ) X =

(X8 = B))lp-p

eeX*TB(ex*Tﬁ* + 9)

20+ X7BY

=B (X (B" = B)lp-p

Then, by triangle inequality and the definition of restricted parameter
space Sy, we obtain by (H.1) and (H.2)

X8 < X" - X"8°|+|X;"8°| < |X;"B— X;"8| + |X] 8| < L(M + B),
(S1.28)
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Thus we conclude
eeX*Tﬁ"(ex*Tﬁ* + 8)
~ 2
2(0 4 eX'B)

by letti = L0e(e+0)y . O
Yy letting a {|a:|<L(M+B \y|<LB}{2 [6+e]? }

P(I(B)-1(B") = E'| (X8~ B)llpp = B (X7 (8" — B

From Propositon 2 and (S1.27) we deduce that

p
A * * T (7 A 6”
MY 1B - BB XT(B - B P20 Y15 - B < 45n Y 16 - B+
7j=1 jeEH JjeEH
(51.29)
Step3: Derivations of error bounds from Stabil Condition
Let ¥ = E(X*X*T) be the expected p x p covariance matrix. Taking
expectation w.r.t. X™* only, we have the expected prediction error:
E* (X (B -8 = (B-8)"=(B-8)
Since B—B* € V(3.5, %, H) is verified under the event AN B. Multiplying
by the constant a, we have
a(B—B)B(B-B) = ak |5 - B~ Fa.
jeEH
Then substitute the above inequality to (S1.29),
()\1 +a)

M 1B-Bi 1 ak 1B - BP0 Y18 - BIP < 4sn Y 16 - B+
j=1

JjEH JjEH JjEH

By using Cauchy-Schwarz inequality, we get

A Z 18— B+ (ak+2X2) > |B; — B < 45Mv/dyy [D 1B — B2+ (Al *+a)
JjEH JjEH
(51.30)
Apply the elementary inequality 2xy < Ta? + y?/T to (S1.30) for all ¢ > 0,
it leads to

571()\1 + CL)

Alzm B+ (ank+2X2) Y |35 — 6|2<2252T)\2dH+ Zw] B[P+ 5

JjeEH ]EH

(S1.31)
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We choice T' = m in (S1.31), we obtain
18—l = Y13 — ) < 2l 4
P ak g2, M

For the square prediction error, we deduce from (S1.29) by dropping
the term 2\ > |BJ - B;]?

JEH

P
R /\
MY 1B B (X (B - B)? S4IN Bil= 3 18, — B+,

i M@

j=1 jeHe
(81.32)
Then using the upper bounds of |3 — 3%||1, it derives
* T * )\1€n
aB (X7 (87— B) < 3.5M( Z!BJ Bil) +
3.5 2.252)\§d’;{ A\ign

< + 3.5\ e, + 3.5ag,| +

ak + 2)\2

Note that the term Y |3; — Bil= > |3;] that we have discarded in the
jEH® jEH®

right-hand side of (S1.32), it is very small for j € H¢. Thus we have

17.71875d5, 03 4\

E[X(8" - B)P < m (7 +3.5)e,.

Finally we conclude the proof using Proposition 2.

S1.6 Proof of Theorem 4

The next lemma for estimating grouping effect inequality which is easily
proved when we detailedly analyze the KKT conditions.

Lemma 8. Let 3 be the elastic-net estimate of NBR defined in (1). Suppose
that Ay > 0. Then for any k,l € {1,2,...,p},

0 |xzk - le| |6XTﬂA - }/z|
1B — Bl < on )\ Z 04 o XTB : (51.33)

Then, we show the asymptotical version of grouping effect inequality as
p, M — 0.
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When deriving the grouping effect inequality from ¢;-estimation error,
we need to bound some random sums by WLLN (weak law of large numbers)
with high probability.

Lemma 9. Assume tha,t (C.1) and (C.3) is true, then
(1). Let S, =2 Z |Y; — EY;|?, we have ES,, < p for some constant u;

(2). The square of centered responses have finite variance wzth a com-
mon bound, i.e. max {Var|Y; — EY;|*} < 0% for some constant o>.

The proof of Lemma 9 is straightforward which is given in Appendix
B, and we present the proof of Theorem 4 in advance.

By Lemma 8, Cauchy inequality, triangle inequality and Taylor expan-
sion, we have

b= B < (5o Z|sz Xal|eXB — i)

1 1 o~ yrf
<—-—§:X4—X-2-—§ xI'B _y2
_4)\% ni:1| ik zl| ni:l ‘6 z’

1 ] — T (- T 3* T (3*
= _—_.9(1— il xI'B _ xI'B x'B —Y;?
( Pkl)n ;:1 le 2 te |

Y
1 2 n . n A
S _22(1_pkl){_2|€xlﬁ—e 1/6 |2 Zlexz ,8 _}/Z|2}
1 2 n T R . 9 n -
= 53 20— ) {5 Y XPIXT (BB + Y 1P vy,
: =1 i=1

where the last inequality is due to (a + b)? < 2(a® + b?).
Under the assumption of oracle inequality (2.15), with probability 1 —

2 nt?
—~=+ —exp{—s2"5—7}, we have
pr 1 p{ 2C%Bd§L4 })

N A 1
1B — Bif* < 3 (1= p){Ke"™MO(N]) + Z|EY Yi?}

= (1 — pr)[Ke**™MO(1) + 25]

A3
For the second part, by using Chebyshev’s inequality, it implies
2

P(|S,—ES,|<FE)>
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with probability at least 1 — 7;'—512 in the event C(E) =: {S, < E + u}.
Then, on the three events K N E. NC(F), we have

B — B2 < (1 — p) KMO(1) + - (B + )]

A5

nt?
with probability P(K N & NC(E)) > 1 — 2pe 2MiCrt+oL” _ n";.
Moreover, if 1 — py = 0,()\3), we have

1Bx — Bl < \/0,(1)[N3e2EMO(1) + (E + p)].

