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Abstract: This article is concerned with the two-sample Behrens-Fisher problem in

high-dimensional settings. A test is proposed that is scale-invariant, asymptotically

normal under certain mild conditions, and the dimensionality is allowed to grow in

the rate, respectively, from square to cube of the sample size in different scenarios.

We explain the necessity of bias correction for existing scale-invariant tests. We

also give some examples to show the advantage of the scale-invariant test over

scale-variant tests when variances of the two samples are different.
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1. Introduction

We are concerned with the two-sample Behrens-Fisher problem in high-

dimensional settings. Assume that {Xi1, . . . ,Xini} for i = 1, 2 are two inde-

pendent random samples with the sizes n1 and n2, from p-variate distributions

F (x−µ1) and G(x−µ2) located at p-variate centers µ1 and µ2. Let n = n1+n2.

We wish to test

H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2, (1.1)

when their respective covariances Σ1 and Σ2 are unknown. For testing (1.1), Bai

and Saranadasa (1996) proposed a test statistic based on Mn = ||X̄1 − X̄2||2, is
developed when Σ1 = Σ2 = Σ. The key feature of the Bai and Saranadasa’s

proposal is to use the Euclidian norm to replace the Mahalanobis norm since

having the inverse of the sample covariance matrix is no longer beneficial when

p/n → c > 0. Zhang and Xu (2009) extended this method to the k-sample high-

dimensional Behrens-Fisher problem and derived the asymptotic distribution of

the test statistic when p/n → c < 1. To allow simultaneous testing for ultra

high-dimensional data, Chen and Qin (2010) considered the test statistic

Wn =

∑n1
i ̸=j X

T
1iX1j

n1(n1 − 1)
+

∑n2
i ̸=j X

T
2iX2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1X

T
1iX2j

n1n2
(1.2)
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by removing
∑ni

j=1X
T
ijXij for i = 1, 2 from ||X̄1 − X̄2||2; these terms impose

demands on the dimensionality. The asymptotic normality of Wn is established

without imposing any explicit connection between p and n. The restriction on

the dimension is that the number of divergent eigenvalues of Σ1 and Σ2 is not

too large, and the divergence rate is not too fast.

As a test statistic, an important requirement is scale-invariance, lest the test

suffer from scalar transformations: the same dataset generating different con-

clusions due to different scalar transformations. This is an obvious limitation

of Wn and Mn. Intuitively speaking, both tests take the sum of all p squared

mean differences without using the information from the diagonal elements of

the sample covariance, and thus their test power depend heavily on the underly-

ing variance magnitudes. In practice, different components can have completely

different physical or biological readings and scales that are not similar. It is

desirable to develop scalar-transformation-invariant tests for the Behrens-Fisher

problem that can integrate the individual information in a relatively “fair” way.

Under the normality, Srivastava and Du (2008) proposed a scalar-trans-

formation-invariant test assuming equality of the covariance matrices. Srivas-

tava, Katayama, and Kano (2013) extended their results to unequal covariance

matrices. However, to derive the well-defined asymptotic null distribution, the

dimension p must have a smaller order than n2. Park and Ayyala (2013) also

proposed a scale-invariant test from the idea of leave-out cross validation, but

their test is not shift-invariant. The test is not powerful for significance level

maintainance and power enhancement.

We propose test via standardizing each component of the difference of two-

sample means by the corresponding variance and suggest a simple but effective

test statistic. The proposed test is invariant under scalar transformations and

its asymptotic normality can be derived under some very mild conditions similar

to those in Chen and Qin (2010).

For large dimension p gets larger, the assumption that every component of

x is standardized with variance 1 brings too many plug-in sample variances and

seriously affects the asymptotic behaviors of the test. For p not of order n2,

existing scale-invariant tests suffer asymptotically from bias-terms, as the sam-

ple variance is only root-n consistent, bias cannot be eliminated asymptotically.

Thus, when p is of the order n2 or higher, a calibration or bias correction to make

scale-invariant tests useful is needed.

The remainder of the paper is organized as follows. In the next section, the

test statistic is constructed and its asymptotic normality is established. A bias

correction to the expectation of the proposed test is developed and the associated

plug-in estimators are suggested. Simulation comparisons are reported in Section

3. Section 4 contains a sensor detection example to illustrate the proposed test.
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Several remarks in Section 5 conclude the paper. Technical details and some

additional simulation results are provided in the Appendix in a supplementary

file.

