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Abstract: Classification trees based on exhaustive search algorithms tend to be bi-

ased towards selecting variables that afford more splits. As a result, such trees

should be interpreted with caution. This article presents an algorithm called

QUEST that has negligible bias. Its split selection strategy shares similarities with

the FACT method, but it yields binary splits and the final tree can be selected by

a direct stopping rule or by pruning. Real and simulated data are used to compare

QUEST with the exhaustive search approach. QUEST is shown to be substantially

faster and the size and classification accuracy of its trees are typically comparable

to those of exhaustive search.
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1. Introduction

A classification tree is a rule for predicting the class of an object from the
values of its predictor variables. The tree is constructed by recursively parti-
tioning a learning sample of data in which the class label and the values of the
predictor variables for each case are known. Each partition is represented by a
node in the tree.

Two approaches to split selection have been proposed in the statistical liter-
ature. The first and more popular approach examines all possible binary splits of
the data along each predictor variable to select the split that most reduces some
measure of node impurity. It is used, for example, by the THAID (Morgan and
Sonquist (1963), Morgan and Messenger (1973)) and CART (Breiman, Friedman,
Olshen and Stone (1984)) algorithms. If X is an ordered variable, this approach
searches over all possible values c for splits of the form

X ≤ c. (1)

A case is sent to the left subnode if the inequality is satisfied and to the right
subnode otherwise. The values of c are usually restricted to mid-points between
consecutively ordered data values. If X is a categorical predictor (i.e., a predictor
variable that takes values in an unordered set), the search is over all splits of the
form

X ∈ A, (2)
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where A is a non-empty subset of the set of values taken by X.
To illustrate, Figure 1 shows a classification tree constructed using the Gini

measure of impurity for the Iris data (Fisher (1936)). The data consist of 50
samples from each of three varieties of the flower. Observations on four variables
(sepal length and width and petal length and width) are given for each sample.
The tree splits first on petal length and then on petal width. Six of the 150
samples are misclassified by the tree, giving an apparent error rate of 4%. A
jackknife estimate of the true error of the procedure is 5% ± 2%.
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Figure 1. Iris data using exhaustive search with Gini index, 10-fold CV prun-
ing, and 1-SE rule. The triple beside each terminal node gives the number
of cases of Setosa, Versicolour and Virginica, respectively, in the node. A
jackknife estimate of classification error is 0.053± 0.018.

There are two problems with the exhaustive search approach:
1. Computational complexity. An ordered variable with n distinct values at a

node induces (n−1) splits of the form (1). Therefore the order of computations
at each node is linear in the number of distinct data values. In the case of
a categorical variable, the order of computations increases exponentially with
the number of categories, being (2M−1 − 1) for a variable with M values.
More flexible splits may be obtained by combining variables. Ordered vari-
ables may be combined in a linear combination split of the form

K∑
k=1

akxk ≤ c. (3)

Exhaustively searching over these splits requires the data to be partitioned and
the node impurity functions evaluated for every set of values of {a1, . . . , aK , c}.
This is a more difficult task than searching for splits of the form (1), espe-
cially since the objective function usually has multiple local maxima. These
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computational problems have stimulated much research into approximate or
heuristic solutions (Chou (1991), Murthy, Kasif and Salzberg (1994)).

2. Bias in variable selection. A more serious problem from the standpoint of tree
interpretation is that unrestrained search tends to select variables that have
more splits. This makes it hard to draw reliable conclusions from the tree
structures. Doyle (1973) seems to be the first to warn of this in the context of
the AID and THAID algorithms. More recently, Quinlan and Cameron-Jones
(1995) observed that

“. . . for any collection of training data, there are ‘fluke’ theories that
fit the data well but have low predictive accuracy. When a very large
number of hypotheses is explored, the probability of encountering
such a fluke increases.”

Numerical evidence of the bias will be given later in Table 2.
The FACT algorithm (Loh and Vanichsetakul (1988), Vanichsetakul (1986))

employs a computationally simpler approach. Instead of combining the problem
of variable selection (X) with that of split point selection (c), FACT deals with
them separately. At each node, an analysis of variance (ANOVA) F -statistic is
calculated for each ordered variable. The variable with the largest F -statistic
is selected and linear discriminant analysis (LDA) is applied to it to find c.
Categorical variables are handled by transforming them into ordered variables.
If there are J classes among the data in a node, this method splits the node into
J subnodes.
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Figure 2. Iris data using the FACT method. The triple beside each terminal
node gives the number of cases of Setosa, Versicolour and Virginica, respec-
tively, in the node. A jackknife estimate of classification error is 0.033±0.015.

Figure 2 shows the FACT tree for the Iris data. It uses the same two variables
as in the exhaustive search method. The first split yields three nodes because
there are three classes. The second split, however, produces only two nodes
because only two classes are left in the data. The tree misclassifies three of the
learning samples, and has a jackknife estimate of error of 3% ± 2%.
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It turns out that FACT is free of variable selection bias only when all the
predictors are ordered variables. If some are categorical variables, it is not unbi-
ased. Furthermore, because it uses a direct stopping rule, it is less effective than
a method that employs bottom-up pruning (such as CART) in some applications.
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Figreu 3. Iris data using the QUEST method with 10-fold CV pruning and
1-SE rule. The triple beside each terminal node gives the number of cases
of Setosa, Versicolour and Virginica, respectively, in the node. A jackknife
estimate of classification error is 0.040± 0.016.
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Figure 4. Plots of Iris data. Plot symbols refer to Setosa (v), Versicolour
(+), and Virginica (o). The partitions in the plots correspond to the trees in
Figures 1, 2, and 3.

The purpose of this paper is to present a new algorithm, called QUEST
(for Quick, Unbiased, Efficient, Statistical Tree), that (i) has negligible variable
selection bias, (ii) retains the computational simplicity of FACT, (iii) includes
pruning as an option, and (iv) yields binary splits. The reason for binary splits
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is so that the QUEST trees may be easily compared with exhaustive search trees
in terms of stability of the splits and number of nodes.

