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Abstract: Population forecasts for small areas within a country are an important

planning tool. Standard methods for forecasting demographic rates do not, how-

ever, perform well with the noisy data that are typical of small areas. We develop a

Bayesian model that combines ideas from the demographic, time series, and small

area estimation literatures. We apply the model to the problem of forecasting em-

igration rates, disaggregated by age and sex, for 73 regions within New Zealand

for the period of 2014-2038. We also deal with missing regional information and a

change of geographic boundary. We test the calibration of the model using held-out

data, and present extensions to accommodate age profiles and regional shares that

vary over time. A key advantage of our approach is to provide meaningful un-

certainty measures about forecasting. The prediction intervals for long-term fore-

casting are necessarily wide, engaging users to confront the substantial uncertainty

about long-term trends.

Key words and phrases: Bayesian hierarchical model, multiple imputation, small

area estimation, time series.

1. Introduction

Population forecasts are an essential input to long-range planning, including

decisions about schools, infrastructure, and housing (e.g., Bulatao et al. (2000);

Siegel (2002)). To be useful, forecasts typically need to be disaggregated. A

minimal requirement for many purposes is that the forecasts include age, sex,

and region within the country. Once the data are disaggregated in this way,

a single cell may contain only a few observations—not enough on their own to

support reliable estimates or forecasts. Disaggregated population forecasting is

thus an example of “small area estimation” (Rao (2003); Pfeffermann (2013)).

Because planning for infrastructure requires long time horizons, forecasts

that extend many years into the future are needed. It is important for these

forecasts to be as accurate as possible. It is also important that users of these

forecasts be given reliable information on the extent of the forecasts’ uncertain-

ties.

http://dx.doi.org/10.5705/ss.2014.200t
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The standard “cohort-component” approach to population forecasting is

based on the accounting identity that population at the end of a period equals

population at the beginning of the period plus the number of births minus the

number of deaths plus the number of immigrants minus the number of emigrants.

Forecasts are constructed for birth rates, death rates, and migration rates. The

accounting identity is then repeatedly applied to give forecasted population in

each period after the base year.

In this paper, we focus on a single component of population change: emigra-

tion, that is, migration from each small area to destinations outside the country.

We also focus on a single country: New Zealand. Forecasting different compo-

nents in different settings would raise different problems and require different

model assumptions. Nevertheless, the technical challenges that we discuss in

this paper are sufficiently common, and the solutions we propose are sufficiently

general, that the methods could serve as a starting point for many problems in

demographic forecasting.

We forecast emigration rates rather than counts. Forecasting counts would

require either (i) ignoring the size of the population at risk of emigrating or (ii)

obtaining the population at risk from a full cohort-component population fore-

cast, which would require forecasts of all other migration flows, as well as births

and deaths. Although approach (i) is sometimes taken, it has serious shortcom-

ings, including ignoring the fact that population size is typically a good predictor

of migration counts, and a tendency to produce demographically implausible out-

comes. Approach (ii) is our long-term goal, but is outside the scope of this paper.

Forecasting a single component is challenging enough. In this paper, we forecast

emigration rates for 16 age groups, 2 sexes, and 73 regions over 25 years, which

amounts to 16× 2× 73× 25 = 58,400 rates.

Demographic forecasters often deal with many rates. They do, however,

enjoy one crucial advantage over most other forecasters: demographic rates are

often surprisingly regular. Mortality, fertility, and migration rates often have

characteristic age-sex profiles that are stable over time or that change in consis-

tent ways. The regularities in the age-sex profiles reflect regularities in the life

course. For instance, migration rates typically peak in the late teenage years be-

cause these are the years when people reach adulthood and begin to leave home

(Courgeau (1985)). Age-sex profiles are slow to change because the life course

regularities underpinning them are slow to change. In addition, regions that

have high or low rates in one period tend to have similarly high or low rates in

later periods, reflecting long-lasting characteristics of regions, such as the mix of

industries or amenities. As we discuss below, emigration rates for New Zealand

are well behaved, though there is some evidence of age profiles or region effects

changing over time.
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Demographers have developed techniques that exploit regularities in demo-

graphic rates. The standard approach to forecasting age-sex-specific rates at

the national level is to obtain an initial set of age-sex specific rates, and then

scale them up or down based on a parameter representing overall level (Preston,

Heuveline, and Guillot (2001)). The initial set of age-sex-specific rates may be

smoothed or adjusted to deal with random variation or biases. In the case of

migration, the most common approach to smoothing is the use of a “model mi-

gration schedule”, a mathematical function super-imposing a set of exponential

curves that represent components of a standard age profile, such as labor force

peaks or student migration peaks (Rogers and Castro (1981); Wilson (2010)).

Traditionally, forecasts of the parameter capturing overall level are based on

some mixture of extrapolation and expert judgment.

The standard way of measuring and communicating uncertainty in popu-

lation forecasts has been to produce “low”, “medium”, and “high” scenarios

based on relatively simple mathematical extrapolations of current trends (Keil-

man (2008)). The existence of multiple variants reminds users that the forecasts

are subject to uncertainty. However, it is seldom clear how much uncertainty

these variants are supposed to encompass, though ex-post analyses of projection

errors can provide some guidance (Stoto (1983)). Moreover, when population

forecasts are assembled from low, median, and high variants for fertility, mortal-

ity and migration, the results are often counter-intuitive. For instance, combina-

tions of variants that lead to large variation in population size may lead to small

variation in the ratio of young people to old people (Lee (1998)).