2. High-dimensional Two-sample Location Tests

For the univariate Behrens-Fisher problem, Fisher (1935, 1939) considered

τ = (x̄1 − x̄2)/
√

s21/n1 + s22/n2, where x̄i and si are the i-th sample mean and

standard deviation, respectively. For the multivariate Behrens-Fisher problem,

James (1954), Yao (1965) and Johansen (1980) proposed test procedures based

on:

Q1 = (X̄1 − X̄2)
T

(
S1

n1
+

S2

n2

)−1

(X̄1 − X̄2),

where X̄i and Si are the i-th sample mean and covariance matrices, respectively.

When the dimension p > n, the sample covariance matrices S1 and S2 are not

positive definite and, accordingly, these test procedures are no longer feasible.

Zhang and Xu (2009) simply removed the term (S1/n1 + S2/n2)
−1 in Q1. Their

test statistic is essentially an L2-norm and thus not scale-invariant. Although

having the inverse of the sample covariance matrix is no longer beneficial when

p/n → c > 0 (Bai and Saranadasa (1996)), the information provided by the

sample variances should still be useful. Consider

Q2 = (X̄1 − X̄2)
T

(
D1

n1
+

D2

n2

)−1

(X̄1 − X̄2),

where Di is the diagonal matrix of Si. Q2 can be written as

Q2 =

p∑
k=1

(µ̂1k − µ̂2k)
2

σ̂2
1k/n1 + σ̂2

2k/n2
,

where µ̂ik and σ̂ik are the sample mean and standard deviation of the k-th variable

for the i-th sample, respectively. Thus, Q2 is simply a sum of the p squared

univariate Fisher’s test statistics. Srivastava, Katayama, and Kano (2013) used

the standardized Q2 as the test statistic, q̂n = p−1/2(Q2 − p). If n = O(pδ),

δ > 0.5 and under normality, this statistic has mean zero asymptotically through

the asymptotic equivalence: q̂n → q̃n in probability, where

q̃n = p−1/2

(
p∑

k=1

(µ̂1k − µ̂2k)
2

σ2
1k/n1 + σ2

2k/n2
− p

)
.

Srivastava, Katayama, and Kano (2013) claimed in their setting that Q2 is

almost identical to the statistic proposed by Chen and Qin (2010). When p is of



1300 LONG FENG, CHANGLIANG ZOU, ZHAOJUN WANG AND LIXING ZHU

the order of n2 or higher, this is not true as Q2 has well-defined limit under the

null, the equivalence between q̂n and q̃n is no longer true; there is a non-negligible

bias-term between q̂n and q̃n, as shown below in a simple scenario. For n1 = n2

and Σ1 = Σ2 = Ip, we have result about q̂n.

Proposition 1. If Conditions (C1)−(C5) below hold, and p = n2+α, 0 < α < 1,

then under H0, P
(
q̂n/
√

var(q̂n) > zα

)
→ 1, where zα is the upper α quantile of

N(0, 1).

The justification follows, almost exactly, the same arguments used to prove

Theorem 1 in the Appendix. We can show that {q̂n − E(q̂n)}/
√

var(q̂n)
L−→

N(0, 1), with E(q̂n) = 4p1/2n−1+p−1/2n−1
∑p

k=1(κ1k−κ2k)
2+o(1) and var(q̂n) =

2 + o(1), where κik = E(Xijk − µik)
3. Thus, E(q̂n)/

√
var(q̂n) = O(nα/2) even in

the normal case with
∑p

k=1(κ1k − κ2k)
2 = 0.

Thus, even in the simple case, the size of the Srivastava, Katayama, and Kano

(2013) test is distorted when the dimension gets higher. They also proposed a

ratio consistent estimator of v̂ar(q̂n) but when p = O(n2+α), α > 0, their estima-

tor is not ratio-consistent. They proposed a correction term cp,n to adjust the

empirical size, but in finite sample cases we conducted, this size-adjusted value

cp,n makes the variance estimator always larger than the asymptotic variance of

q̂n; see Figure 2.

We can define a test that can be asymptotically unbiased. The details are

as follows. As in Bai and Saranadasa (1996), the term
∑ni

j=1X
2
ijk in (µ̂1k −

µ̂2k)
2 imposes demands on the dimensionality, where Xij = (Xij1, . . . , Xijp)

T .