Figure 3 shows the QUEST tree for the Iris data. The apparent error rate is
higher than that for the FACT tree, but it is the same as that for the exhaustive
search method. Its jackknife error estimate of 4% ± 2% is in between those of the
other two trees, although the differences are not statistically significant. Figure
4 shows how the data are partitioned by the three methods in the space of the
two partitioning variables.

The remainder of the paper is organized as follows. Section 2 presents our
method for split point selection, assuming that the variable has been chosen.
Section 3 explains why the variable selection procedure in FACT is biased and
how the bias is removed in QUEST. Section 4 extends the technique to linear
combination splits. Section 5 considers the relative stability of the split points
and Section 6 does the same for relative computational speed. The entire algo-
rithms (including pruning) are compared in Section 7 by means of two datasets.
The QUEST method is demonstrated to be much better than exhaustive search
in terms of variable selection bias and computational cost. Neither approach
dominates the other in terms of classification accuracy, stability of split points,
or size of tree.

The following notations are used in the sequel. The dimension of the pre-
dictor space is denoted by K and the number of classes in the learning sample
is denoted by J . The number of class j cases in the learning sample is denoted
by Nj and the total sample size by N =

∑J
j=1 Nj. Given the data in a node t,

the number of classes present is denoted by Jt (Jt ≤ J), the number of class j

cases by Nj(t), and the total sample size by N(t). The kth predictor variable
and its observed value are denoted by Xk and xk, respectively. We use π(j) to
denote the prior probability for class j. This may be specified by the user or
estimated by the sample proportion Nj/N . We let p(j, t) = π(j)Nj(t)/Nj de-
note the estimated probability that a class j object will fall into the partition
represented by node t, and let p(j|t) = p(j, t)/

∑
i p(i, t) denote the estimated

posterior probability that an object belongs to class j given that it lands in t.
The Gini index i(t) of impurity at t is defined as i(t) = 1 − ∑

j p2(j|t).

2. Split Point Selection

2.1. Ordered variable

Suppose that an ordered variable X is selected to split a node. FACT employs
LDA on this variable to construct the split. This has two disadvantages. The
first is that the node is split into as many subnodes as there are classes. If J is
large, this may deplete the learning sample so rapidly that the tree is too short to
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reveal interesting features in the data. A second disadvantage is that the effect
of unequal class variances is ignored.

These two problems are solved in the QUEST method as follows. To ensure
binary splits when J > 2, we group the classes into two superclasses before ap-
plication of discriminant analysis. However, to accommodate unequal variances,
we use a modified form of quadratic discriminant analysis (QDA) on the two
superclasses.

First suppose that there are only two classes. Traditional QDA estimates the
class density functions with normal densities where the means and variances are
estimated from the sample. Specifically, let x̄(j) and s2

j denote the sample class
mean and variance for the jth class (j = 1, 2). Let φ(x) = (2π)−1/2 exp(−x2/2)
denote the standard normal density function. QDA splits the X-axis into three
intervals (−∞, d1), (d1, d2), and (d2,∞), where d1 and d2 are the roots of the
equation

p(1|t)s−1
1 φ{(x − x̄(1))/s1} = p(2|t)s−1

2 φ{(x − x̄(2))/s2}. (4)

In order to obtain a binary split, QUEST uses only one of the two roots as
split point: the one that is closer to the sample mean of each class. Figure 5
compares the split points from the QDA method with those from the exhaustive
search method. In each plot, the QUEST split point is marked with a dotted
line and the exhaustive search split point with a dashed line. The data are the
expected order statistics from four pairs of distributions that are indicated by the
solid density curves. N(µ, σ2) denotes a normal distribution with mean µ and
variance σ2, T2(µ) denotes a t-distribution with 2 degrees of freedom centered at
µ, Chisq(ν) denotes a chi-square distribution with ν degrees of freedom, Beta(p,
q) denotes a beta distribution with parameters p and q, and U(0, 1) denotes a
uniform distribution on the unit interval. In the case of the beta-uniform pair,
the splits are not unique for either method. The ‘ideal’ split is where the density
curves intersect. By this criterion, QUEST is better than exhaustive search for
two pairs of distributions and worse for the other two pairs.

For J > 2, a preliminary grouping of the classes into two superclasses is
needed. This is carried out by applying a 2-means clustering algorithm (that
minimizes the within-cluster sum of squares) to the J sample class X-means. If
the class means are identical, the class with the most number of cases becomes
superclass A and the other classes form superclass B. If there are two or more
classes with the same maximum number of cases, the one with the smallest index
among them is chosen to form A. The procedure may be stated as follows.
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Figure 5. Comparison of split methods with different class populations. Data
for each class indicated by ‘+’ signs are 10 expected order statistics. True
class densities are drawn with solid lines. QUEST splits are shown by dotted
vertical lines and those for exhaustive search by dashed vertical lines. The
‘ideal’ split in each case is where the density curves intersect.

Algorithm 1. Split selection for an ordered variable
Let X be the selected variable to split node t.

1. Apply the 2-means clustering algorithm of Hartigan and Wong (1979) to divide
the Jt classes into two superclasses A and B, using the two most extreme
sample means as initial cluster centers. If the sample means are identical, let
A contain the most populous class and B contain the other classes.

2. Let x̄A and s2
A denote the sample mean and variance of superclass A. Simi-

larly, let x̄B and s2
B denote the corresponding quantities for B. Let p(A|t) =∑

j∈A p(j|t) and p(B|t) = 1 − p(A|t) denote the superclass priors.
3. Take logs on both sides of the equation

p(A|t)s−1
A φ{(x − x̄A)/sA} = p(B|t)s−1

B φ{(x − x̄B)/sB}
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to obtain the quadratic equation ax2 + bx + c = 0, where

a = s2
A − s2

B

b = 2(x̄As2
B − x̄Bs2

A)

c = (x̄BsA)2 − (x̄AsB)2 + 2s2
As2

B log[{p(A|t)sB}/{p(B|t)sA}].

