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Abstract: Nonignorable missing data occur frequently in longitudinal studies and

can cause biased estimations. Refreshment samples which draw new subjects ran-

domly in subsequent waves from the original population could mitigate the bias. In

this paper, we introduce a mixed-effects estimating equation approach that enables

one to incorporate refreshment samples and recover informative missing information

from the measurement process. We show that the proposed method achieves consis-

tency and asymptotic normality for fixed-effect estimation under shared-parameter

models, and we extend it to a more general nonignorable-missing framework. Our fi-

nite sample simulation studies show the effectiveness and robustness of the proposed

method under different missing mechanisms. In addition, we apply our method to

election poll longitudinal survey data with refreshment samples from the 2007-2008

Associated Press–Yahoo! News.
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1. Introduction

Missing data are often encountered in longitudinal studies. Among all the

missing mechanisms, missing not at random (MNAR; Rubin (1976)) is the most

challenging one to handle. For example, in a public survey, participants with

lower socioeconomic status may have a lower probability to release their annual

income (Kim and Yu (2011)); and in AIDS clinical trials, subjects with a lower

CD4 level may drop out prematurely due to death or pessimism about treatment.

Estimation and inference procedures ignoring non-random missing mechanisms

may lead to misleading and biased conclusions.

Existing literature on analyzing the MNAR mechanism for longitudinal data

includes, but is not limited to, Diggle and Kenward (1994), Little (1994, 1995),

Hogan and Laird (1997), Molenberghs, Kenward and Lesaffre (1997), Ibrahim,

Chen and Lipsitz (2001), Roy (2003), Stubbendick and Ibrahim (2003, 2006),
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Lin, McCulloch and Rosenheck (2004), Vansteelandt, Rotnitzky and Robins

(2007), Zhou, Little and Kalbfleisch (2010), Spagnoli et al. (2011), and Shao

and Zhang (2015). Most of these methods are built under certain MNAR as-

sumptions. However, the MNAR assumption is typically difficult to verify in

practice, since the information required for such a test is also missing (Van Bu-

uren (2007)). Consequently it is challenging to assess model effectiveness and

robustness under a general MNAR setting, and a sensitivity analysis (Rotnitzky,

Robins and Scharfstein (1998); Robins, Rotnitzky and Scharfstein (2000)) might

be required.

An alternative strategy for handling nonignorable missing data is to intro-

duce refreshment samples as part of the experimental design (Ridder (1992)),

which recruits new subjects randomly from the same population in subsequent

waves over time. Hirano et al. (2001) demonstrate that implementing refreshment

samples can mitigate the effect of data attrition, and Deng et al. (2013) further

show that refreshment samples are useful for adjusting for bias. However, stud-

ies of statistical properties are still limited in application to refreshment samples,

partially because baseline values from refreshment samples are typically miss-

ing. In addition, the existing methods are restricted to few waves with a small

longitudinal cluster size, as it can be computationally intensive to handle refresh-

ment samples with a large number of repeated measurements. Furthermore, the

MNAR could still exist even after recruitment of refreshment samples.

We propose a mixed-effects estimating equation approach (MEEE) that pre-

serves the advantages of estimating equations in addressing refreshment samples.

The key idea is to reduce the estimation bias through utilizing unspecified random

effects for MNAR data. In addition, our theoretical properties confirm that the

fixed-effects estimators solved through the MEEE are consistent and asymptoti-

cally normal under two MNAR mechanisms. The proposed method has practical

advantages as it is able to utilize a large number of repeated measurements from

the same subject to achieve higher estimation accuracy for the random effects.

This is in contrast to traditional methods which can be problematic if the cluster

size of longitudinal data is large (Lipsitz et al. (2009)).

The idea of unspecified random effects has also been considered in the ex-

isting literature under the likelihood framework (for example, Tsonaka, Verbeke

and Lesaffre (2009); Tsonaka et al. (2010); Li et al. (2012); Maruotti (2015)).

Our method has several advantages compared to the existing approaches. First,

it does not require random effects to follow a discrete distribution with finite

support points. In fact, our random effects are solved by estimating equations
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and their values are not restricted to a certain set. For existing approaches,

the selection of the number of support points for the unspecified random-effects

distribution remains an open question (Tsonaka, Verbeke and Lesaffre (2009)).

Second, the proposed method is not restricted to shared-parameter models (SPM)

(e.g., Wu and Carroll (1988); Wu and Bailey (1989); Follmann and Wu (1995))

where the response variable and the missing process are linked through random

effects. We demonstrate that it can be applied under both SPMs and an extended

SPM where the missing process is related to observed responses in addition to

random effects. Third, the proposed method does not require baseline observa-

tions. This is especially useful for longitudinal survey studies with refreshment

samples. In such a case, existing methods requiring baseline observations are

difficult to implement, while the proposed method is still applicable.

The rest of this article is organized as follows. Section 2 introduces nota-

tion and the shared-parameter model assumption. Section 3 illustrates how to

construct unbiased estimating equations under MNAR mechanisms and provides

theoretical properties. Section 4 demonstrates the performance of the proposed

method through simulation studies. Section 5 applies the proposed method to

election poll survey data provided by the 2007-2008 Associated Press–Yahoo!

News. The last section presents concluding remarks and a brief discussion. All

technical proofs are in the Appendix.

2. Notation and Basic Assumptions

In this section, we introduce notation and basic assumptions for longitudinal

missing data.