Motivated by Chen and Qin (2010), after removing the terms like
∑ni

j=1X
2
ijk in

(µ̂1k − µ̂2k)
2, we take

Q3 =

p∑
k=1

1

σ̂2
1k/n1 + σ̂2

2k/n2

{
1

n1(n1 − 1)

∑
i̸=j

X1ikX1jk +
1

n2(n2 − 1)

∑
i ̸=j

X2ikX2jk

− 2

n1n2

n1∑
i=1

n2∑
j=1

X1ikX2jk

}
.
=

p∑
k=1

Ak

σ̂2
1k/n1 + σ̂2

2k/n2
.

Here
∑p

k=1Ak = Wn is the test statistic proposed by Chen and Qin (2010). It

is not scale-invariant and Q3 scales each Ak in Wn by its corresponding variance

estimator. A modification of Q3 can be taken as an initial test statistic:

Tn =
1

n1
Q3 =

p∑
k=1

Ak

σ̂2
1k + γσ̂2

2k

,

where γ = n1/n2. It is called an initial test statistic because Tn cannot be

directly used as the test for the hypotheses we want to check, but a standardized
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version can. While E(Ak) is zero, the expectation of Tn is not since Ak is not

independent of σ̂2
1k + γσ̂2

2k. We need an analysis about Tn as to bias.

The tests statistics proposed by Bai and Saranadasa (1996) and Chen and

Qin (2010) are invariant under orthogonal transformations, Xij → PXij where

P is an orthogonal matrix. In contrast, Tn is not invariant under orthogonal

transformations, but it is invariant under location shifts and scalar transforma-

tions, Xij → DXij + c for i = 1, 2, j = 1, . . . , ni, where c is a constant vector,

D = diag(d1, . . . , dp), and d1, . . . , dp are non-zero constants.

As do Bai and Saranadasa (1996) and Chen and Qin (2010), we suppose

Xij = Γizij + µi for j = 1, . . . , ni, i = 1, 2, (2.1)

where each Γi is a p×m matrix for some m ≥ p such that ΓiΓ
T
i = Σi, and the

{zij}ni
j=1 are m-variate i.i.d. random vectors such that

E(zi) = 0, var(zi) = Im, E(z4il) = 3 +∆i, E(z8il) = mi8 ∈ (0,∞),

E(zα1
ik1

zα2
ik2

· · · zαq

ikq) = E(zα1
ik1

)E(zα2
ik2

) · · ·E(z
αq

ikq),
(2.2)

for a positive integer q such that
∑q

k=1 αk ≤ 8 and k1 ̸= k2 · · · ̸= kq. We need

conditions as n, p → ∞.

(C1) n1/(n1 + n2) → λ ∈ (0, 1).

(C2) tr
(
ΛΣiΛ

2ΣjΛ
2ΣlΛ

2ΣhΛ
)
= o(tr2{(ΛΣ1Λ+ΛΣ2Λ)2}) for i, j, l, h = 1 or

2, where Λ = diag
{
(σ2

11 + γσ2
21)

−1/2, . . . , (σ2
1p + γσ2

2p)
−1/2

}
.

(C3) p2/n5var(Tn) → 0.

(C4) With Π1i = E(Λ(Xij − µi) (Λ(Xij − µi))
3T ) and Π2i = E(Λ(Xij −

µi)(Xij−µi)
TΛ)3, i = 1, 2, n−4

i tr
(
Π2

1i

)
= o(var(Tn)) and n−4

i tr (ΛΣiΛΠ2i)

= o(var(Tn)) for i = 1, 2.

(C5) (µ1 − µ2)
TΛ2ΣiΛ

2(µ1 − µ2) = o(n−1tr((ΛΣ1Λ +ΛΣ2Λ)2)), for i = 1, 2,

((µ1 − µ2)
TΛ2(µ1 − µ2))

2 = o(n−1tr((ΛΣ1Λ+ΛΣ2Λ)2)).