If a = 0 and x̄A �= x̄B, there is only one root given by

x = (x̄A + x̄B)/2 − (x̄A − x̄B)−1s2
A log{p(A|t)/p(B|t)}. (5)

The equation has no roots if a = 0 and x̄A = x̄B.
4. The node is split at X = d where d is defined as follows:

(a) If a = 0 then

d =

{
(x̄A + x̄B)/2 − (x̄A − x̄B)−1s2

A log p(A|t)
p(B|t) , x̄A �= x̄B,

x̄A, x̄A = x̄B.

(b) Else if a �= 0, then:
(i) If b2 − 4ac < 0, define d = (x̄A + x̄B)/2. It can be verified that

b2 − 4ac ≥ 0 if p(A|t) = p(B|t).
(ii) Else if b2 − 4ac ≥ 0, then:

A. Define d to be the root (2a)−1{−b ± √
b2 − 4ac} that is closer to

x̄A, provided this yields two nonempty nodes.
B. Otherwise, define d = (x̄A + x̄B)/2.

2.2. Categorical variable

FACT uses two steps to transform a categorical variable into an ordered
one: (i) the sample values taken by the categorical variable are mapped into 0-1
dummy vectors, and (ii) the dummy vectors are projected onto their largest dis-
criminant coordinate (called CRIMCOORD for short (see Gnanadesikan (1977))).
The aim is to use the discriminatory information in the categorical variable to
define the spacing and ordering of the transformed values.

A difficulty occurs when the within-class covariance matrix in the space
of dummy vectors is singular. This situation occurs frequently because of the
discrete nature of the dummy vectors. For example, if some categorical values
have been been diverted to other nodes, they will not be present in the data
in the current node. Therefore some of the components of the sample dummy
vectors at the node will be identically zero and a singular sample covariance
matrix results. When this occurs, FACT employs some other methods to map
the dummy vectors to real numbers. We cannot use this solution here because it
can split the node into more than two subnodes.
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A more consistent and elegant way to deal with singular matrices that does
not split a node into more than two subnodes is to reduce the dimension of
the dummy vectors before computation of the CRIMCOORDs. Suppose X is
a categorical variable taking values in the set {c1, . . . , cM}. Each value of X is
first transformed into an M -dimensional 0-1 column vector v = (v1, . . . , vM )′ all
of whose components are 0 except for the lth component, which is equal to 1,
where l is defined implicitly through X = cl. Let v

(j)
i denote the ith observed

value of v in the jth class and define the M -dimensional column vectors

v̄(j) = N−1
j

Nj∑
i=1

v
(j)
i , v̄ = N−1

J∑
j=1

Nj∑
i=1

v
(j)
i .

Define the M × M matrices

B =
J∑

j=1

Nj(v̄(j) − v̄)(v̄(j) − v̄)′ (6)

W =
J∑

j=1

Nj∑
i=1

(v(j)
i − v̄(j))(v(j )

i − v̄(j))′

T =
J∑

j=1

Nj∑
i=1

(v(j)
i − v̄)(v(j)

i − v̄)′ (7)

so that T = B + W.
The largest CRIMCOORD is the projection a′v that maximizes the ratio of

between-classes to within-classes sum-of-squares a′Ba/a′Wa. The value of a is
given, up to a scalar multiple, by the eigenvector corresponding to the largest
eigenvalue of W−1B , when the inverse W−1 exists (Mardia, Kent and Bibby
(1979), p. 319), i.e., it is the solution to the matrix equation (B − λW )a = 0.
Since the solution of the latter equation is the same as that for the equation
(B − λT)a = 0 when W−1 exists, the solution a is also the eigenvector associated
with the largest eigenvalue of T−1B. The precise algorithm is as follows.

Algorithm 2. Split selection for a categorical variable
Suppose X is a categorical variable taking values in the set {c1, . . . , cM}.

1. Transform each value of X into an M -dimensional dummy column vector
v = (v1, . . . , vM )′, where

vl =

{
1, if X = cl,
0, otherwise.

Let V be the N × M data matrix consisting of the v-values.
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2. Let I denote the N ×N identity matrix and let 1 be an N -column of 1’s. Let
H = I − N−111′ denote the centering matrix and obtain the singular value
decomposition HV = PDQ′ with D = diag(d1, . . . , dM ) such that d1 ≥ . . . ≥
dM ≥ 0.

3. Let ε be the machine precision, i.e., the smallest floating point number such
that if u = 1 + ε, then u > 1. Define an eigenvalue dm as ‘positive’ if it
satisfies dm > max(M,N)d1ε, and as ‘zero’ otherwise (Math Works (1991)).
The rank r of T is defined to be the number of ‘positive’ eigenvalues. Let
F denote the M × r submatrix of Q consisting of its first r columns and let
U = diag(d−1

1 , . . . , d−1
r ).

4. Reduce the dimension of v by transforming it to y = F ′v.
5. Define for each j the M ×Nj matrix Lj = (v̄(j) − v̄, . . . , v̄(j) − v̄) and let G be

the N × M matrix G = (L1, . . . , LJ)′, so that B = G′G. Perform a singular
value decomposition of the matrix GF U and let a be the eigenvector associated
with the largest eigenvalue.

6. Transform each v to ξ = a′Uy = a′UF ′v. This maps each cl to a ξ-value.
7. Apply Algorithm 1 to the ξ data values to split the node.
8. Re-express a split of the form ‘ξ ≤ ξ0’ to the form ‘X ∈ A’.

Note that each categorical value is mapped into a CRIMCOORD value even
if it is not represented in the learning sample at the node. As a result, there is no
difficulty for the selected split to handle categorical values that appear in future
test samples but that are absent from the learning sample.

Table 1. Four examples of CRIMCOORD transformations. The CRIMCO-
ORD values are scaled so that the maximum value is 1 and the minimum
value is -1 in each example.