Let yit denote the tth observation from the ith subject, with xit and zit
p-dimensional fixed-effects and q-dimensional random-effects covariates, respec-

tively, i = 1, . . . , n, t = 1, . . . , T . We assume that the responses and covariates

are linked through a known inverse link function µ:

E(yit|xit, zit,bi) = µ(xitβ + zitbi),

where β is a p-dimensional fixed-effects vector and bi is a q-dimensional random-

effects vector, i = 1, . . . , n. Suppose b1, . . . ,bn are true realizations of an un-

known stochastic process, and write b = (b′1, . . . ,b
′
n)′. We do not impose any

distribution assumption on b.

Let δit be yit’s missing indicator, δit = 1 if yit is observed and δit = 0

otherwise. Let yi = (yi1, . . . , yiT )′, δi = (δi1, . . . , δiT )′, and µi = (µi1, . . . , µiT )′,

where µit = µ(xitβ + zitbi). Let ni =
∑T

t=1 δit be the number of measurements
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observed from the ith subject. We define a missing indicator matrix ∆i as an

ni × T -dimensional matrix corresponding to the rows of identity matrix IT for

which yi is observed.

The idea of creating ∆i is to transform the hypothetical complete response yi
into an observed vector ∆iyi (e.g., Paik (1997)). For example, if δi = (1, 0, 1, 0, 1)′

and yi = (yoi1, y
m
i2 , y

o
i3, y

m
i4 , y

o
i5)
′ where the superscript “o” and “m” indicate “ob-

served” and “missing” respectively, then ∆iyi = (yoi1, y
o
i3, y

o
i5)
′. Each δi deter-

mines a unique ∆i, and thus ∆i is a function of δi. We take yoi = ∆iyi and

µoi = ∆iµi.

The shared-parameter model assumption (e.g., Follmann and Wu (1995)) is

yi ⊥⊥ δi|bi, (2.1)

which assumes that the missing process δi and the measurement process yi share

the same random effect bi. The missing mechanism satisfying (2.1) must be

MNAR. We further discuss this assumption and provide an extension in Section

3.1.

3. The General Method

In this section, we propose an unbiased estimating equation approach to

estimate the fixed effect β and the random effect b. Throughout, we use unbi-

asedness to denote the conditional unbiasedness of an estimating equation given

latent random effects.

A standard GEE can be formulated as:
n∑
i=1

µ̇′iA
−1/2
i R−1A

−1/2
i (yi − µi) = 0, (3.1)

where µ̇i = ∂µi/∂β, Ai is a diagonal matrix of marginal variance of yi, and R

is a working correlation matrix that contains fewer nuisance parameters than an

unspecified correlation matrix.

The unbiasedness of (3.1) leads to the consistency and asymptotic normality

of the fixed-effect estimator β̂ (Liang and Zeger (1986); Robins, Rotnitzky and

Zhao (1994); Rotnitzky, Robins and Scharfstein (1998)). Our goal is to build

unbiased estimating equations in the presence of nonignorable missing data.

3.1. Construction of unbiased estimating equations

In this subsection, we demonstrate the unbiasedness of the proposed MEEE

by incorporating unspecified random effects. Specifically, if either the SPM as-

sumption or a relaxed version of the SPM assumption is satisfied, we have condi-
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tionally unbiased estimating equations that do not rely on a specification of the

missing process.

Let Aoi = ∆iAi∆
′
i, R

o
i = ∆iR∆′i and

Ḡn =
1

n

n∑
i=1

Gi =
1

n

n∑
i=1

(µ̇oi )
′(Aoi )

−1/2(Ro)−1(Aoi )
−1/2(yoi − µoi )

=
1

n

n∑
i=1

(µ̇i)
′∆′i(∆iAi∆

′
i)
−1/2(∆iR∆′i)

−1(∆iAi∆
′
i)
−1/2∆i (yi − µi) .

We define a T × T weighting matrix conditional on the random effect bi

Ki = Ki(δi|bi) = ∆′i(∆iAi∆
′
i)
−1/2(∆iR∆′i)

−1(∆iAi∆
′
i)
−1/2∆i, i = 1, . . . , n.

Then Gi = (µ̇i)
′Ki(yi − µi).

If (2.1) holds, then E{(yi − µi)|bi} = 0 implies that

E(Gi|bi) = E{µ̇′iKi(yi − µi)|bi} = µ̇′iE{Ki|bi}E{(yi − µi)|bi} = 0. (3.2)

This decomposition does not restrict the weighting matrix Ki(δi|bi), which con-

tains the information of the MNAR mechanism. Compared to existing SPM

approaches, the distribution formulation of the missing process δi is not needed

here.

The formulation of (3.2) still requires (2.1). This assumption does not hold

if the missingness is a function of past or current responses directly. Several

methods have been developed to weaken the SPM assumption. Among them,

Henderson, Diggle and Dobson (2000) and Rizopoulos, Verbeke and Molenberghs

(2008) introduce different but correlated random effects for the measurement

process and the missing process, where the two processes no longer “share” the

same random effects. Little (2008) and Yuan and Little (2009) propose a mixed-

effects hybrid model that models the dropout process directly. Nevertheless, these

works still require parametric assumptions on the random effects, and some are

only applicable for the drop-out missing mechanism.

We propose to relax assumption (2.1) through strengthening the association

between yi and δi if the random effect itself cannot completely capture the miss-

ing information. Our relaxation does not require any parametric distribution on

the random effects nor does it restrict the missing patterns. In particular, the

relaxed assumption is applicable to the estimating equation framework where

only the first two moments are known. We introduce a new missing mechanism

termed conditionally missing at random (CMAR).