Remark 1. Conditions (C1) and (C5) are similar to conditions (3.3) and (3.4)

in Chen and Qin (2010). To appreciate Condition (C2), consider the sim-

ple case σik = σjl, i, j = 1, 2, k, l = 1, . . . , p. Condition (C2) then becomes

tr (ΣiΣjΣlΣh) = o[tr2{(Σ1 + Σ2)
2}] for i, j, l, h = 1 or 2, which is the same

as condition their (3.6). Unlike them, we restrict the relationship between the

dimension p and sample size n in Condition (C3) due to the use of the plug-

in variances. Such a “step backward” is the price we need to pay for scalar-

transformation-invariance. Consider the simple case Σ1 = Σ2 with bounded

eigenvalues so var(Tn) = O(pn−2). We can allow p = o(n3), which is much

more relaxed than required by Srivastava and Du (2008). Under assumptions
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(i)−(iii) in Srivastava and Du (2008), the test statistic Tn is not biased, µn =

o(
√
var(Tn)) under H0. When the dimension p is large, when p = O(n2) and

Σ1 = Σ2 has bounded eigenvalues, we have µn ∼
√

var(Tn). Condition (C4)

is a technical condition, see specific cases in the Appendix. Intuitively, if all

the variables are positively correlated, E((Xijk − µk)
3(Xijl − µl)) is dominated

by σ2
ikE((Xijk − µk)(Xijl − µl)) and then tr(Π2

1i) is dominated by tr((ΛΣiΛ)2).

Similarly, tr(ΛΣiΛΠ2i) is dominated by tr((ΛΣiΛ)2), and Condition (C4) will

hold in this special case.

Theorem 1. Under (C1)−(C5), {Tn − E(Tn)}/
√

var(Tn)
L−→ N(0, 1), as p,

n → ∞.

Then to formulate a testing procedure, E(Tn) and var(Tn) under H0 need to

be estimated. In the Appendix, under (C1)−(C5), we can show that

E(Tn) =||Λ(µ1 − µ2)||2 +
p∑

k=1

{
2σ4

1k

n1(n1 − 1)(σ2
1k + γσ2

2k)
2

+
2γσ4

2k

n2(n2 − 1)(σ2
1k + γσ2

2k)
2
+

2

n2
1

κ21k
(σ2

1k + γσ2
2k)

3
+

2γ2

n2
2

κ22k
(σ2

1k + γσ2
2k)

3

− 4γ

n1n2

κ1kκ2k
(σ2

1k + γσ2
2k)

3

}
+

p∑
k=1

2
n1
κ1k(µ2k − µ1k) +

2γ
n2
κ2k(µ1k − µ2k)

(σ2
1k + γσ2

2k)
2

+

p∑
k=1

(µ1k − µ2k)
2

(σ2
1k+γσ2

2k)
3

(
1

n1
ν1k+

4

n1(n1 − 1)
σ4
1k+

γ

n2
ν2k+

4γ2

n2(n2 − 1)
σ4
2k

)
+ o(

√
var(Tn))

.
=µn + o(

√
var(Tn)), where

var(Tn) =

{
2

n1(n1 − 1)
tr((ΛΣ1Λ)2) +

2

n2(n2 − 1)
tr((ΛΣ2Λ)2)

+
4

n1n2
tr(ΛΣ1Λ

2Σ2Λ)

}
(1 + o(1)),

with κik = E(Xijk−µik)
3, νik = E(Xijk−µik)

4, i = 1, 2. Although complicated,

the bias-term is estimable and then correctable.

The sample variance σ̂2
ik and skewness κ̂ik = n−1

i

∑ni
j=1(Xijk − µ̂ik)

3 are

required. An estimator of E(Tn) under H0 is obtained by plugging-in relevant

estimators,
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µ̂n
.
= Ê(Tn) =

p∑
k=1

{
2σ̂4

1k

n1(n1 − 1)(σ̂2
1k + γσ̂2

2k)
2
+

2γσ̂4
2k

n2(n2 − 1)(σ̂2
1k + γσ̂2

2k)
2

+
2

n2
1

κ̂21k
(σ̂2

1k + γσ̂2
2k)

3
+

2γ2

n2
2

κ̂22k
(σ̂2

1k + γσ̂2
2k)

3
− 4γ

n1n2

κ̂1kκ̂2k
(σ̂2

1k + γσ̂2
2k)

3

}
.