The problem of modelling future uncertainty in demographic rates has re-

ceived extensive attention from academic demographers and statisticians. The

influential paper by Lee and Carter (1992) on mortality forecasting, for instance,

uses a principal component analysis to obtain an age profile and a time effect,

and then models the time effect using a random walk. A recent alternative is

to use functional data models with time series coefficients to model age-specific

demographic rates (e.g. Hyndman and Booth (2008)). Booth (2006) and Booth

and Tickle (2008) review the large literature sparked by Lee and Carter (1992).

In recent years, Bayesian approaches have started to appear. Raftery and col-

leagues, for instance, have developed a set of Bayesian methods for forecasting

mortality, fertility, and international migration that have been adopted by the

United Nations Population Division and used to produce population forecasts for

all countries (Alkema et al. (2011); Raftery et al. (2012); Gerland et al. (2014)).

Bijak and Wísniowski (2010) use Bayesian methods, including informative priors

elicited from migration experts, to estimate migration flows between European

countries from highly imperfect data. However, with the exception of Statistics

Netherland and Statistics New Zealand, national statistical agencies have not



1340 JOHN BRYANT AND JUNNI L. ZHANG

taken up the new methodologies, and have not published probabilistic popula-

tion forecasts.

Moreover, almost all the research on population forecasts, Bayesian or oth-

erwise, has focused on national-level forecasts. Despite its practical importance,

small area population forecasting has received relatively little attention from

academic researchers (Wilson (2014)). Methods developed for national-level fore-

casts typically do not work well when applied, unmodified, to small area forecasts.

The main problem is the increasing prominence of random variation as the data

become more disaggregated. Standard methods for obtaining age profiles can

break down when the number of events is small and observed rates are subject

to large fluctuations, as occurs with small area forecasts. Common solutions are

to impose identical profiles across all small areas, or to manually intervene when

profiles are implausible. However, neither solution is completely satisfactory.

Imposing identical profiles reduces accuracy, and manual intervention reduces

transparency and is time-consuming.

A further complication with small area forecasting is that virtually

all geographically-disaggregated data contain gaps and breaks due to changes in

administrative boundaries. Manipulating the data to achieve consistent historical

time series is often the most labour-intensive part of small area estimation and

forecasting (Rees (1985); Gregory, Marti-Henneberg, and Tapiador (2010)). In

principle, population forecasts should incorporate the uncertainty generated by

the gaps and breaks into the overall uncertainty measures. In practice, this is

rarely done.

The approach to small area forecasting presented in this paper draws on

ideas from the literature on small area estimation, in addition to those on de-

mography and time series. We develop a fully Bayesian hierarchical model for

demographic rates of small areas, apply the model to New Zealand emigration

data disaggregated by age, sex, and region for the period of 1991-2013, and then

construct forecasts for the period of 2014-2038. We use multiple imputation to

deal with two types of missingness in the region variable, including that caused

by changes in administrative boundaries (Heitjan and Little (1991)). We mea-

sure uncertainty coherently using credible intervals for quantities of interest. We

validate the model using five years of hold-out data.

Our model assumes a hierarchical prior structure for the rates disaggregated

by age, sex, region, and time, which allows for borrowing of strength across age

groups, sexes, regions, and times. For tractability, our basic model specifies that

the age effect, the region effect, and the time effect are additive on the scale of

log-rates. In extensions, we allow for an age-time interaction and a region-time

interaction. Our models make no use of informative priors for hyperparame-

ters. The main reason for not using informative priors is that national statistical
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agencies—an important potential user of our methods—have traditionally been

averse to the use of such priors (Fienberg et al. (2011)). It is possible, however,

that informative priors may bring sufficient improvements in model performance

to outweigh such considerations; we return to the topic of informative priors

in the Discussion section. A key advantage of our approach that it provides

meaningful uncertainty measures for the forecasts, which is especially important

for long-term forecasting. The prediction intervals are wide for the end of the

forecast horizon. Users of population forecasts may sometimes dislike wide pre-

diction intervals. But we argue that forecasters need to be prepared to defend

wide intervals.

The remainder of the paper proceeds as follows. Section 2 discusses the

data for the application. Section 3 presents the methods, including the basic

model, forecasting, treatment of missing values, validation, and an extension to

age-time or region-time interactions. Section 4 presents the results. Section 5

concludes with a discussion of limits of the current model, future developments,

and potential advantages of the methods for statistical agencies.

2. Data

2.1. Data on emigration

Our emigration data are counts of “permanent and long-term” departures

from New Zealand for 1991-2013. A permanent and long-term departure is a

departure that entails a change in residence as opposed to a business trip or a

holiday, which includes the departure of students studying at universities abroad.

The counts are disaggregated by 5-year age-group, sex, region, calendar year, and

citizenship. The information on citizenship is not of interest in itself, and the

data cannot be publicly released with so many cross-classifying variables due to

privacy concerns. However, as discussed in Section 3.3, citizenship is used when

imputing for non-response in the region variable. Because New Zealand is an

island with an efficient administrative system, its international migration data

are unusually accurate.

The geographical unit used in the departures data is the “territorial author-

ity”. The territorial authority is the most important subnational administrative

unit in New Zealand. In 2010 there were 73 territorial authorities in the coun-

try, giving an average population size of 60,000, though the smallest (Chatham

Islands) had a population of less than 1,000. During 2010, seven territorial au-

thorities within greater Auckland were amalgamated into a single unit, containing

one third of the national population. From 2010, departures of people who had

been living within the new amalgamated unit were simply coded to “Auckland”,

with no further geographical detail.
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Figure 1. Direct estimates of emigration rates for New Zealand and five
selected territorial authorities, 1991-2013. The territorial authorities are
ordered by population size, with the smallest on the left. The series for
Papakura and Manukau end in 2010, when these territorial authories were
amalgamated into a new unified Auckland authority.