S1.7 Proof of Theorem 5
By KKT condition (see Lemma 1 and (2.3) in the main body), then we
claim that sgn@ = sgn3” if

&gnﬁj = mgnﬂj*,j eH
l; (ﬁ)—i—Z}\gﬁj —Alslgnﬁ],ﬁj #0 (S1.34)
15(8)] < M, 65 =0

Let By = {B;,7 € H} and By = {BJ,] € H} be the sub-vector for 8.

Since &gnﬁj signf37,j € H, then B = (,BH, 0)7 is the solution of the KKT
conditions. So, the (Sl 34) holds if

signf3; = signBy,j € H { 18, — B;| < |B:l,j € H
o . = N ' S1.35
{ 6Bu) < M € H (B < g ¢ H (81.35)

where 3, is the solution of @(B@%—Q&B} = —\isignf3;,j € H.
Notice that the right expression in (S1.35) holds if

{ 18 = B[l < B. == min{|5;| : j € H}
16i(Br)l < A, j ¢ H

Let n € (0,1), the above events hold if

B B- 8 < 8.,
Ey :max [£;(87)] < A,
J¢EH

By i |£(By) — £,(8))] < (1= )

which is from the triangle inequality |,(8)| < |€;(B5)—£;(8%)| + |£;(8)].
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Let £ = FyNEsN E3, we want to show that each event in ;i =1,2,3
holds with high probability. And we utilize the basic sets inequality P(E) >
he HandZ;,=0ifh¢ H.

For Ey, by Theorem 2, we have

(G Ddyh, 2 e

P(Ey) > P(|3 - 8|l < 23 CLp+O L2

(51.36)
For F5, thus we get

(Y — EY)0
P(Ey) =P ¢ * >nh) < P >\
(B2) = Plmgee 58] 2 00) < 3 ( L _nl)
Jj¢H =1
2\2 2\2
AL nAin
< 2pexp{— = m} < 2pexp{— .
20, w2 202,07

where we use [[w?]|3 < £ in Lemma 2.
This implies that

2\2
n\in 2
P(Ey) <n\) >1— 2pexp{—20%BL2} - m'

(S1.37)

where the last equality is by observing that A\ = %\/ @.
For Ej3, note that ,
max 14;(Br) — 6;(87)] = mex 14;(Br) — 4;(By)|

1 0+Y; 0+Y,
- maX . le] Ve - T * ]
=1 0 + eszHﬁH 0+ eXiHIBH

1 Xn: 9 + Y zHIB;I[ Xy IBH_/B*H — 1]
I'L

+e 7.HIBH)(9 +e zHIBH)

0+ Yi)[eXiTH(ﬁH*ﬁL) _ 1]’

< 23 |0+ VOIXTBr — B3) + 01X (B — B

i=1

— Bulh- (S1.38)
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where the second last inequality is by (2.15) and the boundedness of | X%, (8, —
B3|, the last inequality (S1.38) stems from || X;||cc < L and Cyx is deter-
mined by

(X5 (B — Bi) + 0p(1 X (B — Bi))| < LOx|1By — Billr.

Let A, := 1 %" |0+ Y;|, similar to the proof of Lemma 9, we have
=1

i=1

1< 1< ) 1<
EA, Z:E;E|Q+E|SE;\/E|9—|—Y;~|2<OO, o (A) ::EZVar|9+Y;|<oo.

And we can find a constant p(A) > 0 such that EA,, < p(A).
By Chebyshev’s inequality P(|A, —EA,| < A)>1-— Ujﬁé), we get

A, <A+EA, <A+ u(A)
with probability at least 1 — %. Then (S1.38) turns to

max 165(Br) = £5(8")] < Cx (A + p(A)|Br — Bl

Under the event {A,, < A+ u(A)}, with probability 1 — % we obtain

L2 (A + p(A))

P(fj%%léj(@g) — (B9 < (L=nAi) = P(IB =B < Cx

e (¢ + 1)dy 203 (¢, H) (1 — n)As

=PUB=Fli s S @ s D, on A 1 wA)

Let

A =: C\y, with C :=
e 7 (C+ 1)d; Cx L2(A + p(A))

CpLpL
where A\ = CL—B\/M.
£,B1 n

Since by (2.15) with high probability in Theorem 2 and (S1.8), we
conclude that

297 (C 4 D diph

P(Es) 2 PIB = Bl < —5 6

)

2 5\271 _ nt?
§B17'1 }—2p2€ 2(d%, Cp g (14¢) L2)
20% ,COx L2
LBYX

> P(|An - EAn| < A) - 2pexp{—
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2( 4 ) I S
>1- 0721(42) B pl-rC? — 2pe 2(d}y CLp(1+O) L2 (S1.39)

Combining (S1.36),(S1.37) and (S1.39), we get

nt2 2
- Tota% 147212 2 g (A) 2
P(signB = sign3” 2 2CLpAFOLNT - — —.
(signB = sign”) > e Py e

Without loss of generality, we assume that r, C?r, rn?/ Cgp, > 1since 7 is
a tuning parameter. Let p,n — 0o, it leads to sign consistency:

P(signB = sign8”) — 1

S1.8 Proof of Proposition 3

Given sample size n, Bunea (2008) studied conditions under which P(H C
H) > 1 — ¢ for the number of parameters p and confidence 1 — ¢ by the
following lemma.

