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Abstract: Driven by a wide range of applications in high-dimensional data analy-

sis, there has been significant recent interest in the estimation of large covariance

matrices. In this paper, we consider optimal estimation of a covariance matrix as

well as its inverse over several commonly used parameter spaces under the matrix

ℓ1 norm. Both minimax lower and upper bounds are derived.

The lower bounds are established by using hypothesis testing arguments, where

at the core are a novel construction of collections of least favorable multivariate nor-

mal distributions and the bounding of the affinities between mixture distributions.

The lower bound analysis also provides insight into where the difficulties of the

covariance matrix estimation problem arise. A specific thresholding estimator and

tapering estimator are constructed and shown to be minimax rate optimal. The

optimal rates of convergence established in the paper can serve as a benchmark for

the performance of covariance matrix estimation methods.
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ator norm, optimal rate of convergence, tapering, thresholding.

1. Introduction

Estimating covariance matrices is essential for a wide range of statistical

applications. With high-dimensional data becoming readily available, one is fre-

quently faced with the problem of estimating large covariance matrices. It is now

well understood that in such a setting the standard sample covariance matrix does

not provide satisfactory performance and regularization is needed. Many regu-

larization methods, including banding, tapering, thresholding and penalization,

have been proposed. See, for example, Wu and Pourahmadi (2003), Zou, Hastie,

and Tibshirani (2006), Bickel and Levina (2008a,b), El Karoui (2008), Lam and

Fan (2009), Johnstone and Lu (2009), Cai, Zhang and Zhou (2010), and Cai

and Liu (2011). However, the fundamental properties of the covariance matrix

estimation problems are still largely unknown.

The minimax risk, which quantifies the difficulty of an estimation problem,

is one of the most commonly used benchmark. It is often used as the basis for the

evaluation of performance of an estimation method. Cai, Zhang and Zhou (2010)

were the first to derive the minimax rates of convergence for estimating a class

http://dx.doi.org/10.5705/ss.2010.253


1320 T. TONY CAI AND HARRISON H. ZHOU

of large covariance matrices under the spectral norm and the Frobenius norm.

Rate-sharp minimax lower bounds were derived and specific tapering estimators

were constructed and shown to achieve the optimal rates of convergence. It was

noted that the minimax behavior of the estimation problem critically depends

on the norm under which the estimation error is measured.

It is of significant interest to understand how well covariance matrices can

be estimated under different settings. Suppose we observe independent and iden-

tically distributed p-variate random variables X1, . . . ,Xn and wish to estimate

their unknown covariance matrix Σp×p based on the sample {Xl}. For a given

collection B of distributions of X1 with a certain class of covariance matrices, the

minimax risk of estimating Σ over B under a given matrix norm ∥ · ∥ is defined

as

R(B) = inf
Σ̂

sup
B

E∥Σ̂− Σ∥2.

In the present paper, we establish the optimal rates of convergence for estimating

the covariance matrix Σ = (σij)1≤i,j≤p as well as its inverse over several commonly

used parameter spaces under the matrix ℓ1 norm. For a matrix A = (aij), its ℓ1
norm is the maximum absolute column sum, ∥A∥1 = max j

∑
i |ai,j |.

In the high-dimensional setting, structural assumptions are needed in order

to estimate the covariance matrix consistently. One widely used assumption is

that the covariance matrix is sparse, i.e., most of the entries in each row/column

are zero or negligible. Another common assumption used in the literature is

that the variables exhibit a certain ordering structure, which is often the case

for time series data. Under this assumption, the magnitude of the elements in

the covariance matrix decays as they move away from the diagonal. We consider

both cases in the present paper and study three different types of parameter

spaces.

The first class of parameter spaces models sparse covariance matrices in

which each column (or row) (σij)1≤i≤p is assumed to be in a sparse weak ℓq ball,

as used in many applications including gene expression array analysis. More

specifically, denote by
∣∣σ[k]j∣∣ the k-th largest element in magnitude of the jth

column (σij)1≤i≤p. For 0 ≤ q < 1, define

Gq(ρ, cn,p)=

{
Σ=(σij)1≤i,j≤p : max

1≤j≤p

{∣∣σ[k]j∣∣q}≤ cn,p
k
, ∀k, and max

i
(σii)≤ρ

}
.