Altogether, 7.5% of individual emigration records have no regional infor-

mation at all, either because the respondent did not provide it, or because the

response could not be coded. The percent of missing values rose sharply around

the year 2000, with an average of 2.2% in the 1990s, and 9.8% in 2000-2013.

Another challenge is sparsity. Once the emigration data are disaggregated

by age, sex, territorial authority, and year, the median cell size is 7, and 14% of

cells have a value of 0.

2.2. Other data

To capture the size of the population at risk of emigrating, we use popula-

tion estimates disaggregated by age, sex, region, and year obtained from Statis-

tics New Zealand as a customized tabulation. The population estimates are

sufficiently disaggregated that population sizes for the seven pre-2010 territorial

authorities within greater Auckland can be calculated directly for 2011-2013.

As discussed in Sections 3.1 and 3.3 below, we use data on regional-level

characteristics to predict long-run regional migration levels. The characteristics

are the percent of the territorial authority population born overseas and the per-

cent of territorial authority population in full-time study. The data are publicly

available at a low level of geographical detail (Statistics New Zealand (2014)).

2.3. Trends and patterns in emigration rates

Figure 1 shows direct estimates of emigration rates, that is, counts of em-

igrations divided by the corresponding population at risk. The figure shows

rates for the country as a whole, and for five territorial authorities arranged by

population size from smallest (Kaikoura, with a population in 2010 of 2,800) to

largest (Manukau, with a population in 2010 of 375,700). Figure A1 in the Sup-

plementary Materials shows equivalent rates for 49 randomly-selected territorial
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Figure 2. Direct estimates of emigration rates for females aged 20-24, for
New Zealand and five selected territorial authorities. Note that the vertical
scale is almost 6 times higher than that for Figure 1.

Figure 3. Direct estimates of emigration rates by age, for New Zealand and five
selected territorial authorities, 1991 and 2010.

authorities. At the national level, the emigration rate appears to have increased

until about the year 2000, then fluctuated around a constant level. None of the

five selected territorial authorities exactly match this pattern, though all show

evidence of fluctuating around a constant level since approximately 2,000. There

is clear evidence of differences between territorial authorities in mean emigration

rates. There is a hint of differences in slopes (rates of change) for emigration

rates, but such differences are small relative to annual variation.

Rates for specific age-sex groups are subject to greater random fluctuations

than rates for the population as a whole. To illustrate, Figure 2 shows rates

for females aged 20-24. (Figure A2 in the Supplementary Materials presents

equivalent rates for the 49 territorial authorities.) To appreciate the extent of

the variability, it is important to note that the vertical scale is almost six times

higher than that for Figure 1. The rates for Kaikoura are particularly noisy,

which is to be expected, given its small size.

Figure 3 shows emigration rates by age in 1991 and 2010. There are hints

of a change in age profile, though it is difficult to disentangle the effects of

random variation. There is also some suggestion of variation in age profiles

across territorial authorities.
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3. Methods

3.1. The basic model

Small area methods typically use models to borrow strength from related

areas or across time (Rao (2003); Pfeffermann (2013)). We use a hierarchical

Bayesian model in which counts are Poisson and rates are log-normal. As will

become apparent, assuming a log-normal distribution for rates greatly eases the

task of modelling age, sex, region, and time effects, since it allows the use of

linear models at this level. While a gamma distribution for rates would facilitate

the estimation of the rates, since the Poisson and gamma are conjugate, it would

complicate the modelling of age, sex, region, and time effects. An early example

of a model similar to ours, though on a smaller scale, and dealing with education

rather than migration, is Cargnoni, Müller, and West (1997).

For age a, sex s, region r and time t, let yasrt denote the emigration count,

and xasrt person-years of exposure to the risk of migrating. We assume that

yasrt
ind∼ Poisson(λasrtxasrt), (3.1)

log λasrt = β0 + βagea + βsexs + βregr + βtime
t + βage:sexas + βage:regar + ϵasrt, (3.2)

ϵasrt
ind∼ N(0, σ2ϵ ). (3.3)

Here λasrt is the underlying emigration rate, β0 is an intercept, βagea is an age

effect, βsexs is a sex effect, βregr is a region effect, βtime
t is a time effect, and βage:sexas

and βage:regar are respectively age-sex and age-region interactions. The
ind∼ symbol

indicates that the quantities on the left hand side are drawn independently, given

the parameter values on the right.

The presence of the ϵasrt term means that posterior values for λasrt are a

compromise between the predictions of the higher-level model (3.2) and the direct

estimate yasrt/xasrt. The more observations there are in cell asrt, the closer the

posterior distribution will be to the direct estimate. This is a standard feature

of hierarchical Bayesian models (Gelman and Hill (2006)).