Next, we estimate the trace terms tr((ΛΣiΛ)2), i = 1, 2 and tr(ΛΣ1Λ
2Σ2Λ) in

var(Tn). Chen and Qin (2010) proposed effective estimators for these terms by

applying the “leave-one-out” idea. In a similar spirit, we take

˜tr((ΛΣ1Λ)2) =
1

n1(n1 − 1)

n1∑
i ̸=j

(
p∑

l=1

(X1il − µ̄1l(i,j))(X1jl − µ̄1l(i,j))

σ̂2
1l + γσ̂2

2l

)2

,

where µ̄il(j,k) is the i-the sample mean after excluding Xijl and Xikl. Since Xijk

is not independent of σ̂2
ik, using such an estimator yields bias-terms which are

not negligible when n = O(p1/2). It seems more complex to calculate those terms

numerically than the expectation of Tn in a high-dimensional setting. We suggest

a remedy, is motivated by Chen and Qin (2010), as

̂tr((ΛΣsΛ)2) =
1

2P 4
ns

∗∑
(Xsi1 −Xsi2)

TD−1
s(i1,i2,i3,i4)

(Xsi3 −Xsi4)

× (Xsi3 −Xsi2)
TD−1

s(i1,i2,i3,i4)
(Xsi1 −Xsi4), s = 1, 2, and

̂tr(ΛΣ1Λ2Σ2Λ) =
1

4P 2
n1
P 2
n2

n1∑
i1 ̸=i2

n2∑
i3 ̸=i4

(
(X1i1 −X1i2)

TD−1
(i1,i2,i3,i4)

(X2i3 −X2i4)
)2
,

where

D1(i1,i2,i3,i4) = diag(σ̂2
11(i1,i2,i3,i4)

+ γσ̂2
21, . . . , σ̂

2
1p(i1,i2,i3,i4)

+ γσ̂2
2p),

D2(i1,i2,i3,i4) = diag(σ̂2
11 + γσ̂2

21(i1,i2,i3,i4)
, . . . , σ̂2

1p + γσ̂2
2p(i1,i2,i3,i4)

),

D(i1,i2,i3,i4) = diag(σ̂2
11(i1,i2)

+ γσ̂2
21(i3,i4)

, . . . , σ̂2
1p(i1,i2)

+ γσ̂2
2p(i3,i4)

),

and σ̂2
sk(i1,...,il)

is the s-th sample variance after excluding Xsij , j = 1, . . . , l,

s = 1, 2, l = 2, 4, k = 1, . . . , p. We use
∗∑

to denote summations over distinct

indexes. Thus, in ̂tr((ΛΣ1Λ)2), the summation is over the set {i1 ̸= i2 ̸= i3 ̸= i4},
for all i1, i2, i3, i4 ∈ {1, . . . , n1} and Pm

n = n!/(n−m)!.

Remark 2. The estimators of tr(Σ2
i ) and tr(Σ1Σ2) proposed by Chen and Qin

(2010) are not translation-invariant. According to the proof of their Theorem 2,

E( ̂tr(Σi
2)CQ) = tr(Σi

2)+µ
′
Σiµ/(n−2). Thus, it is easy to verify that ̂tr(Σi

2)CQ

is different when Xij is transformed to Xij + θ. From an asymptotic viewpoint,
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the ratio consistency of ̂tr(Σi
2)CQ relies on the condition that µ

′
Σiµ/(n− 2) =

o(tr(Σi
2)). This is fairly restrictive because the expectation of Xij could be in

any scale in two-sample location testing applications. As such, the estimator of

tr(R2
i ) proposed by Park and Ayyala (2013) is not translation-invariant.

Remark 3. The estimators of Srivastava and Du (2008) and Srivastava,

Katayama, and Kano (2013) are for tr(R2) with plug-in sample variances, and

suffer from bias-terms in their variance estimators when p is large. See about

this in Section 3.

Proposition 2. If (C1)−(C4) hold, µ̂n = E(Tn) + op(
√

var(Tn)), and

̂tr((ΛΣiΛ)2)

tr((ΛΣiΛ)2)

p→ 1, i = 1, 2 and
̂tr(ΛΣ1Λ2Σ2Λ)

tr(ΛΣ1Λ2Σ2Λ)

p→ 1.

As a consequence, a ratio-consistent estimator of var(Tn) under H0 is

σ̂2
n

.
= ̂var(Tn)

=

{
2

n1(n1 − 1)
̂tr((ΛΣ1Λ)2)+

2

n2(n2 − 1)
̂tr((ΛΣ2Λ)2)+

4

n1n2

̂tr(ΛΣ1Λ2Σ2Λ)

}
.

We are now in a position to set the test statistic (Tn − µ̂n)/σ̂n, and to shwo

its asymptotic normality under the null hypothesis.