(1.1)

In the special case q = 0, a matrix in G0(ρ, cn,p) has at most cn,p nonzero elements

in each column without loss a of generality, we shall assume cn,p ≥ 1. The weak

ℓq ball has been used in Abramovich et al. (2006) for the sparse normal means

problem. The parameter space Gq contains the uniformity class of covariance
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matrices in Bickel and Levina (2008b, p.5) as a special case. The second class of

parameter spaces under study is

Fα (ρ,M)=

{
Σ : max

j

∑
i

|σij | {i : |i− j| > k}≤Mk−α, ∀k, and max
i

(σii) ≤ ρ

}
,

(1.2)

where α > 0, M > 0, and ρ > 0. The parameter α in (1.2), which essentially

specifies the rate of decay for the covariances σij as they move away from the

diagonal, can be viewed as an analog of the smoothness parameter in nonpara-

metric spectral density estimation. This class of covariance matrices is motivated

by time series analysis for applications such as on-line modeling and forecasting.

Note that the smallest eigenvalue of a covariance matrix in the parameter space

Fα is allowed to be 0, which is more general than the assumption at (5) of Bickel

and Levina (2008a). The third parameter space is a subclass of Fα:

Hα(ρ,M) =

{
Σ : |σij | ≤M |i− j|−(α+1) for i ̸= j and max

i
(σii) ≤ ρ

}
. (1.3)

This parameter space has been considered in Bickel and Levina (2008a) and Cai,

Zhang and Zhou (2010).

We assume that the distribution of the Xi’s is subgaussian in the sense that,

for all t > 0 and all v ∈ Rp with ∥v∥2 = 1,

P{|v′(X1 − EX1)| > t} ≤ e−t2/(2ρ). (1.4)

Let P (Gq(ρ, cn,p)) denote the set of distributions of X1 satisfying (1.1) and (1.4).

The distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)) are defined similarly.

Our analysis establishes the minimax rates of convergence for estimating the co-

variance matrices over the three distribution classes P (Gq(ρ, cn,p)), P (Fα(ρ,M)),

and P (Hα(ρ,M)). By combining the minimax lower and upper bounds devel-

oped in later sections, the main results on the optimal rates of convergence for

estimating the covariance matrix under the ℓ1 norm can be summarized as fol-

lows.

Theorem 1. The minimax risk of estimating the covariance matrix Σ over the

distribution class P (Gq(ρ, cn,p)) satisfies

inf
Σ̂

sup
P(Gq(ρ,cn,p))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ c2n,p

(
log p

n

)1−q

(1.5)

under assumptions (2.1) and (2.2), and the minimax risks of estimating the

covariance matrix Σ over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M))
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satisfy

inf
Σ̂

sup
A

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ min

{
n−α/(α+1) +

(
log p

n

)2α/(2α+1)

,
p2

n

}
, (1.6)

where A = P (Fα(ρ,M)) or P (Hα(ρ,M)).

A key step in obtaining the optimal rates of convergence is the derivation

of sharp minimax lower bounds. As noted in Cai, Zhang and Zhou (2010),

the lower bound analysis for covariance matrix estimation under operator norm

losses has quite distinct features from those used in the more conventional func-

tion/sequence estimation problems. We establish the lower bounds by using

several different hypothesis testing arguments including Le Cam’s method, As-

souad’s Lemma, and a version of Fano’s Lemma, where at the core are a novel

construction of collections of least favorable multivariate normal distributions

and the bounding of the affinities between mixture distributions. An important

technical step is to bound the affinity between pairs of probability measures in

the collection; this is quite involved in matrix estimation problems. We shall

see that, although the general principles remain the same, the specific technical

analysis used to obtain the lower bounds under the ℓ1 norm loss is rather different

from those used in the cases of the spectral norm and Frobenius norm losses.

We then show that the minimax lower bounds are rate optimal by con-

structing explicit estimators that attain the same rates of convergence as those

of the minimax lower bounds. In the sparse case, it is shown that a threshold-

ing estimator attains the optimal rate of convergence over the distribution class

P (Gq(ρ, cn,p)) under the ℓ1 norm. The thresholding estimator was originally in-

troduced in Bickel and Levina (2008b) for estimating sparse covariance matrices

under the spectral norm; here we show that the estimator is rate-optimal over

the distribution class P (Gq(ρ, cn,p)) under the matrix ℓ1 norm. For the other

two distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)), we construct a taper-

ing estimator that is closely related to the recent work in Cai, Zhang and Zhou

(2010), though the choice of the optimal tapering parameter is quite different.

This phenomenon is important in practical tuning parameter selection. For co-

variance matrix estimation under the spectral norm, Bickel and Levina (2008a)

suggested selecting the tuning parameter by cross-validation and minimizing ℓ1
norm loss for convenience. However, even if the cross-validation method selects

the ideal tuning parameter for optimal estimation under the ℓ1 norm, the result-

ing banding estimator can be far from optimal for estimation under the spectral

norm.