Including more interaction terms makes identification more difficult, and

substantially increases the number of iterations required for the model to reach

convergence. We chose interaction terms to include in the model by examining

observed rates like those presented in Section 2.3, and by fitting models with

many interactions and calculating the variance of the parameters for each inter-

action (with greater variance implying that the interaction was contributing more

to the overall variance in log λasrt) (Gelman et al. (2014, p.396)). In an extension

described in Section 3.5, we add an age-time or a region-time interaction to the

basic model.
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We assume that the time effect βtime
t follows a random walk with noise, a

special case of a non-stationary polynomial trend model (Prado and West (2010,

pp.119-120)). We assume that

βtime
t = θt + vt, (3.4)

θt = θt−1 + wt, (3.5)

vt
ind∼ N(0, σ2v), (3.6)

wt
ind∼ N(0, σ2w). (3.7)

A random walk with noise reduces to a standard random walk when vt ≡ 0. An

attractive property of the random walk with noise is that it distinguishes between

short-term idiosyncratic movements, captured by vt, and permanent changes in

the level of the distribution, captured by wt. Following Petris (2010), our prior

for the starting value of θ is θ0 ∼ N(0, 1,000,000).

In initial work, we also used specifications like that of (3.4)-(3.7) to model

age effects, on the grounds that values for consecutive age groups were likely to be

correlated in the same way that values for consecutive periods were. However,

further experimentation showed that assuming βagea ∼ N(0, σ2age) gave almost

identical results, presumably because there is enough information in the data on

variation by age to overwhelm the effects of choice of prior. We therefore adopted

the simpler exchangeable prior for age effects.

The region effects βregr are modelled using linear regression on region-level

covariates Xr:

βregr = γ⊤Xr + ur, (3.8)

ur
ind∼ N(0, σ2u), (3.9)

where Xr consists of the logarithm of percent of population born overseas and

the logarithm of percent of population in full-time study for region r in 2013. The

elements of γ have improper uniform prior distributions. Section SM.1 in the

Supplementary Materials discusses the set-up for region effects in more detail.

We do not allow for time-varying covariates, as this would require forecasting

covariates when forecasting migration rates. In future work, we intend to allow for

correlations between neighbouring territorial authorities following, for instance,

Congdon (2014). However, we do not attempt this here.

We assume an improper uniform prior distribution for the intercept term β0

and for the sex effect βsexs . Interaction terms have normal priors:

βage:sexas
ind∼ N(0, σ2age:sex), (3.10)

βage:regar
ind∼ N(0, σ2age:reg). (3.11)
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As with small area estimation models more generally, these priors allow estimates

for related cells to “borrow strength”, alleviating problems of small sample sizes.

The standard deviation terms for the normal priors all have improper uniform

distributions over the positive real numbers. Section SM.2 in the Supplementary

Materials provides details on the Gibbs sampler used to draw from the posterior

distribution.

3.2. Forecasting

Having used data up to time T to estimate the model, we obtain forecasts

for time t = T + 1, . . . , T + K. Many parameters, such as β0 or βage:sexas , do

not contain time indices and are time invariant. However, some parameters,

including emigration rates λarst, do vary over time. We generate random values

for these parameters by drawing on conditional distributions given values for the

time-invariant parameters.

Estimation yields N posterior draws of the model parameters. We derive the

nth (n = 1, . . . , N) set of forecasted parameters as follows.

1. For k = 1, . . . ,K, generate v
(n)
T+k independently from a N

(
0, σ

2(n)
v

)
distribu-

tion.

2. For k = 1, . . . ,K, generate w
(n)
T+k independently from a N

(
0, σ

2(n)
w

)
distribu-

tion.

3. Apply the observation equation (3.4) and the state equation (3.5) repeatedly

to obtained time effects β
time(n)
T+k , k = 1, . . . ,K.

4. For k = 1, . . . ,K, generate ϵa,s,r,T+k independently from a N
(
0, σ

2(n)
ϵ

)
distri-

bution for all a,s,r.

5. Use (3.2) to compute values for log λ
(n)
a,s,r,T+k, for all a, s, r, and k = 1, . . . ,K.

6. Exponentiate to obtain λ
(n)
a,s,r,T+k, for all a, s, r, and k = 1, . . . ,K.

3.3. Missing values for region

The region variable is subject to two kinds of missingness: (i) some records

are missing any information on region; and (ii) in 2011–2013, records with territo-

rial authorities coded to “Auckland” are missing information on which pre-2010

territorial authority within greater Auckland the respondent departed from.

We address problem (i) by building a statistical model of departures and

using the model to multiply impute region. Rubin (1988, p.1) argues that impu-

tation of missing values in official data should ideally by carried out by national

statistical office because there is often “information available to the data collec-

tor but not available to an external data analyst. . . . This kind of information,

even though inaccessible to the user of a public-use file, can often improve the
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imputed values.” This description applies exactly to emigration data in New

Zealand. Statistics New Zealand staff have access to detailed data on emigration

by age, sex, region, time, and citizenship status that is not available to the public

because of privacy concerns. One of the authors of this paper is a Statistics New

Zealand employee, and therefore has access to the detailed data. Examination of

the data shows that, even after stratifying on age, sex, and time, the proportion

of missing values for region varies strongly by citizenship, as does the territorial

authority of departure.

Let yobsasrtc denote counts of departures for age-group a, sex s, region r, time t

and citizenship c where region is recorded. Let ymis
asrtc denote counts where region

is not recorded. Let ypartastc =
∑

r y
mis
asrtc. Unlike y

mis
asrtc, y

part
astc is observed.

A hierarchical Poisson model similar to our main model is fitted to yobsasrtc.

The model includes age, sex, region, time, and citizenship main effects, and a

region-citizenship interaction, where the citizenship effects and region-citizenship

interaction are assumed to be drawn from independent normal distributions. It

does not include an exposure term, since population estimates disaggregated by

citizenship are not available.