Definition 1. A missing mechanism is conditionally missing at random if miss-

ingness does not depend on unobserved data, given the observed data and the
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random effects.

Mathematically, (2.1) states that δi|bi,yi
d
= δi|bi, where

d
= denotes “equiv-

alent in distribution.” Then Definition 1 generalizes (2.1) to

δi|bi,yi
d
= δi|bi,yoi . (3.3)

It can be shown that the CMAR mechanism is still a MNAR mechanism. This

generalization is analogous to the generalization from MCAR to MAR, as we

allow the observed response yo to carry information of the missing mechanism as

well. The new assumption offers more flexibility, since it no longer requires the

random effect b to capture all information associating the missing process with

the measurement process. In the following we show that the estimating equation

(3.1) remains unbiased.

Let Wi = A
1/2
i RA

1/2
i , then for each subject i

0 = E{µ̇′iW−1i (yi − µi)|bi} = E{µ̇′iW−1i E(yi − µi|bi,yoi , δi)|bi}.

If yi = (yoi ,y
m
i )′ and µi = (µoi ,µ

m
i )′ then, based on the CMAR assumption in

(3.3), E(ymi − µmi |bi,yoi , δi) = E(ymi − µmi |bi,yoi ) is no longer a function of δi,

and thus can be modeled by available information through random effects. This

follows similarly as the MAR definition.

There are several methods to impute missing values based on observed val-

ues. For example, Paik (1997) applies mean imputation for longitudinal data.

Seaman and Copas (2009) combine mean imputation with a weighting strategy

to construct a doubly robust estimator. Qu, Lindsay and Lu (2010) propose

to impute missing values through utilizing the linear conditional mean method

(LCM). Here we adopt the LCM under the context of the mixed-effects model

for simplicity:

E(ymi − µmi |bi,yoi ) = W 21
i (W 11

i )−1(yoi − µoi ), (3.4)

where W 21
i = Cov(ymi ,y

o
i |bi) and W 11

i = Var(yoi |bi).
Given (3.4) and the fact that

W−1i

(
I

W 21
i (W 11

i )−1

)
=

(
(W 11

i )−1

0

)
,

we have

0 = E{µ̇′iW−1i (yi − µi)|bi} = E{(µ̇oi )′(W 11
i )−1(yoi − µoi )|bi}

= E{µ̇′iKi(yi − µi)|bi}.

This indicates that, once the LCM method is valid, the estimating equation in

(3.1) is unbiased without requiring (2.1). Under either the SPM or the CMAR
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assumption, one can check the conditional unbiasedness of the estimating equa-

tion E{µ̇′iKi(yi − µi)|bi} = 0 through a chi-square test (Hansen (1982); Qu,

Lindsay and Li (2000)) to test the null hypothesis for the mean zero assumption

of the estimating functions.

The LCM imputation method (3.4) is based on first-order linear approx-

imation. The imputed values are valid if the conditional distribution yi|bi is

multivariate normal, or bivariate binary (Qu, Lindsay and Lu (2010)). In ad-

dition, for a multivariate binary distribution, the LCM is valid if it belongs

to the conditional linear family (Qaqish (2003)) that assumes zero for the sec-

ond and higher-order terms in Bahadur’s representation (Bahadur (1961)). For

such circumstances as multivariate count data, the LCM provides an approxi-

mate estimation with accuracy similar to linear regression. Nevertheless, more

complicated imputation methods should be considered if one believes high-order

approximations are necessary for the observed data.

3.2. Estimation of mixed effects

In this subsection we discuss how to solve the proposed MEEE and estimate

both fixed effects and unspecified random effects. When the sample size is small

or the missing rate is high, the empirical correlation matrix might be unstable

or non-positive definite, In which case, we avoid the estimation of the matrix.

Specifically, we formulate estimating functions based on the observed data as

ḡfn =
1

n

n∑
i=1

gfi (β|bi) =
1

n


∑n

i=1(µ̇
o
i )
′(Aoi )

−1/2Mi1(A
o
i )
−1/2 (yoi − µoi )

...∑n
i=1(µ̇

o
i )
′(Aoi )

−1/2Mim(Aoi )
−1/2 (yoi − µoi )

 ,

where Mij = ∆iMj∆
′
i and {Mj}mj=1 is a matrix representation of R−1 satisfying

R−1 =
∑m

j=1 ajMj . Here Mj is a basis matrix containing only 0’s and 1’s. See

more details on selection of Mj ’s in Qu, Lindsay and Li (2000), and the number

of basis matrices m in Zhou and Qu (2012).

The equality Mij = ∆iMj∆
′
i entails the assumption (∆iR∆′i)

−1 = ∆iR
−1∆′i,

which simplifies the matrix representation for R−1 of each subject. This repre-

sentation does not affect the consistency of estimation when misspecified, and

provides better efficiency compared to using an independence structure.

We take

Kij=Kij(δi|bi)=∆′i(∆iAi∆
′
i)
−1/2Mij(∆iAi∆

′
i)
−1/2∆i, i = 1, . . . , n; j=1 . . . ,m.

Then solving ḡfn = 0 is equivalent to solving
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ḡfn(β|b) =


1

n

∑n
i=1(µ̇i)

′Ki1 (yi − µi)

...
1

n

∑n
i=1(µ̇i)

′Kim (yi − µi)

 = 0.