Corollary 1. Under (C1)−(C4) and H0, (Tn − µ̂n)/σ̂n
L−→ N(0, 1).

The result suggests rejecting H0 with α level of significance if (Tn−µ̂n)/σ̂n >

zα. The ratio-consistent estimator of var(Tn) appears complex but computes

quickly. For example, it takes 5s per iteration in FORTRAN using Inter Core 2.2

MHz CPU for a n1=n2=30, p=1,000 case for each ̂tr((ΛΣiΛ)2), ̂tr(ΛΣ1Λ2Σ2Λ)

and the entire procedure is generally completed in less than 20s.

According to Theorem 1, the power of the test under the local alternative

(C5) is

βBF (||Λ(µ1 − µ2)||) = Φ

(
−zα +

µ̃n

σ̃n

)
,

where

µ̃n = ||Λ(µ1 − µ2)||2 +
p∑

k=1

2
n1
κ1k(µ2k − µ1k) + (2γ/n2)κ2k(µ1k − µ2k)

(σ2
1k + γσ2

2k)
2

+

p∑
k=1

(µ1k − µ2k)
2

(σ2
1k + γσ2

2k)
3

(
1

n1
ν1k +

4

n1(n1 − 1)
σ4
1k +

γ

n2
ν2k +

4γ2

n2(n2 − 1)
σ4
2k

)
,

σ̃2
n =

2

n1(n1−1)
tr((ΛΣ1Λ)2) +

2

n2(n2−1)
tr((ΛΣ2Λ)2) +

4

n1n2
tr(ΛΣ1Λ

2Σ2Λ),
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and Φ(·) is the standard normal distribution function. In contrast, Chen and

Qin (2010) showed that the power of their proposed test is

βCQ(||µ1 − µ2||) = Φ

(
− zα +

nλ(1− λ)||µ1 − µ2||2√
2tr(Σ̃2)

)
,

where Σ̃ = (1− λ)Σ1 + λΣ2.

Theoretically comparing the proposed test with Chen and Qin’s under gen-

eral settings turns out to be difficult. In order to get a rough picture of the

asymptotic power comparison between them, we simply assume that κik = 0,

k = 1, . . . , p, i = 1, 2. It is then easy to show that

p∑
k=1

(µ1k − µ2k)
2

(σ2
1k + γσ2

2k)
3

(
1

n1
ν1k +

4

n1(n1 − 1)
σ4
1k +

γ

n2
ν2k +

4γ2

n2(n2 − 1)
σ4
2k

)
= o(||Λ(µ1 − µ2)||2).

Now, the power of the proposed test becomes

βBF (||Λ(µ1 − µ2)||) = Φ
(
− zα +

nλ(1− λ)||Λ(µ1 − µ2)||2√
2tr(ΛΣ̃Λ)2

)
+ o(1),

and consider the some representative cases.

(i) µ1k − µ2k = δ, k = 1, . . . , p. Here

βBF (||Λ(µ1 − µ2)||) = Φ
(
− zα +

nλ(1− λ)δ2tr(Λ2)√
2tr(ΛΣ̃Λ)2

)
+ o(1),

βCQ(||µ1 − µ2||) = Φ
(
− zα +

npλ(1− λ)δ2√
2tr(Σ̃2)

)
.

By the Cauchy inequality, p2tr(ΛΣ̃Λ)2 ≤ tr(Σ̃2)tr2(Λ2). As a consequence,

βCQ(||µ1 − µ2||) ≤ Φ
(
− zα +

nλ(1− λ)δ2tr(Λ2)√
2tr(ΛΣ̃Λ)2

)
≤ βBF (||Λ(µ1 − µ2)||).

When the variances of the components are equal, the tests are equivalently

powerful from the asymptotic viewpoint. Otherwise, the proposed test is

preferable in terms of asymptotic power under local alternatives.
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(ii) Σ1 = Σ2, diagonal. The variances of two half of components are ζ21 and ζ22 .

Assume µ1k − µ2k = δ, k = 1, . . . , ⌊p/2⌋. Then

βBF (||Λ(µ1 − µ2)||) = Φ
(
− zα +

n
√
pλ(1− λ)δ2

2
√
2ζ21

)
+ o(1),

βCQ(||µ1 − µ2||) = Φ
(
− zα +

n
√
pλ(1− λ)δ2

2
√

ζ41 + ζ42

)
.