Let ϕarstc denote the emigration rate generated by this model. The im-

putation procedure assumes that, conditioning on age, region, sex, time, and

citizenship, the region variable is missing at random; that is, within ypartastc , the

probability of belonging to region r is proportional to ϕarstc. Based on this

assumption, for each of M posterior draws of the ϕasrtc, values for ymis
asrtc were

generated using

(ymis
as1tc, . . . , y

mis
asRtc) ∼ Multinomial

(
ypartastc , (πas1tc, . . . , πasRtc)

)
, (3.12)

where πasrtc = ϕasrtc/
∑

r ϕasrtc. Region r takes 73 values from 1991 to 2010,

and 67 thereafter. Values

yasrt =

C∑
c=1

(yobsasrtc + ymis
asrtc) (3.13)

were then calculated, providing M complete datasets. Because these datasets

do not include the citizenship variable, they are sufficiently aggregated to fulfil

Statistics New Zealand confidentiality requirements and can be released exter-

nally.

Rather than using Rubin’s rules to combine estimates from the multiply

imputed datasets (Rubin (1987)), we combined posterior samples. We applied

our model to each of the M imputed data sets to obtain M samples from the

M associated posterior distributions. We then combined the M samples into a

single pooled sample, and derived all our posterior inferences from the pooled
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sample. The number of imputed datasets needed to adequately capture the

uncertainty created by the imputation process depends on the fraction of data

that are missing, and on the model being used, but often numbers as low as 3 or

5 are enough (Rubin (1987)). We used M = 10. We show in the Supplementary

Material that using M = 5 would not substantially degrade performance (Figure

A3 in the Supplementary Materials).

Problem (ii) is the allocation of departures from within greater Auckland to

the seven pre-2010 territorial authorities. The simplest solution to this problem

would be to combine data for the seven territorial authorities in every year, and

work with 67 regions rather than 73. However, users of population projections

require information on areas within greater Auckland. We therefore attempted

to allocate emigrations from greater Auckland over the period 2011-2013 to the

seven original territorial authorities.

Let yas,Au,t denote the emigration count for age a and sex s for greater

Auckland during 2011-2013. Let A1, . . . , A7 denote the indices for the seven

original territorial authorities within greater Auckland. Given yas,Au,t and the

rates, emigration counts for territorial authorities within greater Auckland can

be imputed using

(yas,A1,t, . . . , yas,A7,t) ∼ Multinomial (yas,Au,t, (ψas,A1,t, . . . , ψas,A7,t)) , (3.14)

where ψas,Aj ,t = λas,Aj ,t/
∑

j′ λas,Aj′ ,t.

If the imputation was done within each step of the Gibbs sampler, strong

correlation would be introduced between the imputed yas,Aj ,t’s and the corre-

sponding λas,Aj ,t’s, leading to slow convergence. We therefore exploited the fact

that

yas,Au,t
ind∼ Poisson

(∑
j

λas,Aj ,txas,Aj ,t

)
, (3.15)

and adopted instead the following strategy. First, model parameters were esti-

mated based on the observed counts, including yas,Au,t for years 2011-2013 and

yasrt for r not in greater Auckland or t in other years. Second, yar,Aj ,t’s for years

2011-2013 were imputed given each posterior draw of the rates. Section SM.2 in

the Supplementary Materials gives the details.

3.4. Validating the model

Following standard practice in time series modelling, we tested the perfor-

mance of the model by constructing forecasts that were based on a subset of the

available data, and assessing how well the forecasts match the data that were held

out. Unfortunately, our time series are short, so it is only feasible to hold out

a few years of data, and thus only test the short-run performance of the model.



BAYESIAN FORECASTING OF DEMOGRAPHIC RATES FOR SMALL AREAS 1349

Moreover, we wish to test the ability of the model to deal with the loss of infor-

mation on region for the seven territorial authorities within greater Auckland.

To do this, we need data with regional detail for these territorial authorities,

which is only available up to 2010.

In an application like ours, where cell counts are small, the distinction be-

tween super-population and finite-population quantities introduces further com-

plications. Our model produces forecasts for λasrt, which are unobservable super-

population quantities. The data available for validation are yasrt/xasrt, which

are observed, finite-population quantities. Because of sampling variation, finite-

population quantities do not in general equal their super-population equivalents.

When cell counts are large, so that sampling variation is minor relative to the

rates, the differences between super-population and finite-population quantities

are small enough to ignore. However, when cell counts are small, the distinction

becomes important. We therefore need to convert our super-population quanti-

ties into their finite-population equivalents before making the comparison.

Our training dataset is data for 1991-2005, but with emigration counts for

2003-2005 for the seven territorial authorities within greater Auckland all coded

to “Auckland”, mimicking the effect of the actual amalgamation in 2010. The

held-out data include emigration counts yarst for all 73 regions for 2006-2010.

Since there are records missing any information on region, we do not know the

true values of yarst in the held-out data, and we only have their imputed values.

Hence our validation test were conditional on the 10 imputed datasets. The

validation procedure was as follows.

1. Run the MCMC algorithm using the training data, including drawing the

parameters and imputing the values for the seven territorial authorities within

greater Auckland for 2003-2005, on 10 multiply imputed datasets, to obtain

10 sets of posterior samples.

2. For each of the 10 multiply imputed datasets and its associated set of posterior

samples:

(2.1) Obtain a set of forecasts for the underlying emigration rates λasrt for

the 73 territorial authorities for 2006-2010.

(2.2) Obtain a set of forecasts for the emigration counts ypreasrt for 2006-2010

by drawing from Poisson distributions with means equal to λasrtxasrt.

(This is equivalent to forecasting the finite population emigration rates

yasrt/xasrt since the xasrt are known constants.)