The relation between Ki and Kij is Ki =
∑m

j=1 ajKij .

For the fixed-effects estimation, since there are more estimating functions

than parameters, we estimate β by applying the generalized method of moments

(Hansen (1982)) conditional on b:

β̂ = arg min(ḡfn)′(C̄fn)−1(ḡfn), (3.5)

where C̄fn = (1/n)
∑n

i=1(g
f
i )(gfi )′.

For the random-effects estimation, we solve

ḡrn =



∂µ1

∂b1

′
K1(y1 − µ1)

...
∂µn
∂bn

′
Kn(yn − µn)

λPAb


= 0,

where PA is the projection matrix on the null space of (I − PX)Z, PX the pro-

jection matrix on X, and λ is a tuning parameter. The term λPAb is to ensure

the identifiability of b̂. The random-effect estimator b̂ is obtained as

b̂ = arg min{(ḡrn)′(ḡrn) + λ21b
′b}, (3.6)

where λ21b
′b is an L2-penalty term to control the magnitude of Var(b) in order

to ensure the convergence in optimization. We estimate β and b by solving

(3.5) and (3.6) iteratively. In Section 3.4 we discuss in detail how the tuning

parameters λ and λ1 are selected.

We propose a chi-square test to test the validity of the LCM imputation

method. We construct two sets of estimating equations: one contains subjects

with no missing response, and the other has missing responses imputed using

the LCM method. Since the first set of estimating equations is unbiased, a chi-

square test can be conducted to test whether or not the second set of estimating

equations is unbiased. Let

C =

{
i ∈ {1, . . . , n} :

T∑
t=1

δit = T

}
be the set of complete subjects. Write Φ1 = (1/|C|)

∑
i∈C(µ̇i)

′V −1(yi−µi), where
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| · | denotes the cardinality of a set and V the covariance matrix calculated based

on subjects with completed responses and

Φ2 =

 (1/n− |C|)
∑

i/∈C(µ̇i)
′Ki1 (yi − µi)

...

(1/n− |C|)
∑

i/∈C(µ̇i)
′Kim (yi − µi)


be the estimating functions using subjects with missing values. Let Φ = (Φ′1,Φ

′
2)
′.

According to Theorem 1 of Qu et al. (2011), under the null hypothesisH0: E(Φ) =

0, Φ′Var−1(Φ)Φ ∼ χ2
mp.

3.3. Asymptotic properties

In this subsection, we investigate fixed-effects estimation consistency and

asymptotic normality. Lemma 1 provides the asymptotic property when b is

known or is consistently estimated, and Theorem 1 shows that the desirable

properties still hold under certain conditions even if b is unspecified. Hereafter

we use β0 and b0 = (b′01, . . . ,b
′
0n)′ to denote the true fixed effect and the true

random effect, respectively.

Lemma 1. Given (2.1) and conditional on b0, β̂ solved by (3.5) satisfies β̂−β0 =

Op(1/
√
n), and

√
n(β̂ − β0)→ N(0,Σ0), where Σ0 is derived in the proof.

The conclusions in Lemma 1 still hold if b0 is replaced by a consistent esti-

mator b̂, but the consistency of b̂ requires that the cluster size T goes to infinity,

which may be too restrictive in practice. A weaker condition retains the proper-

ties stated in Lemma 1 are still valid: we assume that b̂ satisfies

1

n

n∑
i=1

gfi (β0|b̂)→ 0 as n→∞. (3.7)

This condition implies that, conditional on b̂, the sample mean of estimating

equations for the fixed effect converges to 0 when the sample size n goes to

infinity while the cluster size T is fixed.

Condition (3.7) is weaker than the consistency of b̂ since, if b̂ is consistent,

then (3.7) holds true for a large T . For a counterexample where (3.7) does not

imply the consistency of b̂, suppose yit = β0 + bi + εit, where β0 = 0, E(bi) = 0,

E(εit) = 0, and Corr(εit, εit′) = 1, for i = 1, . . . , n and t, t′ = 1, . . . , T . Then

yit = yit′ with a probability of 1 and the corresponding quasi-likelihood equation

is

gfi (β0|b̂) = µ̇′i(yi − µi) =

T∑
t=1

(yit − b̂i).
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If (3.7) is satisfied, then b̂i = (1/T )
∑T

t=1 yit = yi1, but b̂i = yi1 is not a consistent

estimator of bi as T →∞.

Theorem 1. If (2.1) and (3.7) hold then, conditional on b̂, β̂ solved by (3.5)

satisfies β̂ − β0 = Op(1/
√
n), and

√
n(β̂ − β0)→ N(0,Σ), where Σ is derived in

the proof.

If b̂ is a consistent estimator of b0, then we have Σ = Σ0 (Wang, Tsai and

Qu (2012)). Next, we relax the regular shared-parameter model assumption, and

show that the fixed-effects estimator is still consistent and asymptotically normal

under the CMAR mechanism described in Definition 1.

Corollary 1. If (3.3) and (3.7) hold and the LCM imputation method (3.4) is

valid then, conditional on b̂, β̂ solved by (3.5) satisfies β̂−β0 = Op(1/
√
n), and√

n(β̂ − β0)→ N(0,Σ).

Corollary 1 can be shown similarly as was done in the derivation of Theorem 1

and is therefore omitted.