Data Set J = 2, M = 3, N1 = N2 = 10 {4c1, c2, 5c3}, {2c1, 2c2, 6c3}
I CRIMCOORD values ξ1 = 1, ξ2 = −1, ξ3 = −0.273

Data Set J = 2, M = 3, N1 = N2 = 10 {5c1, 5c3}, {5c1, 5c3}
II CRIMCOORD values ξ1 = −1, ξ2 = 0, ξ3 = 1

Data Set J = 2, M = 3, N1 = 10, N2 = 11 {5c1, 5c3}, {5c1, c2, 5c3}
III CRIMCOORD values ξ1 = ξ3 = 1, ξ2 = −1

Data Set J = 3, M = 5, {5c1, 5c2}, {c1, 5c2, 3c4, c5},
N1 = N2 = N3 = 10 {c1, 4c2, 5c3}

IV CRIMCOORD values ξ1 = −0.245, ξ2 = −0.194,
ξ3 = 1, ξ4 = ξ5 = −1

To illustrate, Table 1 shows four datasets and their CRIMCOORD transforma-
tions. Because eigenvectors are only defined by their directions and not their
lengths, the CRIMCOORD values in the table are scaled so that the minimum
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and maximum values in each example are -1 and 1, respectively. For example,
there are two classes (J = 2) in Data Set I and the observations in its first
class consist of 4 c1’s, 1 c2 and 5 c3’s. In each dataset, ci is transformed to ξi.
Data Sets II–IV are chosen to demonstrate how our method handles different
contingencies. In Data Set II, the two classes contain identical samples and one
category (c2) is absent from both samples. Since the categorical values contain
no information about the classes, there is no right or wrong mapping in this case.
Data Set III is obtained from Data Set II by adding the absent categorical value
of c2 to the second class sample. Now c2 carries much information about the
classes whereas c1 and c3 are still uninformative. The CRIMCOORD mapping
ξ1 = ξ3 = 1 and ξ2 = −1 is thus reasonable. Finally, in Data Set IV, two of
the categorical values (c4 and c5) appear only in one class. These two values are
indistinguishable between themselves but are highly informative for the second
class. The CRIMCOORD transformation reflects this by mapping them to the
same extreme value.

Some information is clearly lost in the projection step of the CRIMCOORD
transformation. However, the other alternative of replacing each categorical vari-
able with its dummy vector and letting these vectors compete with the ordered
variables for splits has two undesirable effects. First, variable selection may be
biased towards categorical variables because their dimensions are increased. Sec-
ond, the class of splits on a categorical variable are restricted to splits on the
dummy vector components. Since the vector components take values 0 or 1, the
splits have the form (2) with the sets A being singletons or their complements.

3. Variable Selection

It is assumed in the preceding sections that a variable has been selected to
split a node. We now explain how this is carried out in the FACT and QUEST
methods. FACT uses statistical tests to choose the variable. First, if there are
categorical variables, each is converted into a CRIMCOORD variable. Next, a
threshold value F0 is chosen and an ANOVA F -statistic is computed for every
variable. If the largest F -statistic exceeds F0, the variable with the largest F -
value is selected to split the node. Otherwise, Levene’s (1960) F -statistic for
unequal variances is computed for each variable. If the largest Levene F -statistic
is greater than F0, the variable with the largest Levene F -value is used to split the
node. Otherwise, if neither the largest ANOVA F -value nor the largest Levene
F -value exceeds F0, the node is split using the variable with the largest ANOVA
F -value.

The reason for the inclusion of tests for variances is to avoid inefficient splits.
Suppose, for example, that there are two ordered predictor variables and two
classes such that along X1, the class distributions are normal with equal means
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but unequal variances. Suppose further that the distribution of X2 is the same
for both classes. In this case, splits on X2 should be avoided since the partitions
they induce merely convert the original problem into two smaller but similar
problems.

When all the variables are ordered, the FACT procedure is unbiased in the
sense that each variable has an equal chance of being selected if they are inde-
pendent and have no relationship with the class variable. On the other hand,
when there are categorical variables, the ANOVA F -statistics computed from
the CRIMCOORD variables tend to be stochastically larger than those for the
ordered variables. Thus, even when all the variables are independent of each
other and of the class variable, categorical variables are more likely to be chosen
than ordered variables.

In order to remove this bias, it is necessary to use another method to rank
categorical variables for split selection. We use the Pearson contingency table
χ2-test of independence between the class variable and the categorical variable.
The test is easy to compute and its statistical significance can be approximated
via the chi-square distribution with (Jt − 1)(Mt − 1) degrees of freedom, where
Mt is the number of distinct categories present in the learning sample in node t.

We therefore obtain a P -value from each variable based on the appropriate
χ2 or F -test. Call this Stage I. If the smallest P -value is less than a predefined
threshold (determined via the Bonferroni method for multiple comparisons), the
corresponding variable is selected. Otherwise, Levene’s F -test for unequal vari-
ances is computed for each ordered variable. Call this Stage II. If the smallest
P -value from the Stage II tests is less than another Bonferroni threshold, the
corresponding variable is selected. Otherwise, the variable with the smallest
P -value from Stage I is selected. Like FACT, this procedure is not exactly unbi-
ased when categorical variables are present. However, the Bonferroni correction
ensures that the bias is practically negligible. The detailed algorithm follows.

Algorithm 3. Variable selection
Let α ∈(0, 1) be a pre-specified level of significance. Assume that X1, . . . ,XK1

are ordered variables and XK1+1, . . . ,XK are categorical variables. Given node
t, let x

(j)
ik denote the value of the kth variable for the ith case in the jth class

(i=1, . . . , Nj(t); j = 1, . . . , Jt; k = 1, . . . ,K1).
1. If K1 ≥ 1, compute the ANOVA F -statistic Fk for each Xk, k = 1, . . . ,K1.

Let k1 be the smallest integer such that Fk1 = max{Fk : k = 1, . . . ,K1} and
define α̂1 = Pr{FJt−1,N(t)−Jt

> Fk1}, where Fν1,ν2 denotes the F -distribution
with ν1 and ν2 degrees of freedom.

2. If K > K1, compute the P -value β̂(k) of the contingency table chi-square test
of independence between class labels and category values for k = K1+1, . . . ,K.
The degrees of freedom in each case are given by (nr−1)×(nc−1), where nr and
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nc are the numbers of rows and columns of the table with nonzero totals. Let
k2 be the smallest integer such that β̂(k2) = min{β̂(k) : k = K1 + 1, . . . ,K}
and define α̂2 = β̂(k2).