(2.3) Calculate the proportions of 50% and 90% prediction intervals for ypreasrt

that do in fact contain yarst.
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(2.4) Use the median value for ypreasrt as a forecasted value for yarst, and calcu-

late an accuracy measure as the proportion of forecasted values falling

within a given percentage of yarst.

3. Average coverage rates and accuracy measures across the 10 datasets.

The accuracy measures obtained from step 2.4 are difficult to assess in isola-

tion. We therefore compared them with equivalent measures using a naive model

in which the forecasted value equals the last observed value, which is the value

for 2002 for territorial authorities within greater Auckland and 2005 elsewhere.

3.5. Adding age-time and region-time interactions

Examination of observed emigration rates (e.g., Figure 3) provides some ev-

idence for an interaction between age and time. More generally, the ability to

accommodate changing age structures would greatly increase the number of sit-

uations to which our methods could be applied. We have therefore experimented

with the use of an age-time interaction.

The age-time interaction consists of a random walk with noise within each

age group,

βage:time
at = θat + vat, (3.16)

θat = θa,t−1 + wat, (3.17)

vat
ind∼ N(0, τ2v ), (3.18)

wat
ind∼ N(0, τ2w). (3.19)

To keep the calculations tractable, the specification does not allow for the corre-

lations between neighbouring age groups.

We have also experimented with a region-time interaction. The specification

mirrors that for the age-time interaction, but with region replacing age. A further

extension is to combine age-time and region-time interactions in the same model.

Doing so leads to extremely poor convergence, however, so we leave this for future

research.

4. Results

4.1. The basic model

Figure 4 shows how estimated and forecasted emigration rates evolve over

time, for females in selected age groups and territorial authorities. (Here, and

throughout the paper, we use ‘estimated’ when referring to historical rates, and

‘forecasted’ when referring to future rates.) Results for females in the 20-24 age

group in the 49 territorial authorities are shown in Figure A4 in the Supplemen-

tary Materials.
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Figure 4. Estimated and forecasted emigration rates. Each panel shows
emigration rates by time, for females, for selected territorial authorities and
selected age groups. The territorial authorities are ordered by population
size, with the smallest at the top. The light shading represents 90% cred-
ible intervals, the dark shading represents 50% credible intervals, and the
light lines in the center show posterior medians. The black lines are direct
estimates.

The black lines in the figures depict observed finite-population emigration

rates, while the shaded regions depict credible intervals for the underlying super-

population λasrt. It is to be expected that less than 90% of the finite-population

rates lie inside the 90% credible intervals for λasrt, since the finite-population
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Figure 5. The average length of 95% credible intervals for log λasrt in 2038
versus population size in 2013 on a logarithmic scale for all 73 regions.

rates are subject to Poisson variability.
During the estimation period, when yasrt is observed, the direct estimates

for small territorial authorities are subject to greater smoothing, and the cred-
ible intervals are wider for small territorial authorities than for large territorial
authorities. This is sensible behavior, since cell counts are lower in smaller ter-
ritorial authorities. This behavior is typical of small area estimation models.

In Papakura and Manukau, both of which are within greater Auckland, there
is an increase in uncertainty between 2010 and 2011. The increase in uncertainty
reflects the fact that information on areas within greater Auckland is no longer
available after 2010. It is again sensible behavior, but would not occur with
traditional deterministic methods for imputation.

Between 2013 and 2014, when moving from estimates to forecasts, in all
territorial authorities there is a sharp increase in uncertainty. The credible inter-
vals then widen more gradually over time. This pattern is typical of time series
models for demographic rates.

The relationship between regional population size and uncertainty is less
clear in the forecast period than in the estimation period. But a relationship
does exist. Figure 5 shows widths of 90% prediction intervals for log λasrt in
2038, averaged across age and sex, versus log population size in 2013. There is a
negative relationship between width and population size, hence larger regions on
average have less uncertainty about log λasrt. As can be seen from the vertical
scale, however, the differences are small. When prediction intervals that have
nearly constant average width on a log scale are translated back into natural
units for λasrt, averaged across age and sex, the prediction intervals for territorial
authorities with high average λasrt are wider than those for territorial authorities
with low average λasrt. But for a particular age and sex group, the pattern of
regional difference in uncertainties about λasrt is not clear-cut.
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Table 1. Percents of prediction intervals containing true values: The basic
model.

50% intervals 90% intervals
In Greater Auckland 51.5 89.6
Outside Greater Auckland 58.7 90.7
Overall 58.0 90.6

In most territorial authorities shown in Figure 4 and Figure A4, the means

for the forecasted rates are plausible. An exception is Queenstown-Lakes (ab-

breviated to “Quenstwn-Lks”) in Figure A4. The mean for Queenstown Lakes

for the whole period 1991-2013 is a poor guide to future rates, as migration rose

sharply in the years leading up to 2013. We return to the Queenstown-Lakes

case in our extension to region-time interactions.

Figure 6 shows estimated and forecasted age profiles in four selected years,

for males in the five selected territorial authorities. Figure A5 in the Supplemen-

tary Material shows results for 49 territorial authorities. The forecasted profiles

have the same shape as the smoothed historical ones, but with much greater un-

certainty. When assessing this uncertainty, it is important to bear in mind that

the graphs show annual rates, which are more variable than long-term averages.

4.2. Validation of the basic model

Table 1 shows the results of the calibration exercise described in Section 3.4.