Remark 1. Given β0 or its consistent estimator β̂, the penalized random-effects

estimator b̂ is consistent as the cluster size T goes to infinity, as discussed in Cho,

Wang and Qu (2016), given that regularity conditions are satisfied. Under the

nonignorable missing data framework, the consistency property holds as long as

either the SPM or the CMAR assumption is satisfied. The proof is quite similar

to Cho, Wang and Qu (2016), and is omitted here. One notable condition is

the L2-mixingale condition (McLeish (1975)) that controls the serial correlation

Cor(yi|bi) to achieve consistency, Cor(yit, yi,t+s) should be sufficiently small with

an increase of s.

3.4. Tuning parameter selection

We discuss the selection of the tuning parameters λ and λ1 in (3.6). A

large value of λ guarantees that the random-effects estimation is identifiable.

However, a very large value of λ does not enhance identifiability significantly,

and might result in slower convergence or non-convergence of the algorithm. In

our numerical studies, we find that λ = log(n) is sufficiently large to balance the

needs of estimation identifiability and algorithm convergence.

The estimation is more sensitive to the choice of λ1, since a larger value of

λ1 leads to a smaller variance of b̂ that could affect the estimation of β. The

term λ1b
′b is essentially an L2-penalty, which controls the bias-variance trade-

off of b. As a special case, when µ is an identity mean function, b̂ is equivalent
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to a ridge regression estimator. We use a cross-validation method to select λ1.

Each subject has a unique random effect, and hence a classical K-fold cross-

validation is not applicable. We propose a longitudinal K-fold cross-validation

with K = T . Thus, we remove measurements observed at time t from all subjects

(t = 1, . . . , T ), and minimize the objective function

L(λ1) =
1∑n
i=1 ni

n∑
i=1

(yoi − ŷoi )
′(W o

i )−1(yoi − ŷoi ),

where ŷoi = ∆i(ŷ
(−1)
i1 , . . . , ŷ

(−T )
iT )′ and ŷ

(−t)
it is the predicted value of yit without

using information from time t.

To calculate ŷ
(−t)
it , Hastie, Tibshirani and Friedman (2009, Chap. 7.2) suggest

ŷit = arg maxy fit,λ1
(y), where fit,λ1

is the probability density function or the

probability mass function of yit with parameter λ1. For example, if yit is normally

distributed, then ŷ
(−t)
it = xitβ̂

(−t)
; and if yit follows a Poisson distribution, then

ŷ
(−t)
it = [µ̂

(−t)
it ], where [µ̂

(−t)
it ] denotes the largest integer not greater than µ̂

(−t)
it .

4. Simulation Studies

We conducted simulation studies to examine the performance of the pro-

posed method. To make a fair comparison to existing approaches using the SPM,

we compared the proposed MEEE with generalized linear mixed-effects models

(GLMMs), where the estimating equations are unbiased under the SPM assump-

tion (2.1). The difference is that the GLMM assumes normality of the random

effects and independence of repeated measurements, given that random effects

are taken into account. The GLMM can be implemented through the penalized

quasi-likelihood (PQL; Breslow and Clayton (1993)) or the adaptive Gaussian-

Hermite quadrature approach (GHQ; Anderson and Aitkin (1985)). We also com-

pared the proposed method with two marginal estimating equation approaches:

the weighted generalized estimating equations (WGEE; Robins, Rotnitzky and

Zhao (1995)), and the multiple imputation method for longitudinal data (MI;

Fitzmaurice, Laird and Ware (2011)). Although the WGEE and multiple impu-

tation have the marginal interpretation and are valid under only MAR, they are

benchmark methods under the estimating equation framework for longitudinal

missing data.

The PQL and the GHQ are carried out using the R functions “glmmPQL”

and “glmer”, respectively, while the WGEE is obtained by assigning weights to

the R function “geem.” For the MI approach, we imputed missing data following

Fitzmaurice, Laird and Ware (2011, Chap. 18.2) when the missing pattern is
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monotone, or applied the R package “MICE” to impute intermittent missing data

utilizing the chained equation (Van Buuren (2007)). For WGEE, we tailored the

responses to a monotone pattern of missingness in order to apply the weighting

strategy.

We also conducted a chi-square test (Qu, Lindsay and Li (2000)) to test the

unbiasedness of the fixed-effects estimating equations E(ḡfn) = 0, and the validity

of the LCM imputation method indicated in Section 3.2.

4.1. Study 1: count responses under the SPM assumption

We chose the sample size n = 150 and the cluster size T = 3. The fixed-

effects covariates xit = (1, trt, time, trt × time)′, where “trt” (treatment) was

assigned to 1 if i ≤ n/2 and 0 otherwise, “time” was the standardized time

effect, and “trt × time” was the interaction effect of treatment and time. The

fixed-effects parameter β = (β1, β2, β3, β4)
′ = (−0.5, 0.5, 0.2, 0.2)′. The random-

effects covariates zit = (xit1, xit3)
′, and the random effects bij

iid∼ Unif(−0.2, 0.2)

for j = 1, 2. Each yi = (yi1, . . . , yiT )′ was sampled from a multivariate Poisson

distribution with mean λi satisfying

log(λit) = x′itβ + z′itbi, t = 1, . . . , T,

and the correlation structure for the repeated measurements was exchangeable

with correlation parameter ρ = 0, 0.4 or 0.7. The correlated Poisson data were

generated by the R package “corcounts.”

For the missing process, let pδit = P(δit = 1) and the logistic model of pδit be

logit(pδit) = 0.1bi1 −
0.3t

T
+ 0.1, t = 2, . . . , T,

where the assumption (2.1) is satisfied. The term −t/T ensures that the missing

rate is higher toward the end of the study, mimicking the real data. We assumed

a monotone pattern of missingness, and δit = · · · = δiT = 0 if δi,t−1 = 0. The

overall missing rate was about 45%.