Lemma 10. (Lemma 3.1 in Bunea (2008)) For any true parameter 3 and
for any estimate B, we have P(H ¢ H) < P(||3 — 8*||1 > m1n|6*|)
Based on the lemma above, we give the proof of Proposition 3.

Proof. Note that ,
P(ANB)>1-2(2p)~*

.2
Solving 2(2p)~** = §/p for p, we have p = exp{ - log 2! 6A } with A > 1.

Then
P(H C H) > P(|8 = 8"l < min|5]]) > P(|B = 8"l < Bo) > 1 - 6/p

which is directly followed from Lemma 10. [

S1.9 Proof of Theorem 6

The following lemma is a fancy and tractable event by virtue of KKT con-
dition. It derives a nice bound of P(H ¢ H), yet is worthy of to be singled
out here.

Lemma 11 (Proposition 3.3 in Bunea (2008)).
P(H ¢ H) < djy max P(B; = 0 and B #0).
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Consider the KKT condition of {£; = 0} (Lemma 1). That is, {3, = 0}
is a solution of (1) iff 5 satisfies

XT 8 )

i Y;
Zsz e GXTB

<\ k=12,

Next, the proof of Theorem 6 is divided into two steps. The key fact
adopted in theoretical analysis in Stepl is that, when decomposing the
nth partial sum in the KKT conditions, one must split it into four partial
sum. The event of each one in sums whose absolute value exceeds the
tuning parameter A;, is asymptotically high-dimensional negligible. The
decomposing method goes back to Bunea (2008) who deal with linear and
logistic regression, and our decomposition for NBR is different from linear
and Logistic cases. R

Stepl: Find P(H ¢ H).

By Lemma 11, we have

P(H ¢ H) < djymax P(5; = 0 and 5} # 0)

XT,B_Y
(e
=dy r’?eech Zsz eXTﬁ ) <Ai; 8, =0)
xTg* Y. Y;
e
— P— Xa0{( ; - 75
anleasz |Z ’“{ 0+eXiT5*)+(0—|—eXiTﬁ* 0+ eXi"B
}/:i_eXZTﬁ* *
- WH < /\1§5k = 0)
Let
1 & eXi B eXi B
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thus with {8; = 0} and assumption £ 3> X2 =1, we have
i=1

B[ = 1(8r — 5i)~ ZX?k—'—Z *)%ZX@XM
=1

J#k

> | Bl - IZ(@ - 5;)52&3')%\-
=1

i#k

~ p N n
Let BY := > (5 - B0 20 Xy X, thus
J 1=

B > min 5] = B > 22 — B (S1.40)

Together with the above notation, we obtain
P(H ¢ IT) < dymax P(|BY + AP — BY + CIY = DI < Ay 6 = 0)
€
< dyymax P(BY] — |AP — BY| — [0~ [DP] < Ai: 57 = 0)
S

n

< dyymax P(2\ — |BP| - [AP) — BIP| —|C}9] = |D| < Mii B = 0)
€

= dymax{P(IB"| + A — BP| +|CP| + D] > A1}
S

At

< diymac( P(BY] > 25+ P(AP — BY| > 20 1 o] > 2
€

2 p(D®)| 2 2

To bound the first probability inequality, for i = 1,2, we assume that
4hlLi > aifg;, where k is defined by Identifiable Condition and constant a
is given in Theorem 3. Next, we will apply the following lemma.

Lemma 12 (Lemma 2.1 in Bunea (2008)). Given the constants k > 0,e > 0
defined in Definition 2, if Identifiable Condition holds for some 0 < h <
1+2—16+6, then the Stabil Condition with measurement error is true for any

0<k<1l—h(14+2c+e).

By Lemma 12 with ¢,, = 0, Identifiable Condition derives Stabil Condi-
tion with & < 1 — 8hA since Theorerzn 3 shows that ¢ = 3.5. By solving a sys-
tem of two inequalities: ﬁ > ifg 550k < 1—8h, it implies h < Z%kQ—Ea—ABQa AL
Applying Identifiable Condition and provability bound in Proposition 3, We

therefore have

P(IBP] > ) < P( Zlﬁy Bill— ZXszk\ 2 —)

J7Fk
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< PO 13— > > Ml

]:

p 2 *
. 2252\ dl, . 6
> —a) < -, S1.41
(J=1 185 - 53‘_ ak+2>\2)_p ( )
For the second probability, P (]Aff) — B,(lk)] > zl) by Taylor’s expansion,
we have

p n 2 a;

. 1 X X - 0200

Ak) :Z B, — B _E:L

where a; be the intermediate point between XZTB and XTB*
So solving a system of two inequalities: A > —225_ 2° | <1-— 8h, we

AL1h = ak+2ry’
ak+2)\o 1
get h < 700511154 N g Then,

p n .
A 1 fei
AR _ gk — E - %_E 0X; X (1 — ——
‘ n n ’ ‘j:1 (BJ 5j)nl-:1 k J ( (9+€ai)2)’

. il fe®i A o hLy
< E |ﬁj_5j‘|ﬁ E eXikXij'(l_—(0+eai)2>|§ E |5j—5j|d* 5
j=1 i=1 Jj=1 H

where the last inequality is by using WCC(1 )

Therefore, by the same argument like \B | we have
A S 2.25°\dj;, 0
P(|A® —BW| > 2y < p B> SOy < 2 (S1.42

from Corollary 3.
To bound the third probability, notice that

i Y; z 1 1kX1]9Y 6
ZXUCG + X ﬂ*_9+eXiTB)_Z - EZ 0 +eb)?