The prediction intervals referred to in the table are for the period 2006-2010, and

the true values are values held out from the model. For the country as a whole

the actual coverage of 50% prediction intervals is 58.0%, and for 90% intervals

it is 90.6%. The 90% intervals are well calibrated, but the 50% intervals are too

wide.

Figure 8 shows coverage disaggregated by region and time. Auckland city

has the worst performance in two of the five years. Figure 7 helps explain why.

The figure shows emigration rates for the seven territorial authorities within

greater Auckland. The “Auckland” panel in the figure shows results for the

territorial authority “Auckland City” rather than the wider region. The solid

grey line marks the start of the imputation period, and the dashed grey line

marks the start of the forecast period. Over the years for which the model has

data, emigration rates for the seven territorial authorities in greater Auckland

move up and down together. During the imputation and forecast periods, in

contrast, the rates for the Auckland territorial authority move upwards while

rates for everywhere else move downwards.

Our main accuracy measure is the proportion of forecasted values falling

within 25% of the true values. This measure is 42.6% for our model and 37.3%
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Figure 6. Estimated and forecasted emigration rates. Each panel shows
emigration rates by age, for males, for a selected region and selected years.
The territorial authorities are ordered by population size, with the smallest
at the top. The light shading represents 90% credible intervals, the dark
shading represents 50% credible intervals, and the light lines in the center
show posterior medians. The black lines are direct estimates.

when using the last observed value as a forecast. Further detail on forecast

accuracy is given in Figure A6 in the Supplementary Materials.

4.3. Adding age-time interaction or region-time interaction

Figure 9 presents the estimated and predicted emigration rates from the
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Figure 7. Direct estimates of emigration rates for seven regions within the
amalgamated Auckland. Here “Auckland” in the figure refers to the pre-
2010 territorial authority of Auckland City. The solid grey line indicates
year 2003, the start of the imputation period in the validation exercise; and
the dotted grey line indicates year 2006, the start of the prediction period
in the validation exercise.

model including age-time interactions, for females in selected age groups and re-

gions. For comparison, it also shows 90% credible intervals from the basic model.

Adding age-time interactions appears to have little effect. This is presumably

because age profiles are relatively stable in our dataset; different datasets could

be expected to yield different results.

Figure 10 presents the estimated and predicted emigration rates from the

model including region-time interaction. In contrast to the age-time case, adding

a region-time interaction has a substantial effect on posterior distributions. In

particular, it increases mean forecasted values for Kaikoura and Queenstown-

Lakes to levels that are much more plausible. Adding the region-time interaction

increases the widths of prediction intervals. This makes sense: if it cannot be

assumed that regional share of emigration will remain constant over time, then

there is more uncertainty.

The model with region-time interactions exhibits slightly greater over-coverage

than does the basic model. As can be seen in Table 2, the 50% prediction inter-

vals contain the true value 60.1% of the time, and the 90% prediction intervals

contain the true value 92.3% of the time. Coverage remains lower in greater

Auckland than in other parts of the country.
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Figure 8. Percent of held-back yasrt values falling within 50% and 90%
prediction intervals, by territorial authority and time. The territorial au-
thorities are order from smallest to largest, with the smallest at the top.
The seven regions in bold are the ones within the amalgamated Auckland.

5. Discussion

In this paper, we have presented a new approach to subnational demographic
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Figure 9. Estimated and predicted emigration rates from the model includ-
ing age-time interaction, for females in selected age groups and territorial
authorities. The light shading represents 90% credible intervals, the dark
shading represents 50% credible intervals, and the light lines in the center
show posterior medians. The black lines show 90% credible intervals from
the basic model.

Table 2. Percents of prediction intervals containing true values: Model in-
cluding region-time interaction.

50% intervals 90% intervals
In Greater Auckland 53.7 92.5
Outside Greater Auckland 60.8 92.3
Overall 60.2 92.3

forecasting that combines ideas from demography, small area estimation, and

time series statistics. We have constructed forecasts that behave sensibly in the

face of very small cells counts, that avoid much of the manual adjustment required

by traditional methods, and that acknowledge and combine multiple source of

uncertainty. The new approach is, however, computationally demanding, which

imposes difficult tradeoffs between realism and tractability. For instance, the

results from the validation suggest that the model needs to be further refined

and extended. However, computation times are already long enough to place

practical constraints on model-building.

In our model, when t is a time in the past, the posterior distribution for

rate λasrt is a compromise between the higher-level model for log λrsat, and the

direct estimate yrsat/xrsat. However, when t is a time in the future, the posterior
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Figure 10. Estimated and predicted emigration rates from the model includ-
ing region-time interaction, for females in selected age groups and territorial
authorities. The territorial authority “Queenstown-Lakes” is included be-
cause it appears to have a particularly strong region-time interaction. The
light shading represents 90% credible intervals, the dark shading represents
50% credible intervals, and the light lines in the center show posterior me-
dians. The black lines show 90% credible intervals intervals from the basic
model.