Table 1 provides simulation results based on 200 simulation runs. For the

unbiasedness test, we rejected the null hypothesis 8, 5 and 10 times out of 200

replications at a significance level of 0.05 when the serial correlation ρ = 0,

ρ = 0.4 and ρ = 0.7, respectively. This indicates that the estimating equations

are unbiased, and fixed-effects estimates are consistent. For the test of the validity

of the LCM, we rejected the null hypothesis 101, 63 and 19 times out of 200

replications at a level of 0.05 for ρ = 0, 0.4 and 0.7, respectively. This agrees

with the theory that the LCM imputation is only an approximation when the
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Table 1. The absolute bias, standard error and coverage probability of the fixed-effect
estimation from 200 replications for the count responses with an exchangeable correlation
structure of parameter ρ.

MEEE WGEE MI
ρ = 0 β1 Abs. Bias 0.106 0.112 0.123

Std. Error 0.130 0.135 0.148
CP 0.975 0.930 0.945

β2 Abs. Bias 0.139 0.143 0.157
Std. Error 0.168 0.176 0.191

CP 0.965 0.930 0.920
β3 Abs. Bias 0.122 0.143 0.156

Std. Error 0.155 0.179 0.198
CP 0.985 0.950 0.955

β4 Abs. Bias 0.158 0.176 0.198
Std. Error 0.201 0.230 0.249

CP 0.960 0.935 0.915
ρ = 0.4 β1 Abs. Bias 0.118 0.125 0.137

Std. Error 0.152 0.166 0.179
CP 0.980 0.935 0.955

β2 Abs. Bias 0.150 0.157 0.179
Std. Error 0.192 0.203 0.233

CP 0.965 0.930 0.950
β3 Abs. Bias 0.107 0.128 0.156

Std. Error 0.139 0.163 0.196
CP 0.955 0.920 0.945

β4 Abs. Bias 0.134 0.157 0.205
Std. Error 0.171 0.202 0.260

CP 0.955 0.930 0.945
ρ = 0.7 β1 Abs. Bias 0.126 0.128 0.178

Std. Error 0.157 0.162 0.222
CP 0.980 0.920 0.975

β2 Abs. Bias 0.155 0.167 0.260
Std. Error 0.205 0.218 0.326

CP 0.950 0.900 0.935
β3 Abs. Bias 0.092 0.101 0.272

Std. Error 0.117 0.130 0.562
CP 0.945 0.915 0.990

β4 Abs. Bias 0.110 0.141 0.645
Std. Error 0.138 0.177 1.131

CP 0.960 0.910 0.985

MEEE: mixed-effects estimating equation; PQL: penalized quasi-likelihood; GHQ:
adaptive Gaussian-Hermite quadrature; WGEE: weighted generalized estimating
equation; MI: multiple imputation; Abs. Bias: absolute bias; Std. Error: stan-
dard error; CP: coverage probability. The PQL does not converge due to a small
cluster size T , and the GHQ is not applicable since the dimension of parameters is
greater than the number of data points.
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response variable is count data. Nevertheless, the proposed method satisfies the

SPM assumption (2.1), and performs the best, even when the LCM condition is

violated.

Overall the proposed estimators are less biased and have smaller standard

errors compared to the WGEE and the MI approaches. In addition, the improve-

ment of the proposed method is more significant when the correlation parameter

ρ increases, in general. The PQL does not converge due to a small cluster size T ,

and the GHQ is not applicable here since the dimension of parameters is greater

than the number of data points.

4.2. Study 2: binary responses under the CMAR assumption

In the second simulation study, we evaluated the performance of the proposed

estimator when (2.1) is violated but (3.3) is satisfied.

We generated data with sample size n = 80 and cluster size T = 6. The

fixed-effect covariates and the random-effect covariates were the same as in the

simulation study 1. The fixed-effect was β = (β1, β2, β3, β4)
′ = (−0.5, 1, 0.8, 0.8)′.

The random-effect covariate was zit = (xit1, xit3)
′, and the random effects bij

iid∼
Unif(−0.2, 0.2) for j = 1, 2. The response yi = (yi1, . . . , yiT )′ followed a multi-

variate Bernoulli distribution with mean function µit satisfying

logit(µit) = x′itβ + z′itbi, t = 1, . . . , T,

and an AR-1 correlation structure with correlation parameter ρ = 0.2 or 0.6,

generated by the R package “MultiOrd.” The correlation structure of ρ > 0.6

cannot be generated due to infeasibility of this mean function (Chaganty and Joe

(2006)).

We generated the missing process through the logistic model

logit(pδit) = 0.1yi1 + 0.2bi1 −
0.5t

T
+ 0.5, t = 2, . . . , T.

In this setting, (3.3) is satisfied. The missing pattern is intermittent, and the

overall missing rate is about 40%.

Table 2 provides the simulation results from 200 replications when ρ =

0.2 or 0.6. For the unbiasedness test, we rejected the null 72 and 80 times out of

200 simulations at a significance level of 0.05 when the serial correlation ρ = 0.2

and ρ = 0.6, respectively. Thus, the unbiasedness of the estimating equations

was mildly violated. In addition, since (2.1) is violated, we conducted the chi-

square test proposed in Section 3.2 to test the validity of the LCM, which leds us

to reject the null hypothesis 14 and 37 times out of 200 replications for ρ = 0.2
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Table 2. The absolute bias, standard error and coverage probability of the fixed-effect
estimation from 200 replications for the binary responses with an AR-1 correlation struc-
ture of parameter ρ, where monotonized responses are used for the WGEE.