7j=1 i=1

Under the event WCC(2 ) similar derivation by solving the system of two

: e 1 2252 _ ak+2)o 1
inequalities: Tiah 2 aviong .k <1—8h, we have h < 50950, +8a \ 5 Then

A

p 2 *
. 2.252 A\ d; 5
(k)| > L _pr| s e My
P(|C®] > 4)f§}%;E;U% Bil >

< - .
g S5 (51.43)
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It remains to obtain the upper bound for the fourth term. This can adopt

() . _0Xy 2. N~ X L
Lemma 2 by letting w;”’ := - g S0 |wD||3 231 P < Z and
then conditioning on X. With (S1.7), we get
A1 X0 Ay nA}
P(|D®| > -y " (V;-EY)|>=1<2 -—1 1
(1D > ><|Zmﬂ%< )= 3 < 2ep{-ga )
(S1.44)

In summary, the four probabilities (S1.41),(51.42),(S1.43) and (S1.44)
imply
nA?

3202 , L2

A d*
P(H ¢ H) < g, 2d;; exp{— 1
p

Step2: Find P(H ¢ H).
From the KKT conditions, we define the set

=

k¢ H

(eXIB _Y)
(e
Z Xik =75 XTg

=1

< A}

Thus, we have 3, = 0 if k ¢ H. And thus Vk ¢ H = k ¢ H which
gives Vk € H = k € H. We conclude that event I implies H C H.
Subsequently,

0(eX B —Y;
P(H ¢ H) < P(K*) < 3 P( ZXikﬁ > A)
k¢ H i=1 + et

= S P(A® 1+ 0 — DI > )

ke H
<Y {P(AY] = 2+ PICP| = 5) + PIDY| < T}
k¢ H
< k) )\1 k) )\1 k) )\1
> {PIAP = )+ PCP = ) + P(DY| < )}
k¢ H
A —n
<,€¢ZHP<|A5L]€)|>Z1)+(p_dH)[ 4 gemmAl/32CE 5L

where the last inequality is similarly obtained from (51.43) and (S1.44).
It remains to bound the first term as the summation of P(|A,(1k)| > A,
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By WCC (1) we have
- 0 < fet
(k)| — 3. _ g2 X
|An | |Z(ﬂ] BJ)HZX”CXU 0+eai)2)|
_ Gem L hL
<Z|6j 5 || ZszXZJ |<Z|BJ 6J|d_*l

So by the bounds in Proposition 3 we have

. hL 1 d
P(IAY] = <P2m7@@§ ZW;BLZ i)
2 252)\1d* )
< —.
We conclude that
) ) 20

P(H¢ H)< (p- dip)= + @—%%+%“%W#%gwwm§+%mmﬁﬁﬁ

Judging from the above two steps and relation, we obtain
P(H = H, WCC(2)) > 1-P(H ¢ H)—P(H ¢ H) > 1—(2+d} /p)d—2pe "1/32CLsl?
Since WCC(2) holds with probability 1 — ¢, ,. By (3.27), it gives

P(H = H) > 1—2(1+di/p)§ — 2pe ™M/3C01" _ ¢

S2 Assisted lemmas

We fix Y; = y; in the proof of Lemma 1,8. Rewrite B()\l, o), Bk()\l, A2), Bl()\l, o)
as 3, Br and [; respectively.
S2.1 Proof of Lemma 1

For 3 € R?, define the following multivariate function:

n

F(B) =" [(0+yi)log(0 + X P) — 4, X] B] + AIZ 18] + AQZ Al
- ' (32.45)
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And let e, = (0,---,0,1,0,---,0). Next, we simply write Bk()\l, o) as B.
k
Case 1. If 3, # 0, for sufficiently small & € (—|Bx|, |k|), we have

A A i 0 + X T(B+eer)
F(B +cey) — F(B) —Z[(@eri)logw

=1

+ \o(20e + 7).

Vizike] + )‘1(|Bk +e| - |Bk|)

Notice that the ranges of e, we obtain |3 +¢| — |5 = sign(f)e. The
Taylor’s expansion implies that

0+ BX;T (B+eey,)

log P I log(1 + %eXiT('B+Eek)) —log(1+ %eXiTB)
Tl ;ex';fé ' %‘BX"TB (€"* = 1) + O%GX% (€™ —1)]
- Mﬁ B + ofe)) + ol g Plaac + ofe))]
XIBr e
= s o)
Since the aim is to minimize the object function, we must have
0 < F(B + cey) le 6+ y eXi? — yile + Aisign(B,)e + Ao (28,e + €2)
= [Z xlkw + Aisign(B) + 228k + Aag? + o(e)

i=1 0+ XiB

Note that Ay # 0, for any sufficiently small & € (—|3g|, |5]), in order to
make sure that the above inequality is valid, iff

;[xzkm]—i- 18ign(B) + 2000, = 0, (K =1,2,- -+, p).

T -
0 Py
+eXiTB

= A+ 2X0|8i] > Ap.