distribution reflects only the higher-level model. When forecasting for small

areas, even more than when estimating, it is important that the higher-level

model adequately represents the major data characteristics. Even the highest-

level parameters must have realistic values. Consider, for example, the error

terms vt and wt in the prior model for the time effect (3.4)–(3.5). If the variances

for these terms are poorly estimated, then the historical estimates of the time

effect will borrow too much or too little strength. Whether this matters depends

on the data and application; if there are abundant data, it may have little effect

on the posterior distribution of the λasrt. In contrast, obtaining good estimates

of the variances of vt and wt is essential to forecasting, since these variances

are key determinants of the widths of the prediction intervals. However, higher

levels of hierarchical models are typically more difficult to estimate than lower

levels, because the data provide less information on which to base the estimates

(Gelman et al. (2006, p.516)). In our dataset, for instance, there are only 23 years

from which to estimate time effects, even though there are tens of thousands of

data points.
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Future progress on small area demographic forecasting will require further

development of priors representing age, sex, region, and time effects, and in-

teractions between these effects. Examples include region priors that account

for spatial correlations, and time priors that account for persistent upward or

downward trends. Adapting the model to other settings or other demographic

series will require new priors. When modelling internal migration, for instance,

the most conceptually attractive approach is to use origin-destination matrices,

where every possible combination of origin and destination receives its own ef-

fect. Under such specifications, however, the number of origin-destination effects

increases with the square of the number of regions. Given that it can be difficult

to fit models to large disaggregated datasets even with existing priors, future

work on more complex priors will need to be mindful of computational issues. A

related priority for future research is finding ways to reduce the computing time.

We are, for instance, investigating the use of Hamiltonian Monte Carlo methods

to speed up convergence of the Gibbs sampler (Neal (2011)).

We suspect that as the models are developed and applied, increasing use will

be made of informative priors. One way that informative priors are likely to prove

valuable is in estimating higher-level parameters that are difficult to estimate us-

ing only the information contained in the data to hand. For instance, informative

priors may be helpful in estimating the variance of innovation terms in time se-

ries priors. A logical place to start is “weakly informative” priors (Gelman et al.

(2006)). Another use for informative priors would be forecasting in situations

where the past was not a reliable guide to the future. Our basic model is essen-

tially a sophisticated form of extrapolation. This is arguably the best approach

when forecasting emigration from New Zealand, where historical patterns have

been relatively stable and there are no strong grounds for expecting a dramatic

break in the future. It would not be the best approach when forecasting fertility

in a poor country experiencing rapid socioeconomic development, where the past

experience of the country is likely to be a poor guide to the future and there is a

large body of international research on which to base predictions. A third possi-

ble use for informative priors is testing hypothetical scenarios, such as exploring

the implications of policies to reduce emigration. Scenarios could be constructed

by placing informative priors on some combination of time, age, and region ef-

fects, depending on how the the policy was to be implemented. Such scenario

building would have much in common with conventional population projections.

Once the basic computational problems are addressed, questions of model

selection and model checking are likely to become increasingly prominent. Stan-

dard model selection strategies, such as fitting multiple models and choosing the

best model on some criterion, are not feasible at present because of long com-

putation times. The large number of parameters complicates the task of model
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checking, though we have found graphs like those presented in this paper to be

useful.

Another important task is studying the calibration and accuracy of longer-

term forecasts from the model. The main obstacle to doing so is the absence of

long time series of disaggregated data. Without such data, longer-term forecasts

need to be treated with caution. In our view the best approach is to produce

forecasts based on transparent statistical methods, and to be open about their

limitations. There is strong demand for long-term forecasts. If statisticians

refrain from producing long-term forecasts, methods that are less transparent

and less statistical will be used instead.

Assuming that the methods described in this paper continue to improve, they

offer important practical advantages to national statistical offices. One advantage

is efficiency. Moving from traditional forecasting methods to methods like those

described here would require resources for model-building, testing, and retraining

of staff. However, once these costs are paid, the marginal cost of producing a

forecast would be much lower than at present, because more of the process would

be automated.

Another potential advantage for national statistical offices would be im-

proved transparency. The methods proposed here do not escape the need for

expert judgment. However, the judgments concern high-level modelling questions

such as which interactions to include, rather than specific substantive matters,

such as whether to allow a particular region to continue growing indefinitely.

Decisions on high-level modelling are generally easier to explain and justify than

decisions on specific substantive questions.

Another advantage of the methods proposed here is that they provide mea-

sures of uncertainty. Estimating uncertainty is difficult: for instance, small

changes to specifications can induce large changes in the widths of prediction

intervals. Furthermore, wider intervals will be obtained if the uncongeniality

between the imputation model class and the analysis model class in multiple-

imputation inference is taken into account, an issue formally addressed by Xie

and Meng (2014). Much more research and experience with small area forecasting

models is required. However, methods for carrying out this work are available,

including validation exercises like the one presented in this paper. It is reasonable

to expect that progress in measuring uncertainty can be made.

Prediction intervals from probabilistic population forecasts are often criti-

cised as being “too wide”. Such criticisms can be interpreted in several ways.

One interpretation is that the model is miscalibrated, in that the true coverage of

the prediction intervals is greater than the nominal coverage. A second interpre-

tation is that the model does not use available information efficiently, and could

have achieved the same level of coverage with narrower intervals. Prediction

intervals that are too wide in either of these senses can potentially be improved.
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A third interpretation is that the prediction intervals are wider than users

of the forecasts expect or feel comfortable with. Demographers and statisticians

need to be careful when responding to criticisms of this kind. Users’ intuitions

about reasonable sizes for prediction intervals are not necessarily well informed.

Few people have experience with making small area population forecasts and then

comparing them with actual trajectories, especially when the forecast horizons

are 20 years are more. Moreover, decision-makers who insist on forecasts with

narrow prediction intervals may regret doing so in the long run. Expanding a

bridge or a hospital in response to higher-than-expected population growth is

expensive.

Supplementary Materials

Section SM.1 discusses the modelling of region effects (given by (3.8) and

(3.9)) in more detail. Section SM.2 provides details on the MCMC algorithm

used to draw from the posterior distribution. Section SM.3 presents additional

tables and figures.
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