MEEE PQL GHQ WGEE MI
ρ = 0.2 β1 Abs. Bias 0.150 0.214 0.204 0.435 0.172

Std. Error 0.194 0.272 0.253 0.621 0.173
CP 0.970 0.933 0.952 0.896 0.935

β2 Abs. Bias 0.246 0.401 0.345 0.806 0.413
Std. Error 0.301 0.483 0.390 1.127 0.225

CP 0.985 0.867 0.959 0.891 0.715
β3 Abs. Bias 0.171 0.311 0.304 0.527 0.148

Std. Error 0.211 0.341 0.316 0.696 0.181
CP 0.955 0.860 0.932 0.891 0.980

β4 Abs. Bias 0.269 0.379 0.356 0.828 0.405
Std. Error 0.333 0.471 0.419 1.164 0.230

CP 0.975 0.927 0.959 0.896 0.790
ρ = 0.6 β1 Abs. Bias 0.217 1.100 5.361 0.515 0.192

Std. Error 0.280 1.148 7.913 0.658 0.243
CP 0.935 0.805 0.727 0.873 0.948

β2 Abs. Bias 0.333 2.452 8.488 0.750 0.362
Std. Error 0.424 2.186 11.953 1.050 0.328

CP 0.960 0.605 0.695 0.923 0.907
β3 Abs. Bias 0.177 2.532 7.689 0.577 0.153

Std. Error 0.234 2.024 10.605 0.737 0.191
CP 0.910 0.305 0.609 0.845 0.979

β4 Abs. Bias 0.306 2.429 4.998 0.862 0.365
Std. Error 0.402 2.044 6.361 1.246 0.280

CP 0.975 0.558 0.781 0.901 0.845

MEEE: mixed-effects estimating equation; PQL: penalized quasi-likelihood; GHQ:
adaptive Gaussian-Hermite quadrature; WGEE: weighted generalized estimating
equation; MI: multiple imputation; Abs. Bias: absolute bias; Std. Error: standard
error; CP: coverage probability.

and 0.6, respectively. The LCM is mildly violated in this setting. However, the

MEEE still outperforms other approaches and achieves the smallest absolute bias

and standard error with its coverage probability around 95%. The improvement

of the proposed method is more evident when the correlation parameter ρ = 0.6,

where the PQL and GHQ deteriorate drastically with higher bias, standard er-

rors, and much lower coverage probability of the confidence interval.

5. Application

IWe analyzed data collected from the 2007-2008 Associated Press-Yahoo!

News Poll. This survey was intended to evaluate changes in nationwide attitude
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’

Figure 1. A comparison of the respondents’ average interest in the presidential campaign
and the average of the estimated random effects by MEEE, both plotted against respon-
dents’ number of observed occasions; the right panel is plotted using the same model
but without time as a predictor.

and opinion toward the presidential election in 2008. It was an eleven-wave

survey with the first nine waves conducted during the year prior to the 2008

general election.

Respondents were invited to participate in all follow-up waves, regardless of

their responses to the previous waves, so the missing pattern is non-monotone.

However, this survey suffered greatly from data attrition, where only 63% of the

first wave respondents participated in wave 9. To offset the high percentage of

the missing rate, the survey recruited new participants as refreshment samples

in waves 3, 5, 6, and 9.

We chose one of the survey questions as a response variable: “How much

interest do you have in following news about the campaign for president?” Fol-

lowing the Pew Research Center (2010) and Deng et al. (2013) strategy, we

dichotomized the 5-level response: 1 for answers “a great deal” or “quite a bit”,

and 0 otherwise. We analyzed all available data collected in the 9 waves before

the election, and the total sample size was 4,719. The response measurements

from the same subject were correlated, with an approximately exchangeable cor-

relation structure and an average correlation around 0.6. The overall missing rate

of the response variable was 49.7%. The predictors were all observed, including

time, age, education, gender, household income, marital status, whether living

in a metropolitan statistical area (MSA Status), and race/ethnicity.

The missingness of the response variable is likely to be nonignorable. This
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is reflected by the left panel of Figure 1 showing that respondents are more

interested in the presidential election if they stay in the survey longer; the miss-

ing probability depends highly on the measurement process. In addition, the

missing mechanisms occurring in the refreshment samples are also likely to be

MNAR. A two-sample t-test shows that in the last wave before the election, new

respondents collected in the last wave have significantly higher interest in the

presidential campaign than the respondents recruited in earlier waves, indicating

that the earlier measurements from refreshment samples are missing nonignor-

ably. This is also indicated by the left panel of Figure 1, in that the responses

from subjects with only one observation have a higher average interest in the

presidential election, as these subjects are mainly recruited in the last wave.

We assumed a random intercept model for the MEEE, the PQL and the

GHQ, and compared them with three marginal approaches: GEE, WGEE, and

MI, for which estimations, standard errors and p-values are provided in Table 3.