Thus we get

Case 2. If 3; = 0, for sufficiently small £ € R, by (52.45) we have

0 + X! (Bteey)

FA+5e —FA = 04—110 ———w1a Zl’lg—i—)\ €—|-)\€2.
(B+eer)—F(B) ;[( yi)log ) oxh Y kel A1 (le])+A2
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According to the Taylor expansions of F(3 + ce;,) — F(3) in Case 1, and

n T 5
observing > [:Eike(;&—i;g")] # 0. We must have
i=1 et
0 < F(B + cey) F(ﬁ)—i[ g(exfg_y")] + M (le]) + Xae® + o(e)
ger = - Tik 0 n eszﬂA g 1€ 2& o\e
- 0(eX1P — Yi .
= {Z [!Ezkﬁ] + Aisignefe + Aoe? + o(e).

i=1
Note that Ay # 0, in order to make sure that the above inequality is valid
for any sufficiently small € € R, iff

- G(EX’TB =) :
Zl [xzkm] + Agsigne =0, (k=1,2,--- | p). (52.46)
0(Xt P yy) 0K Py
In other words, szkTﬁl > =)\ fore >0 and > Tip— 5 <\
=1 O+e i=1 0+4ei
T
for ¢ < 0. Thus we get lezk% <\

S2.2 Proof of Lemma 8

The KKT conditions is crucial for us to derive the upper bound of grouping
effect inequality associated with the difference between the coefficient paths
of predictors X; and X;.
Case 1. When (3, > 0. According to Lemma 1, we have
ﬁ 7 GX?B — Y . ~ N
szk 0+ GXT;J ) = sign(Br) (M+2Xa | Bs]) Z le_'_—l_Tﬂ) = sign () (A +2A2| 1)

Taking the subtraction of two equations above, we obtain

22 | Be(Aiy A2) — Bi(Ar, A2)

i 0| (zir — xa)| - [eX P — yi)l'

0 + X8

n 9(eXiB _
Z(xik—xil)u <

xT
i=1 0+ eXiP

i=1

and therefore inequality (S1.33) is proved.
Case 2. When (5, < 0, i.e. sign(fr) = —sign(f;). According to
Lemma 1, we have

= H(eXTB —

Z (i — xil)m

=1

= ‘2 sign(Br) A + Ao (B — 50])
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— |2sign(Bi) M + Aol B — BZH\ > \2A2sign(5k)|3k — Bl

and therefore inequality (S1.33) is also proved.
Case 3. When S # 0,5, = 0. By the Case 1 in Lemma 1 and (S2.46),
by subtracting these two expressions we have

S (o — e 22— ) fne ¢ sign(B)] + 2ausien(Bl)
Tik — Til 0 X = A\i[signe + sign (B osign(Be)|Bk]).

=1

If sign(e + Sign(ﬁk) = 0, it is apparently that (S1.33) is true. If signe +
sign(fg) = —2 (or 2), it derives that

- H(BX?B — ¥i) 5 3
> (@ - xil)W = —2X\; — 2X|B4], (or 2)\1+2Xa| Br)).
e

i=1
Then
Z (%k - $il)(e—T~y)
6+ eXiB

=1

= 220+ 2%l 2 2%a1Bi] = 2221 - A

Thus (S1.33) is proved. If B #0, B, = 0, the proof is by the same method.
Case 4. When (3, = , = 0, (S1.33) is obviously.

S2.3 Proof of Lemma 9

The variance and kurtosis of Y; are

Op;

B, —EYi[* _, 6 (1-p)
(1—p)*

+ -+

VarY, = =
(E|Y; — EY;|?)? 0 Op;

Kurt(Y;) :=

Y

see p216 of Johnson et al. (2005). By (C.1) and (C.3), we get

_ *
e~ LB X B eLB

< <p= <
g1 e18 =" 0+ eXiB — 04 elB

0 < 1.

e—LB(e_i_efLB) eLB(9+eLB)

5 € [ o2 , 7 —], then

Let Qi += 525

1 n 1 n eLB<0+€LB)
ES,=—) E|Y,—EY,|?==-) 0Q, < ——— 2 .— .
n; | | n;Q_ ; I
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For (2), we obtain

Var|Y; — EY;|* = E|Y; — EY;|* — (E]Y; — EY;|*)? = (VarY;)?[Kurt(Y;) — 1]

922 6 (1—p)
:ﬁ (2+5+%> = (20" + 60)Q; + Q.

So, it implies

LB 0 LB
Var|V; — EY;|* < (2 + S) 2LB (g 4 elB)? 4 % = o2

S2.4 Proof of Proposition 1

Proof. Let V; Z fj(X;), then by Jensen’s inequality and Hoeffding’s

lemma, we have

B max |V;| = ~Eloge 2% < Liggpe 2% !
iyl = 3Eloge” B < S g
1 AWV 12y e
logZEe < — logZQ@ =1
1 152 max Za% n
gxlog[2pe2 1sispist Y] = log(2p)+ )xmax az;.