The asymptotic relative efficiency (ARE) of the porposed test with respect to

the CQ test is then
√

ζ41 + ζ42/(
√
2ζ21 ), so the proposed test is more powerful

than CQ if ζ21 < ζ22 , and vice versa. The ARE has a positive lower bound

of 1/
√
2 when ζ21 >> ζ22 . It can be arbitrarily large if ζ21/ζ

2
2 is close to zero,

showing the need for scale-invariance test.

3. Numerical Studies

Throughout this section, we run 1,000 replications for each experiment so

the standard error of size or power entries is bounded by 0.016.

3.1. The bias-term

Here we report on a simulation study designed to evaluate the bias-term of q̂n,

as proposed by Srivastava, Katayama, and Kano (2013), of Tn − µ̂n as proposed

by us and, the quality of the corresponding variance estimator under the null hy-

pothesis. We consider only the case Σ1 = Σ2 = Σ = (aij), aij = 0.5|i−j|, and Xij

independent p-dimensional multivariate normal random vectors. We summarize

simulation results for the mean-standard deviation-ratio E(T )/
√

var(T ) and the

variance estimator ratio v̂ar(T )/var(T ), where T denotes either q̂n or Tn − µ̂n.

Since the explicit forms of E(T ) and var(T ) are difficult to calculate, we estimate

them by simulation. We consider sample sizes n1 = n2 = 15, 30 and dimensions

p = 30, 60, 100, 200, 300, 400, 800, 1,000.

Figure 1 reports the mean-standard deviation-ratio of the test statistics pro-

posed by Srivastava, Katayama, and Kano (2013) and us. In Figure 1, the bias-

term in q̂n apparently exists, especially when the dimension is high. There is also

some bias for our BF test when n1 = n2 = 15, p =1,000. This last is not strange

because the dimension is comparable to the cube of the sample size and (C3)

does not hold. In the other cases, the mean-standard deviation-ratio of Tn − µ̂n

is approximately zero, showing the effectiveness of our bias correction procedure.

Figure 2 reports the simulation results of the variance estimator ratio. Here

the variance estimator of Srivastava, Katayama, and Kano (2013) is apparently

larger than the variance. First, there is a bias-term in the estimator v̂ar(q̂n) when

the dimension is high. Second, the correction term cp,n is always larger then one.
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The variance estimator ratio of our test statistic is approximately one, so our

variance estimator is effective even when the dimension is very high. Because

both ratios are higher than the acceptable level, the empirical sizes of the test

statistics proposed by Srivastava, Katayama, and Kano (2013) also deviate from

the significance level. See the next subsections for more information.

3.2. Empirical sizes and power comparison

Here we report a simulation study designed to evaluate the performance of

our proposed test (abbreviated as BF). To allow a meaningful comparison with

the methods proposed by Bai and Saranadasa (1996) (abbreviated as BS), Sri-

vastava and Du (2008) (abbreviated as SD), Chen and Qin (2010) (abbreviated

as CQ), and Srivastava, Katayama, and Kano (2013) (abbreviated as SKK), we

first considered the unequal covariance matrices assumption, where the assump-

tion of common covariances in Bai and Saranadasa (1996) and Srivastava and

Du (2008) does not hold. We considered the moving average model in Chen and

Qin (2010):

Xijk = ρi1Zij + ρi2Zi(j+1) + · · ·+ ρiLiZi(j+Li−1) + µij

for i = 1, 2, j = 1, . . . , ni and k = 1, . . . , p where {Zijk} are i.i.d. random

variables. We considered Scenario I: the {Zijk} were N(0, 1); Scenario II: the

first half components of {Zijk}pk=1 were centralized Gamma(4,1) and the sec-

ond half components were N(0, 1). The coefficients {ρil}Li
l=1 were independently

U(2, 3) and were kept fixed once generated, through our simulations. The cor-

relations among Xijk and Xijl were determined by |k − l| and Li. We chose

L1 = 1, and L2 = 3 to generate different covariances of Xi. For the alter-

native hypothesis, we fixed µ1 = 0 and again chose µ2 in according to Case

A: one allocates all of the components of equal magnitude to be nonzero, or

Case B: one randomly allocates half of the components of equal magnitude to be

nonzero. To make the power comparable among the configurations of H1, we set

η := ||µ1 − µ2||2/
√

tr(Σ2
1) + tr(Σ2

2) = 0.1 throughout the simulation.