3. Define k′ = k1 if α̂1 ≤ α̂2; otherwise define k′ = k2.
4. If min(α̂1, α̂2) < α/K, select variable Xk′ to split the node.
5. Otherwise, if min(α̂1, α̂2) ≥ α/K, then

(a) Compute the ANOVA F -statistics F
(z)
k (k = 1, . . . ,K1) for the ordered

variables based on the absolute deviations z
(j)
ik = |x(j)

ik − x̄
(j)
k |, where x̄

(j)
k =

Nj(t)−1 ∑Nj(t)
i=1 x

(j)
ik . Let k

′′
be the smallest integer such that F

(z)

k′′ = max

{F (z)
k : k = 1, . . . ,K1}.

(b) Compute α̃ = Pr{FJt−1,N(t)−Jt
> F

(z)

k′′ }. If α̃ < α/(K+K1), select variable
Xk

′′ to split the node. Otherwise, select variable Xk′.
A simulation experiment was carried out to compare the effect of several

factors on the variable selection bias of the QUEST, FACT and exhaustive search
methods. The factors are: variable type and quantity, number of distinct data
values, and number of classes. The simulations are carried out with α = 0.05
(in Algorithm 3) for the QUEST method and F0 = 4 for the FACT method.
The estimated probabilities are based on 10,000 simulation trials. Therefore the
simulation standard errors are less than 0.005. The predictor variables are all
mutually independent.

We first study the simple null case, where there are only two predictor vari-
ables both independent of the class variable. An unbiased variable selection
procedure should select each variable with probability 0.5. The results are given
in Table 2, where Um denotes a uniform distribution on the integers {1, 2, . . . ,m}.

The QUEST and FACT methods are almost unbiased when the variables are
ordered. As expected, the FACT method shows a large bias towards categorical
variables. When both variables are categorical, FACT tends to select the one
with more categories.

The exhaustive search method is also biased towards categorical variables,
although its bias is not as large as that of FACT. However, unlike FACT, the
bias is not limited to the presence of categorical variables. When one variable is
continuous (e.g., normal, t2, or exponential) and the other is discrete with few
distinct values (U4), exhaustive search shows a large bias towards the continuous
variables because they afford more splits.

If all the predictor variables are uninformative for predicting the class vari-
able, an effective pruning procedure would likely remove all the nodes except
the root node. In this case, the bias of the exhaustive search method towards
variables with more splits does not adversely affect the final result. The danger
occurs when a data set consists of a mix of informative and noise variables, and
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the noise variables have many more splits than the informative variables. Then
there is a high probability that the noise variables will be chosen to split the top
nodes of the tree. Pruning will produce either a tree with misleading structure
or no tree at all.

Table 2. Probabilities of correct variable selection when the predictor vari-
ables have no discriminatory power. A method is unbiased if it selects X1

with a constant probability of 0.5. Estimates are based on 10,000 replications
and learning class sample sizes of 200 and 100 for J = 2 and J = 5, respec-
tively. Simulation standard errors are less than 0.005. “Cat. Un” denotes a
categorical distribution uniformly distributed on the integers 1, . . . , n, and
“Ord. Un” denotes an ordered uniform distribution on the same integers.

Number Learning P (X1 is selected)
of classes sample Distribution Distribution QUEST FACT Exhaustive

J size N of X1 of X2 method method search
Normal t2 0.492 0.507 0.507
Normal Exponential 0.501 0.514 0.508
t2 Exponential 0.515 0.526 0.503
Normal Ord. U4 0.508 0.522 0.895
t2 Ord. U4 0.520 0.533 0.897
Exponential Ord. U4 0.500 0.512 0.894

2 400 Cat. U4 Cat. U15 0.497 0.017 0.036
Cat. U4 Normal 0.501 0.831 0.176
Cat. U15 Normal 0.497 0.997 0.869
Cat. U4 Exponential 0.493 0.821 0.180
Cat. U15 Exponential 0.502 0.998 0.874
Cat. U4 Ord. U4 0.492 0.832 0.610
Cat. U15 Ord. U4 0.501 0.998 0.980
Normal t2 0.488 0.483 0.501
Normal Exponential 0.510 0.506 0.498
t2 Exponential 0.518 0.514 0.504
Normal Ord. U4 0.526 0.522 0.898
t2 Ord. U4 0.520 0.515 0.898
Exponential Ord. U4 0.519 0.509 0.897

5 500 Cat. U4 Cat. U15 0.504 0.011 0.020
Cat. U4 Normal 0.497 0.859 0.179
Cat. U15 Normal 0.488 0.999 0.909
Cat. U4 Exponential 0.476 0.855 0.173
Cat. U15 Exponential 0.475 1.000 0.905
Cat. U4 Ord. U4 0.495 0.861 0.638
Cat. U15 Ord. U4 0.486 1.000 0.990

To see how noise variables can prevent an informative variable from being
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selected, 20 variables were employed in another simulation experiment. One
variable has discriminatory power while the other 19 are noise. Different combi-
nations of variable types were included (e.g., all ordered variables, all categorical
variables, and 1 ordered and 19 categorical variables). Two classes were used
with 100 learning samples in each class. Table 3 shows the probabilities that
the informative variable is selected. The class distributions for the informa-
tive variable X1 are given in the first 2 columns of the Table. The notation
E(0, b) denotes an exponential distribution with density b−1 exp(−x/b), x > 0.
A4 denotes the discrete distribution on the integers {1, 2, 3, 4} with probabilities
P (X = 1) = P (X = 2) = P (X = 3) = 2/9, P (X = 4) = 1/3 and B4 the discrete
distribution with P (X = 1) = P (X = 2) = P (X = 3) = 1/5, P (X = 4) = 2/5.
The results show that in every case, the probability that the exhaustive search
method selects the informative variable is less than 1/20, the probability of ran-
dom selection. Again, FACT and QUEST are equally good when all the variables
are ordered. However, when categorical variables are present, the FACT method
performs even worse than exhaustive search.

Table 3. Probabilities of correct variable selection when X1 is informative
and X2, . . . , X20 are noise. 10,000 replications, 2 classes, and learning sample
sizes of 100 for each class.