We conducted the unbiasedness test of the estimating equations and the validity

test of the LCM for the proposed method. Both tests rejected the null, indicating

that these assumptions are violated. However, the MEEE approach agrees with

most of the other methods that as the election time gets closer, older people

with higher education level and higher household income were more interested in

the presidential election. In addition, except for the MI with monotonized data,

the other six methods showed that “Black and Non-Hispanic” people were more

interested in the presidential election than “White and Non-Hispanic.” The most

interesting finding here is that methods incorporating refreshment samples such

as MEEE, PQL, GHQ, GEE and MI with all available data were able to detect a

significant difference in interest between males and females, which coincides with

the finding of the Pew Research Center (2010). This implies that refreshment

samples may contain important information which should not be ignored. In

addition, the MEEE had smaller standard errors for estimators regarding “MSA

status” and “Other Non-Hispanic”, with more significant p-values.

The right panel of Figure 1 plots the average estimated random effects versus

the number of observations, which agrees with the left panel in that a large value

of random effect implies high interest in the election. Figure 2 is a histogram of

the estimated random effects given by the MEEE, which shows a bimodal pattern.

A Shapiro-Wilk test indicates that the normality assumption for random effects

is severely violated (p-value < 10−15). Existing approaches that impose the

normality assumption may result in estimation bias and misleading inference.
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Table 3. The estimates, standard errors and p-values of fixed effects on respondents’
interest in following news about the presidential campaign.

Predictor Statistics MEEE PQL GHQ GEE MI MI* WGEE*
Intercept Estimate −4.352 −5.370 −7.368 −3.181 −2.395 −1.966 −3.187

Std. Error 0.210 0.236 0.336 0.152 0.149 0.569 0.211
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Time Estimate 0.112 0.228 0.250 0.111 0.111 0.012 0.110
Std. Error 0.006 0.007 0.010 0.005 0.005 0.196 0.007
p-value 0.000 0.000 0.000 0.000 0.000 0.951 0.000

Age Estimate 0.043 0.047 0.068 0.029 0.021 0.019 0.031
Std. Error 0.002 0.003 0.004 0.002 0.002 0.003 0.002
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Education Estimate 0.546 0.616 0.869 0.379 0.292 0.283 0.366
Std. Error 0.036 0.047 0.064 0.029 0.028 0.036 0.041
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Gender Estimate 0.190 0.220 0.313 0.147 0.113 0.063 0.032
Std. Error 0.063 0.086 0.114 0.053 0.055 0.065 0.075
p-value 0.003 0.011 0.006 0.006 0.038 0.333 0.668

Household Estimate 0.047 0.058 0.087 0.036 0.025 0.021 0.031
Income Std. Error 0.009 0.012 0.015 0.007 0.008 0.008 0.010

p-value 0.000 0.000 0.000 0.000 0.001 0.007 0.002
Marital Status Estimate −0.011 −0.028 −0.001 −0.018 −0.011 −0.034 −0.019

Std. Error 0.067 0.093 0.123 0.057 0.056 0.062 0.081
p-value 0.872 0.760 0.997 0.759 0.846 0.577 0.813

MSA Status Estimate 0.150 0.133 0.199 0.076 0.051 0.030 0.072
Std. Error 0.083 0.117 0.156 0.071 0.072 0.082 0.097
p-value 0.069 0.256 0.200 0.284 0.478 0.713 0.457

Black, Estimate 0.598 0.702 1.000 0.438 0.331 0.117 0.428
Non-Hispanic Std. Error 0.137 0.167 0.218 0.101 0.106 0.156 0.134

p-value 0.000 0.000 0.000 0.000 0.002 0.453 0.001
Other, Estimate −0.226 −0.261 −0.339 −0.130 −0.105 −0.093 −0.428

Non-Hispanic Std. Error 0.124 0.176 0.234 0.112 0.102 0.129 0.160
p-value 0.068 0.138 0.148 0.244 0.300 0.471 0.007

Hispanic Estimate 0.053 0.078 0.014 0.053 0.016 −0.028 −0.124
Std. Error 0.120 0.169 0.222 0.104 0.096 0.112 0.142
p-value 0.657 0.645 0.950 0.613 0.867 0.802 0.383

*Monotonized responses are used, where all follow-ups are deleted once the first
missing datum occurs. MEEE: mixed-effects estimating equation; PQL: penalized
quasi-likelihood; GHQ: adaptive Gaussian-Hermite quadrature; GEE: generalized es-
timating equation; MI: multiple imputation; WGEE: weighted generalized estimating
equation; Std: Error, standard error.

6. Discussion

In this paper, we propose a mixed-effects model to correct estimation bias for

nonignorable missing data. Mainly, we construct unbiased estimating equations
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Figure 2. Histogram of the estimated random effects by MEEE.

with unspecified random effects under a shared-parameter model, and extend it

to a more general nonignorable-missing framework. We show that consistency

of the fixed-effects parameter estimation can still be achieved under the more

general framework. To our knowledge, most existing methods in the shared-

parameter model framework require either a parametric distribution assumption

or finite support points for the random effects, while our method allows unspeci-

fied random effects that do not have such restrictions. In addition, the proposed

method imposes no restriction on the missing pattern, and hence it can be effec-

tively applied to refreshment samples where baseline observations are subject to

missingness.

For future research, it would be worthwhile to develop a method for han-

dling missing covariates and responses simultaneously (e.g., Lee and Tang (2006);

Chen, Yi and Cook (2010)). In our framework, since neither the SPM assumption

in (2.1) nor the relaxed assumption in (3.3) imposes constraints on covariates, we

can treat a covariate with missing values as a new response variable and apply

the MEEE.

Supplementary Materials

Supplementary material includes regularity conditions and the proofs of

Lemma 1 and Theorem 1.
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