For simplicity, sample sizes n1 = n2 were chosen to be 15, 20 and 30. In

the supplemental file, we also present some simulation results with n1 ̸= n2, for

which the comparison conclusion revealed below still holds (c.f., Figure S1.1).

We chose three dimensions for each sample size p = 225, 400, 900. Figure 3 below

reports the empirical sizes of five tests. Clearly, when Σ1 ̸= Σ2, the sizes of BS

and SD are much smaller than the significance level, 0.05, especially when p is

ultra-high; CQ and BF have reasonable sizes in most cases. The performance

of SKK is not very encouraging as, in many cases, sizes are larger than the

significance level, whereas in some cases where n1 = n2 = 15, p = 900, the sizes

of SKK were conservative.There were considerable biases in the estimation of the
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Figure 1. The mean-standard deviation-ratio E(T )/
√
var(T ) of the test

statistics proposed by Srivastava, Katayama, and Kano (2013) (SKK) and
us (BF).

Figure 2. The variance estimator ratio v̂ar(T )/var(T ) of the test statistics
proposed by Srivastava, Katayama, and Kano (2013) (SKK) and us (BF).
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Figure 3. Empirical size comparisons at 5% significance when Σ1 ̸= Σ2.

sample correlation matrix when n = O(p1/2), so it is very difficult to maintain

significance level when a bias-correction is not made.

The powers of the tests were in Figure 4 for a further comparison. The of

BS and SD tests are not efficient in most of cases, as expected. Under Scenario I,

the variances of components are all equal and the powers of CQ test are slightly

larger than the BF test. Under Scenario II, BF outperforms CQ uniformly in

all the cases by a large margin. These results suggest that the BF test is scale-

invariant, quite efficient, and robust in testing the equality of locations, and is

particularly useful when Σ1 ̸= Σ2.

4. A Data Example

We applied the proposed methodology to a real date set from a semi-conductor

manufacturing process that collects variables from sensors at many measurement
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Figure 4. Empirical power comparisons at 5% significance when Σ1 ̸= Σ2.

points. The data set contains 1,567 vector observations. For each observation,
there are 591 continuous measurements. A categorical label, indicates whether
a conforming yield through house-line testing is also provided. The goal is to
model and monitor production quality.

In quality control, a critical step is to compare a new sample with reference
sample to check if the process is in control. If so, the reference sample is updated.
This setp clearly requires powerful testing approach. While one could consider
tests that incorporate the information from all the sensors, in many applications,
this is not feasible if users want to test the process at start-up stage when only a
few reference samples are available. Our method is applicable with rather small
sample sizes, and thus appears to be particulary useful in this setting.

The dataset contains null values varying in intensity depending on the indi-
viduals features. Since the fraction of missing values is trivial in this dataset, we
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Table 1. Empirical power comparisons at 5% significance for the sensor
dataset.

n BF BS CQ SD SKK
15 0.355 0.067 0.076 0.288 0.297
20 0.611 0.048 0.051 0.616 0.621
30 0.941 0.058 0.059 0.971 0.982

used mean imputation. There are 117 constant features in the data, so just 474

variables are involved. For illustration, we artificially assumed n observations

were categorized as nonconforming and conforming and appled the BF, BS, CQ

and SD tests. To get a broad picture of performance comparison, we considered

a bootstrap-type testing procedure. Two random samples of size n were drawn

from 104 nonconforming observations and 1463 conforming observations without

replacement. Then all four considered tests are applied to these two samples and

the corresponding test results with a significance level 0.05 were recorded. This

procedure are repeated 1,000 times and the resulting powers are given in Table

1. The BF and SD tests gave satisfactory results and their powers increased

quickly with sample size. The proposed BF test performed slightly better than

SD and SKK when the sample size were small (n = 15). The BS and CQ tests

were ineffective here because they are not scale-invariant, and in this data set,

components have varying.

5. Discussion

A natural concern is whether our test can handle ultra-high dimensional

scenario with larger p, say at an exponential rate in n. It is difficult, if not

impossible, when there is no sparse structure for existing scale-invariant tests to

correct bias-terms. It is an open problem as to one can define a test statistic

that is (at least) asymptotically unbiased, lacking a sparsity assumption on the

data structure. The standardized version, with shrinkage estimation under sparse

structure and other conditions, may help; see Cai, Liu, and Xia (2014).
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