Distribution Noise P (X1 is selected)
of X1 distribution QUEST FACT Exhaustive

Class 1 Class 2 of X2, . . . , X20 method method search
Ord. U4 Ord. A4 N(0, 1) 0.157 0.153 0.046
Ord. U4 Ord. A4 t2 0.177 0.178 0.044
Ord. U4 Ord. A4 E(0, 1) 0.150 0.148 0.048
Cat. U4 Cat. B4 Cat. U15 0.404 0.008 0.031
N(0, 1) N(0.25, 1) Cat. U15 0.380 0.001 0.029
E(0, 1) E(0, 1.3) Cat. U15 0.430 0.001 0.033
Ord. U4 Ord. B4 Cat. U15 0.412 0.001 0.029

4. Linear Combination Splits

The FACT approach towards linear combination splits is essentially recursive
LDA on all the variables, where categorical variables are first transformed to their
CRIMCOORDS. The QUEST version is similar, except that a prior grouping of
the classes into two superclasses is carried out if J > 2. The steps may be stated
as follows.
1. Transform each categorical variable into a CRIMCOORD variable.
2. Apply Steps 2–6 of Algorithm 2, with the ordered and transformed categorical

variables in place of v, and K in place of M , to find the linear projection values
ξ.
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3. Apply Algorithm 1 to the ξ-values to find the split.

5. Variability of Split Points

It is recently reported that some classification methods are unstable in the
sense that small changes in the learning sample may lead to large changes in the
classifiers. As a result, these classifiers tend to vary substantially in their clas-
sification accuracy. Breiman (1996a) noted that CART and neural networks are
in this category, while LDA and nearest neighbor methods are stable. Breiman
(1996b) pointed out that LDA achieves its low variability by having a limited set
of models to fit the data. When this set is inadequate, LDA can perform poorly.

Because QUEST employs a form of QDA to recursively generate a tree struc-
ture, it may be viewed as a hybrid between LDA and CART. Thus it is natural
to enquire about its stability too. We will study this problem by looking at the
variability of the split points in this section.
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Figure 6. Distributions of split points for various class populations based on
2–5 classes, sample size 200 for each class and 500 replicates. Solid curve is
for QUEST; dashed curve for exhaustive search.

Figure 6 shows the simulated distributions of the split points obtained via
QUEST (solid lines) and exhaustive search (dashed lines) for one variable having
different class distributions. The class sample size used in each plot is 200, and
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500 simulation trials were employed to construct the density estimates. Following
is a brief description of each plot.
Plot (a). One class is N(2, 1) and the other class has a t2 distribution. The
curves show that the two methods have similar variability. This is interesting
because the QUEST method has to estimate the infinite variance of the t2 dis-
tribution.
Plot (b). A third class with N(5, 1) distribution is added to the two classes in
the previous case. Now the QUEST method has distinctly lower variability.
Plot (c). One class is bimodal, being a half-half mixture of N(−1, 1) and N(1, 1).
The other class is a t2 distribution centered at 1. The variability of the two
methods seem to be roughly the same.
Plot (d). Again there are two classes, but both are bimodal normal mixtures.
One class is 0.4N(−1, 1) + 0.6N(1, 1) and the other is 0.6N(0, 1) + 0.4N(2, 1).
QUEST is clearly less variable than exhaustive search.
Plot (e). One class has a U-shaped beta distribution and the other class is
uniform on the unit interval. As observed previously in Figure 5(d), there are
two ‘ideal’ split points. This explains the bimodal nature of the two split point
distributions. QUEST is again less variable.
Plot (f). There are five classes in this example, having chi-square distributions
with degrees of freedom 1, . . . , 5. The exhaustive search method is clearly less
variable. Recall that QUEST forms superclasses according to the spacing of the
sample class means. When the population class means are equally spaced as
here, it is as likely for the leftmost two class means to be grouped to form one
superclass as it is for the leftmost three. This accounts for the bimodal shape of
the solid curve in the plot.

These simulation results suggest that the variability of the QUEST split
point is less than or equal to that of exhaustive search, except when the class
means are symmetrically located. To throw more light on the situation, we now
approach the question from a large-sample perspective. We only consider two
classes because the problem is too unwieldy otherwise.

Let the class distribution and density functions be denoted by Fj(x) and
fj(x), j = 1, 2. Suppose that the densities are continuous functions of x and
that there is a unique value x0 such that f1(x0) = f2(x0). Then assuming equal
priors, the split x = x0 is ‘ideal’ because it minimizes the misclassification rate.

5.1. Asymptotics for exhaustive search

The Gini measure of node impurity before splitting is 1/4. For any split at
x into two subnodes, the impurity in one subnode is i1(x) = p1(1 − p1), where
p1 = F1(x)/[F1(x) + F2(x)], and that in the other subnode is i2(x) = p2(1 − p2),
where p2 = [1 − F1(x)]/[2 − F1(x) − F2(x)]. Let F̄ (x) = [F1(x) + F2(x)]/2 and
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f̄(x) = [f1(x) + f2(x)]/2. Then the decrease in impurity obtained by splitting at
x is given by

∆(x) = 1/4 − F̄ (x)i1(x) − [1 − F̄ (x)]i2(x)

which simplifies to

∆(x) =
[F1(x) − F2(x)]2

16F̄ (x)[1 − F̄ (x)]
. (8)

Taking the derivative with respect to x and equating the result to 0 shows that
∆′(x) = 0 if and only if

2F̄ (x)[1 − F̄ (x)][f1(x) − f2(x)] = f̄(x)[F1(x) − F2(x)][1 − 2F̄ (x)]. (9)

Suppose that ∆(x) has a unique maximum at xe. Let F̂j be the empirical
distribution based on a sample of size n from Fj , j = 1, 2. Let ∆n(x) be defined
as in (8) with F̂j in place of Fj . That is, ∆n(x) is the decrease in impurity based
on a sample of size n. Suppose that

∆(xe) > lim sup
|x|→∞

∆(x). (10)

Then limn→∞ supx |∆n(x)−∆(x)| = 0 a.s. by the Glivenko-Cantelli lemma. Let
ε > 0 and x̂e be the maximizing value of ∆n(x). With probability 1,

−ε < ∆n(x) − ∆(x) < ε for all large n and all x.