/\ 1<j<p = J

| < inf{1 1 a2} — /2Tog(2p)- max 3" a2,
ThenElrgjaéi7 Vil < ,l\r>1£{>‘ log (2p)+35A 52?;;; ag; } 2log(2p) gja;;?; a;

S3 The the proof of (S1.19) and the value v

S3.1 The the proof of (S1.19)

In this section, we illustrate the use of concentration inequalities in appli-
cation to empirical processes. Here we use the convex geometry method to
derive various tail bounds on the suprema of empirical processes, i.e. for
random variables that are generated by taking suprema of sample averages
over function classes. The following discrete version of Prékopa—Leindler
inequality is extracted from Theorem 1.2 in Halikias et al. (2019), it is
essential the discrete variants of Brunn-Minkowski type inequalities in con-
vex geometry, see Halikias et al. (2019). In fact, the discrete variants of
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Prékopa-Leindler inequality is of paramount importance to derive concen-
tration inequalities for strongly log-concave counting measures, similar to
continuous Prékopa—Leindler inequality presented in Theorem 3.15 of Wain-
wright (2019).

Lemma 13 (discrete Prékopa-Leindler inequality). Let A € [0,1] and sup-
pose f,g,h, k : Z" — [0,00) satisfy
f@)g(y) < h([Ae + (1 = Ny DE([(1 = Nz + Ay]) Va,y € Z" (S3.47)

where |x| = (|x1],... [zn]) and [x] = ([21],..., [2n]). Then

(> F@NY g(@) < (D hi= (Z k(x))

zezn zeZn xeZn zeZn
where |r| = max{m € Z;m < r} is the lower integer part of r € R and
[r] = —|—r] the upper integer part.

From a geometric point of view, the Prékopa-Leindler inequality is use-
ful tool to establish some advanced concentration inequalities of Lipschitz
functions for strongly log-concave distributions. Motivated by Moriguchi
et al. (2020), we define a distribution P, with a density p(x) (w.r.t. the
counting measure) is said to be strongly discrete log-concave if the log func-

tion ¥(x) =: —logp(x) : Z™ — R is strongly midpoint log-convex for some
v>0

11 11 5 , .

vle) + vy) v he Lyl (e s Syl = e -y} vay ez

(93.48)

Let A € [0,1]. The (S3.48) is a slightly extension strongly convex with
modulus of convezity v for continuous functions on R”

Xi(@) + (1= Ne(y) — @+ (1= Vy) = A1 -Vlle -y, Yo,y € R",

see Chapter 2 of Mahoney et al. (2018).

Strongly discrete log-convex property requires the restricted behavior
of continuous functions on lattice space. If v = 0, (S3.48) will leads to the
definition of is discrete midpoint convezxity for ¢ () mentioned by Moriguchi

et al. (2020)

vl@)+0(y) 2 o[z + gul) + Ullge+ 5y)) Ve ez

Howsoever, directly restrict some continuous function to a lattice space does
not necessarily yield a discretely convex function, the counter-example in
Yiiceer (2002).
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For P, being one-dimensional, we say that the probability mass function
p(z) are log-concave if the sequence {p(x)},cz is a log-concave sequence
which means that for any m,n € Z and A € (0,1) such that An+(1—X\)m €
Z, we have

p(An+ (1= A)ym) > p(n)*p(m)' =,
Equivalently, p(n)? > p(n — 1)p(n + 1) for every x € Z (or x in a subset of
Z), see Klartag and Lehec (2019).

Theorem 2 (Concentration for strongly log-concave discrete distributions).
Let P, be any strongly log-concave discrete distribution index by v > 0 on
7. Then for any function f : R™ — R that is L-Lipschitz with respect to
Fuclidean norm, we have for X ~ P,

PAIS(X) —Ef(X)] = 1} < 2e 57, 0. (S3.49)

The Theorem 2 allows for some dependence due to a function of vector
X will be a dependence summation.

Proof. Let h be an arbitrary zero-mean function with Lipschitz constant L

with respect to the Euclidean norm. It suffices to show that Eeh®) < eLTQ.
Indeed, if this inequality holds, then, given an arbitrary function f with
Lipschitz constant K and A € R, we can apply this inequality to the zero-
mean function h(X) := A(f(X) — Ef(X)), which has Lipschitz constant
L = AK. The zero-mean function h is L-Lipschitz and for given A € (0, 1)
and x,y € Z", define the proximity operator of h

y) = inf {h(@)+ e - yl3}

xreLn

as the functional minimizer of the rescaled h with Euclidean norm.

Next, with this functional minimizer, the proof is based on adopting
the discrete Prekopa-Leindler inequality Lemma 13 with A = 1/2 and
h(t) = k(t) =: p(t) = e ¥® and the pair of functions given by f(x) :=
efh(w)fdj(w) and g(y) = el(y)fw(y).

It is sufficient to check the (S3.50) in Lemma 13 is satisfied with A = 1/2,
i.e.

3w -h@) @) 6@ < ~vhativ)) | ~bulbetdn) vy e 7 (33.50)
Indeed, by discrete strong convexity of the function ¢ and the proximity
operator of h

1 1 1 1

S0(@) + o) -v(gw + 5u) — (5o + sul) > 2w -yl
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we have
1 1 1 1 1 1
(3w 4+ 2y]) — sellze + 1u))
> i)~ (@) - L~ w3} —su5e +5v]) - sellgz + ul)
> i)~ i)} - 30ly) - J0(@)

which verifies (S3.50).
Note that ) . h(x) = Y, yn k(x) = 1, the Lemma 13 implies that

E!Y)Re—hX) — Z e~ (@) —(z) Z W) < 1
xeZn yezL™
Rearranging and Jensen’s inequality yield
Eel®) < (EehX))~1 < (E-AON-1 =

where the last equality due to E[—h(X)] = E[A(f(X) — Ef(X))] = 0.
So we have by definition of the proximity operator

1> Ed® = Eeltfeczn {h(@)+3e~Y (3} _ poinfeczn {R(Y)+R(z)-h(Y)]+3e-Y 3}
> Eeh(Y)+infeern { ~L|z=Y |2+F [~V 3}
— ReMY)-L? /v

where the second last inequality is from the fact that A is L-Lipschitz:

[h(x) = h(Y)| < L& = Y.