By definition of x̂e and xe, we have ∆n(xe) ≤ ∆n(x̂e) and ∆(x̂e) ≤ ∆(xe).
Therefore with probability 1,

0 ≤ ∆(xe) − ∆(x̂e)

= [∆(xe) − ∆n(xe)] + [∆n(x̂e) − ∆(x̂e)] − [∆n(x̂e) − ∆n(xe)]

< 2ε for all large n.

It follows from assumption (10) that x̂e → xe a.s. Hence the split point converges
to its population counterpart. Note that if F1 and F2 are normal with the same
variance, then xe = x0.

5.2. Asymptotics for QUEST

Let ηj and σ2
j denote the mean and variance of the Fj , and let s2

j be the
sample variance based on sample size n, j = 1, 2. In the case that the priors are
equal, the roots of (4) simplify to

Ȳ + (s2
1 − s2

2)
−1[(Ȳ − X̄)s2

2 ± s1s2|X̄ − Ȳ |].
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Let x̂q denote the root closer to Ȳ , i.e., x̂q is the QUEST split. Then

x̂q = Ȳ + (s2
1 − s2

2)
−1[(Ȳ − X̄)s2

2 − sgn(Ȳ − X̄)s1s2|X̄ − Ȳ |]
= (s1 + s2)−1(Ȳ s1 + X̄s2).

As n → ∞, we have x̂q → xq a.s. and
√

n(x̂q − xq)
D→ N(0, ω2), where xq =

(σ1 + σ2)−1(η2σ1 + η1σ2), ω2 = 2σ2
1σ

2
2/(σ1 + σ2)2. Clearly, xq = x0 if the class

distributions are normal. Therefore the split points via exhaustive search and via
QUEST converge to the same value if F1 and F2 are normal with equal variance.

Consider now the situation where the densities are not necessarily normal
but are reflections of each other about the point x0, i.e.,

F2(x − x0) = 1 − F1(x0 − x) ∀x. (11)

Then σ1 = σ2, η1 + η2 = 2x0, and hence xq = x0. On the other hand, (11)
implies that (9) is satisfied with xe = x0. Therefore x̂q and x̂e again converge to
the same limit.

5.3. Disjoint supports: power distributions

While the preceding analysis shows that x̂q typically converges at the
√

n-
rate, the convergence rate of x̂e is harder to determine in general. There is one
special situation, however, where the asymptotic distribution of x̂e is amenable
to theoretical analysis. This is the situation where the distributions have disjoint
support.

Suppose that the class distributions satisfy condition (11) with x0 = 0. Then
the population density functions satisfy the condition f2(x) = f1(−x), i.e., the
class populations are reflections of each other about the point x = 0. Let σ2

denote the common population variance and suppose that η1 �= 0 and σ2 < ∞.
With probability converging to 1 as n → ∞, the split point using the QUEST
method will be equal to (X̄ + Ȳ )/2, which is

√
n-consistent.

Now suppose further that inf{x : F1(x) > 0} = 0. Then the split point
obtained with the exhaustive search method is (X(1) + Y(n))/2. It follows from
the theory of extreme order statistics (Galambos (1978)) that if F1(x) satisfies
the condition limδ→0 F1(δx)/F1(δ) = x−γ , x > 0 for some constant γ > 0, then

lim
n→∞P{X(1) + Y(n) < xF−1

1 (1/n)} = P (W1 + W2 < x),

where W1 is a random variable with distribution function P (W1 ≤ x) = 1 −
exp(−xγ) and W2 is an independent copy of −W1. The rate of convergence to 0
of the split point (X(1) + Y(n))/2 therefore depends on the limiting behavior of
F−1

1 (1/n).
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A simple example that illustrates the range of possible rates of convergence is
provided by the family of power function densities with f1(x) = pxp−1, 0 < x < 1,
and p > 0. Then F1(x) = xp, F−1

1 (1/n) = n−1/p, and γ = p. Hence

lim
n→∞P{n1/p(X(1) + Y(n))/2 ≤ x} = P{(W1 + W2)/2 ≤ x}.

The convergence to 0 of the split point (X(1) + Y(n))/2 is slower or faster than
that of (X̄ + Ȳ )/2 depending on whether p > 2 or p < 2. If p = 2, the splits
points are both

√
n-consistent, although with different limit distributions.

Table 4. Computational speed of QUEST relative to exhaustive search
method for ordered variables with normal distributions.

Number of classes (J)
K N 2 3 5 10

300 8.0 7.6 7.4 8.0
2 900 21.3 20.2 20.1 21.0

3000 85.4 73.8 75.0 76.0
9000 273.0 249.0 254.0 254.8
300 9.4 9.5 9.6 10.2

10 900 25.6 25.8 26.2 26.4
3000 92.7 90.5 92.4 94.2
9000 291.2 289.7 297.4 297.7
300 9.6 9.7 9.8 10.4

20 900 28.9 29.5 29.2 30.3
3000 96.0 98.1 96.4 98.2
9000 285.5 294.3 302.1 310.7

6. Computational Speed

The FACT and QUEST split selection procedures tend to be equally fast,
except when there are categorical variables. FACT is slower than QUEST in
the latter case because it needs to carry out the CRIMCOORD transformation
for every categorical variable whereas QUEST only performs the CRIMCOORD
transformation on the categorical variable that is selected. On the other hand, the
exhaustive search method is expected to require much more computations than
the QUEST or FACT methods. To obtain an indication of how the computational
speed of QUEST relative to exhaustive search scales with increasing values of
K, N , and J , the computational times of the two methods were measured on
simulated normal and discrete uniformly distributed data. Table 4 gives the ratios
of computation times of exhaustive search to QUEST for normally distributed
data. The most striking pattern is that the relative speed increases roughly
linearly with the sample size N but is fairly constant across the values of J and
K.
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Table 5 shows the corresponding results for uniformly distributed categorical
variables and N = 300. Similar results were obtained for N = 3000. The main
conclusions are:
1. The exhaustive search method is faster than QUEST when J = 2. This is

due to a short-cut algorithm that reduces the number of splits searched from
(2M−1−1) to M (Breiman et al. (1984), Theorem 4.5). This short-cut is only
applicable when J = 2.

2. For J > 2 and M > 4, QUEST is faster than exhaustive search, with relative
speed increasing exponentially with M and linearly with K.

3. The relative speed does not vary much with J for J ≥ 3.

Table 5. Computational speed of QUEST relative to exhaustive search
method for categorical variables distributed as UM . Total learning sample
size is 300; class sizes are equal.

K M J = 2 J = 3 J = 5 J = 10
4 0.39 0.5 0.6 0.6

2 10 0.12 4.2 4.3 4.4
15 0.05 60.5 59.7 61.3
20 0.02 1,050.2 1,044.1 1,070.5
4 0.68 1.1 1.0 1.1

10 10 0.29 16.2 16.1 16.5
15 0.15 265.8 259.4 263.8
20 0.09 4,943.4 4,844.6 4,984.3
4 0.79 1.2 1.2 1.2

20 10 0.46 25.2 25.4 24.9
15 0.26 447.8 446.7 443.3
20 0.16 9,103.4 9,084.7 8,904.8

7. Two Examples

The results so far have been restricted to node-wise comparisons. We now
use two examples to compare the size and accuracy of the trees constructed by
the two split selection methods when each is employed with the cross-validation
pruning method of CART.

7.1. Waveform simulation example

Our first comparison uses the waveform simulation example in Breiman et
al. (1984). There are 3 classes and 21 predictor variables, with each class being a
random combination of two triangular waveforms with noise added. We carried
out 30 simulation trials. In each trial, 1,000 learning samples were simulated
using equal class prior probabilities. Trees were constructed using the QUEST
method (with univariate and linear combination splits, and with α = 0.05) and
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the exhaustive search method. As in CART, the trees were pruned with 10-fold
cross-validation and the 1-SE rule. The error rate of each tree was estimated
with an independent test sample of size 5,000.

Results on the number of terminal nodes, the estimated error rates, and
the computational times on a SUN SPARCstation 20/50 are shown in Figure 7.
The QUEST method using linear combination splits is clearly best in terms of
accuracy and size of the trees. Its computational times are also much lower than
those for the exhaustive search method, although they are about four times that
for QUEST using univariate splits. The latter method has similar accuracy as
the exhaustive search method, although it tends to produce trees that are slightly
larger.
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Figure 7. Results for 30 trials of the waveform simulation example on a SUN
SPARCstation 20/50.
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7.2. Real data example

Our second example employs a real data set. The data consist of evaluations
of teaching performance over three regular semesters and two summer semesters
of 151 teaching assistant (TA) assignments at the Statistics Department of the
University of Wisconsin–Madison. The scores were divided into 3 roughly equal-
sized categories (“low”, “medium”, and “high”) to form the class variable. The
predictor variables were
1. Whether or not the TA is a native English speaker (binary).
2. Course instructor (25 categories).
3. Course (26 categories).
4. Summer or regular semester (binary).
5. Class size (ordered).
Table 6 gives the P -values for each predictor variable. The highly significant P -
value for the Semester variable is expected because summer teaching assignments
are normally awarded to the better TAs.

The QUEST and exhaustive search methods were applied to the data using
10-fold cross-validation pruning and the 1-SE rule on an IBM RS/6000 worksta-
tion. To study the effect of the choice of cross-validation samples, the procedures
were repeated 12 times using different random number seeds. Figure 8 plots the
sizes of the 12 pairs of trees. In contrast to the waveform example, the QUEST
method tends to yield shorter trees than the exhaustive search method here. Be-
cause the Semester variable is most significant, all the QUEST trees split on this
variable first. On the other hand, all the trees based on exhaustive search split
first on the Course variable. The difference is probably due to variable selection
bias because the Course variable generates the most splits (225 − 1 ≈ 34 × 106

splits versus 1 for the Semester variable).
The average computation times for the exhaustive search and QUEST

methods for this data set were 30.5 CPU hours and 1 CPU second, respectively.
Owing to the exceedingly long times, 10-fold cross-validation error estimates were
obtained for only 2 of the 12 pairs of trees (the 1st and last pairs in Figure 8).
The exhaustive search method took about 10 days of CPU time to obtain the
error estimates for each tree while QUEST took 17 seconds. The error estimates
were not significantly different.

Table 6. P -values for TA evaluation example

Predictor P -value
English speaker 0.0026
Instructor 0.0174
Course 0.0091
Semester 0.0018
Class size 0.3930
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Figure 8. Effect of random number seed on number of terminal nodes in
12 univariate trees for TA evaluation data. The letters “E” and “Q” refer
to the exhaustive search and QUEST methods, respectively. The trials are
arranged according to increasing values of “Q”.

8. Conclusion

The main appeal of classification trees is the insight thought to be provided
by the splits. We demonstrated that exhaustive search tends to select variables
that afford more splits. Therefore such trees should be interpreted with caution.

We showed that the FACT approach is also not free of selection bias. For-
tunately, its basic strategy of using statistical tests to guide variable selection
is sound, and we modified it to remove the bias. Additional modifications were
made to ensure binary splits. This makes it feasible to compare methods in terms
of split point variability and tree size.

In terms of classification accuracy, variability of split points, and tree size,
our results show that there is no clear winner when univariate splits are used.
Sometimes QUEST is better and other times exhaustive search is better. How-
ever, QUEST trees based on linear combination splits are usually shorter and
more accurate than the same trees based on univariate splits.

The QUEST computer program is many programs in one. Besides imple-
menting the QUEST split selection approach, it has an option for exhaustive
search. It can be used with CART-style pruning or FACT-style direct stopping,
and it accepts user-specified class priors and misclassification costs. All the com-
parisons in this paper were performed with this computer program. The Fortran
source code, user guide, and compiled binaries for the MSDOS and OS/2 oper-
ating systems are available from http://www.stat.wisc.edu/~loh/loh.html.

Some of the ideas described here have been extended to tree-structured
function estimation in Ahn and Loh (1994), Chaudhuri, Huang, Loh and Yao
(1994), Chaudhuri, Lo, Loh and Yang (1995), and Yan (1995).
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