It yields that
EACO-BIX)] < 32025 p )\ e R

This implies that f(X) —Ef(X) has a sub-Gaussian tail bound as claimed

in (53.49). m

S3.2 The value v

For Y; ~ NBD(j;,0) with known § > 1. The log-density for y = (yi,- -+, yn)?
1s

log p(y) =: Zlogpi(yi) =: Zw(yi)
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= {logT(6 + yi) + yilog i + Olog § — log I'(6) — log y;! — (6 + ;) log(6 + pua)}-

=1
Then Dlog p(y) I )
og ply + Ui
V(y) = —2— g —— —y;log(0 + ;).
() A |, Ty +1) ( )
Let us find the . Taylor’s expansion implies
U(y) = ¥ Fm + %y}) + 59 Fx + %y})(y — )+ gly — @)% (@)
P(x) =y([37 + 3y)) + 3¢ (|32 + 3y )@ — y) + 5(y — 2)*¢"(a2)
where a1 = t1y + (1 — t1)(z + y)/2,a2 = toy + (1 — t1)(x + y)/2 with
t1,t2 € 10,1].
So we have
1 _ 1
2¥(@) + 39(y) = 39|57 + 39)) + U([57 + 39])
1 ¥ (a1)+¢" (az)
+ 52 W[5z + 5y)) — ' ([32 + 5y ])] + e ey —a)?
Define
z—y [ |1 1 1 L ¥ + ¢(ay) 2
A = = = — —
) = 2 [ 5o+ o)) - v 5o+ g )| - o
We have
M > o (LR, 19U o) - e D)
’ - 16 TAY;x,yEL™ 4 |ZE - y|
Let
Cy:= sup |W(L($+y)/2i‘)x—_¢’|(f($+y)/2T)]|
rHAY;T,YyEL™ Y
_ L(0+[(z+y) /2] ([(z+y)/21+1) _ ([(z+y)/2] —[(z+y)/2])
e A [log T(@+[(z+y) 2D ([(a+y) /21+1) log~ 1 (0+1:) ”/ Az =yl
We can see that Cy, ~ w or 0.
Note that
,_ 6210 92 log p(y) O0+y) _ < -
v) = TERY | =l = X (e~ ) X (e )
_ > 1 : - 1 1 _
- k; <k+yi+1 - k:+e+yi) 2 yuéfz k; (rryt — wvorw) = Cor
Now, we get
V(1) + ¢ (a) Clyr
M) 2 oyt (R ok o oy (G-

L c
which gives v =: g”

(H4), if Cp = w is small.
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S4 Simulation Studies

In practice, the nuisance parameter 6 is often unknown. We need a proper
estimation for # in the NB regression, although it is a nuisance param-
eter. Many dispersion estimators and their algorithms for non-penalized
NBR are available; see section 8.4.2 of Hilbe (2011), Robinson and Smyth
(2007) and references therein. Here we prefer to use two subproblem it-
eratively algorithms, which is applied by Wang et al. (2016). Firstly, we
fit an NB regression by MLE with dispersion parameter # and mean pu;
without considering covariates information. Secondly, we optimize the pe-
nalized log-likelihood (1) and estimate 3 with the 6 being estimated in the
first step. Thirdly, and estimating 6 with the current estimates fixed (1).
Repeated iteration when the desired stopping criteria are attained.
Well-chosen tuning parameters is also crucial in the NBR optimization
problem. The BIC criterion (an adjusted AIC criterion) is employed to de-
termine tuning parameters by the principal proposed by Zou et al. (2007).
The negative likelihood with ridge terms is considered as our modified like-
lihood, thus the BIC criterion for elastic-net regularized NBR is defined as

lo
BIC; 0, 1, 1= —Z VXT3 = (0+7) log(0 + X B - | B3+ i (en)
(S4.51)
where df(en) = |[|B(A1, A2)|]o is the number of estimated nonzero coeffi-

cients. We use the BIC to find nearly optimal tuning parameters and then
further tune the A\; such that the support recovery rate is high, and not all
coefficients are penalized to zero.

A simulated comparison by elastic-net and Lasso estimator for NBR is
performed by using R, and we also give the confidence intervals for both
de-biased Lasso and de-biased elastic-net estimator. The package mpath
is employed to estimate the solution path based on a sequence of turning
parameters. The function rnegbin() is used to generate negative binomial

r.v. with mean p; and variance pu; + %}2 in the package MASS, and its also
includes the estimation of the the dispersion parameter # by the function
fitdistr().

In confidence intervals based on de-biased estimators, the package fastclime
is adopted for computing a high-dimensional precision matrix (i.e., the in-
verse Hessian matrix of NBR). It contains an efficient and fast algorithm
for solving a family of regularized linear programming problems, see Pang

et al. (2014).
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In Table 1 and 2, we simulate responses via the model Y; ~ NB(eX: " §)
with 6 = 5 and true regression vector
B* = (10[N(0,1)] + 0.2, - , 10| N(0,1)| + 0.2,0,- - - ,0).
(. N——

g

10 p—10

Thus H ={1,2,---,10} and d* = 10. The {X;;} are i.i.d. simulated from
N(0,1) and then do standardization (3.25) which renders that {X;;} are
approximately bounded. R

In Table 1, let [ X(8 =87, := 1 IX(8—8")[l1 and (0]l == >y |0,
The de-biased estimator for elastic-net (or Lasso) is b = 3 — ©¢(8). The
true coefficient is simulated as

B* = (0.242,0.648, 0.676,0.313,0.602, 0.236, 0.851, 0.796, 0.531,0.404, - - - )T

with ||8*]|1 = 5.300.
Thus by our assumption Ay < é\—é in Theorem 3, we put Ay ~ 0.02);.
By referring the BIC criterion (S4.51) and the oracle inequality (2.22) in

Theorem 3, we set A\j,or A = 104/ 10% in elastic-net or Lasso.

Table 1 shows that the proposed elastic-net estimators for NBR are
more accurate than the Lasso estimators. The ridge penalty’s help reflects
that elastic-net can improve the estimation accuracy in aspects of estima-
tion and prediction errors due to the bias-variance tradeoff. We can also see
that the increasing p will hinder the estimated accuracy by thinking about
the curse of dimensionality. We should note that penalized estimations al-
ways have a bias, and de-biased procedures correct the bias. The de-biased
estimators have fewer /;-estimation errors in the support H, and de-biased
elastic-net outperforms the de-biased Lasso.

Table 1 The ¢; prediction error and support recovery for elastic-net (Lasso) and its debiased
version in NBR, n = 500.

elastic-net
P 1B=8"11 (IB=B"ln) PH=H) [XB-F)~ [b-B"a M\ 0
400 1.491 (1.376) 1.000 0.222 0.723 0.12 2.927
600 1.749 (1.405) 1.000 0.326 0.731 0.13  2.350
700 1.767 (1.709) 1.000 0.340 0.955 0.14 2.952
Lasso A
400 1.505 (1.405) 1.000 0.230 0.730 0.12 2.836
600 1.779 (1.719) 1.000 0.341 0.896 0.13 2.262
700 1.784 (1.739) 1.000 0.351 0.966 0.14 2.862

Table 2 Confidence intervals for the de-biased estimates with 95% confidence level,
n = 500, p = 700.
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elastic-net (A1 = 0.11, A2 = 0.02)\1) Lasso (A = 0.11)

i B B b (b, b7 B b (b7, b7]

1 0.828 0.753  0.810 [0.677,0.944] 0.758 0.783  [0.377,1.190]
2 1.218 1.059 1.119 [0.986,1.252] 1.077 1.103  [0.726,1.481]
3 0321 0.098 0.122 [-0.010,0.253] 0.107 0.109 [-0.209,0.428]
4 0991 0.829  0.891 [0.769,1.013] 0.839 0.860 [0.602,1.118]
) 1.052 0.934 1.000 [0.872,1.129] 0.947 0.972 [0.622,1.322]
6  0.268 0.231  0.265 [0.145,0.385] 0.235 0.246 [-0.023,0.516]
7 0.510 0.351 0.384 [0.260,0.509] 0.374 0.384 [0.075,0.693]
8 0.838 0.728 0.773 [0.641,0.905] 0.755 0.772  [0.421,1.124]
9 1.183 0.988 1.048 [0.925,1.172] 0.974 0.998 [0.661,1.336]
10 0.382 0.276 0.314 [0.193,0.435] 0.295 0.303 [0.018,0.588]
covering number 7 10

Table 1 shows that the proposed elastic-net estimators for NBR are
more accurate than the Lasso estimators. The ridge penalty’s help reflects
that elastic-net can improve the estimation accuracy in aspects of estima-
tion and prediction errors due to the bias-variance tradeoff. We can also see
that the increasing p will hinder the estimated accuracy by thinking about
the curse of dimensionality. We should note that penalized estimations al-
ways have a bias, and de-biased procedures correct the bias. The de-biased
estimators have fewer /;-estimation errors in the support H, and de-biased
elastic-net outperforms the de-biased Lasso.

Table 3 Simulation for grouping effect.

B8 B1 B2 B3 Ba Bs Be B7 Bs Bo B1o
elastic-net | 2.025 0.421 0.422 1.00 0 0 0 0 0 0
Lasso 1.838 0 0 1.469 0 0 0 0 0 0
Ridge 2.059 0.861 0.861 0.664 -0.199 -0.035 -0.164 0.027 -0.006 0.170
MLE 2.620 2.783 NA NA -0.142 0.083 -0.092 0.076 -0.063 0.180
B8 2 0.5 0.5 1 0 0 0 0 0 0

A numerically demonstration of the grouping phenomenon (see The-
orem 4) is given in Table 3. The covariates are correlated simulated as:
Xl ~ (][07 1],X2 ~ (][07 1],X3 = XQ,X4 = O7X3 + XQ + 03X1 The true
coefficient vector is 8* = (2,0.5,0.5,1,0,--- ,0)7. We consider the elastic-

—

6
net (A\; = 0.3, Ay = 0.3)\;), Lasso (A = 0.3), Ridge (A = 0.3), MLE. The
results show that the elastic-net successfully select both X5 and X3 togeth-
er into the model and the MLE the estimated coefficients fit better than
other methods. Except X5 to Xjg, the Lasso shrinkages the coefficients
of X5, X3 to zero, and MLE performs worst due to the correlated covari-
ates Xo, X3, X;. The results indicate that the the elastic-net can select the
strongly related variables X5, X3 into the model, reflecting the grouping
effect.
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