The rest of the paper is organized as follows. Section 2 focuses on minimax

lower bounds for covariance matrix estimation under the ℓ1 norm. We then
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establish the minimax rates of convergence by showing that the lower bounds are

in fact rate sharp. This is accomplished in Section 3 by constructing thresholding

and tapering estimators and proving that they attain the same convergence rates

as those given in the lower bounds. Section 4 considers optimal estimation of the

inverse covariance matrices under the ℓ1 norm. Section 5 discusses connections

and differences of the results with other related work. The proofs of the technical

lemmas that are used to prove the main results are given in Section 6.

2. Minimax Lower Bounds under the ℓ1 Norm

A key step in establishing the optimal rate of convergence is the derivation

of the minimax lower bounds. In this section, we consider the minimax lower

bounds for the three distribution classes given earlier. The upper bounds derived

in Section 3 show that these lower bounds are minimax rate optimal.

We work with various matrix operator norms. For 1 ≤ r ≤ ∞, the matrix ℓr
norm of a matrix A is defined as

∥A∥r = max
x ̸=0

∥Ax∥r
∥x∥r

= max
∥x∥r=1

∥Ax∥r.

The spectral norm is the matrix ℓ2 norm; the ℓ1 norm is the “maximum absolute

column sum”, i.e., for a matrix A = (aij), ∥A∥1 = max j
∑

i |ai,j |; the matrix ℓ∞
norm is the “maximum absolute row sum”, ∥A∥∞ = max i

∑
j |ai,j |. Note that

for covariance matrices the ℓ1 norm coincides with the ℓ∞ norm and the spectral

norm is the maximum eigenvalue.

Since every Gaussian random variable is subgaussian, it is sufficient to de-

rive minimax lower bounds under the Gaussian assumption. In this section,

we consider independent and identically distributed p-variate Gaussian random

variables X1, . . . ,Xn and wish to estimate their unknown covariance matrix Σp×p

under the ℓ1 norm based on the sample {Xl}.
Throughout the paper we denote by C, c, C1, c1, C2, c2, . . . etc. generic

constants, not depending on n or p, which may vary from place to place.

2.1. Minimax lower bound over P (Gq(ρ, cn,p))

We begin by considering the parameter space Gq = Gq(ρ, cn,p) at (1.1). The

goal is to derive a good lower bound for the minimax risk over Gq(ρ, cn,p). We

focus on the high-dimensional case where

p ≥ nν with ν > 1, (2.1)

log p ≤ n and assume that

cn,p ≤M

(
n

log p

)1/2−q/2

(2.2)
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for 0 ≤ q < 1 and some M > 0. Theorem 2 below implies that the assumption

c2n,p (log p/n)
1−q → 0 is necessary to obtain a consistent estimator. See Remark

1 for more details.

Our strategy for deriving the minimax lower bound is to carefully construct

a finite collection of multivariate normal distributions and to calculate the total

variation affinity between pairs of probability measures in the collection. The

construction is as follows. Let ⌊x⌋ denote the largest integer less than or equal x.

Set k =
⌊
cn,p (n/ log p)

q/2
⌋
. We construct matrices whose off-diagonal elements

are equal to 0 except the first row/column. Denote by H the collection of all

p× p symmetric matrices with exactly k off-diagonal elements equal to 1 on the

first row and the rest all zeros. (The first column of a matrix in H is obtained

by reflecting the first row.) Define

G0 = {Σ : Σ = Ip or Σ = Ip + aH, for some H ∈ H} , (2.3)

where a =
√
τ1 log p/n for some constant τ1. Without loss of generality we

assume that ρ > 1 in (1.1). It is easy to see that G0 ⊂ Gq(ρ, cn,p) when τ1 is small.

We pick the constant τ1 such that 0 < τ1 < min
{
1, (ν − 1) /4ν, 1/(2M2)

}
. It is

straightforward to check that with such a choice of τ1, G0 ⊂ Gq(ρ, cn,p).

We use Le Cam’s method to establish the lower bound by showing that there

exists some constant C1 > 0 such that for any estimator Σ̂,

sup
G0

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C1c

2
n,p

(
log p

n

)1−q

, (2.4)

which leads immediately to the following result.

Theorem 2. Suppose we observe independent and identically distributed p-variate

Gaussian random variables X1, . . . ,Xn with covariance matrix Σp×p ∈ Gq(ρ, cn,p).

Under assumptions (2.1) and (2.2), the minimax risk of estimating the covari-

ance matrix Σp×p satisfies

inf
Σ̂

sup
Gq(ρ,cn,p)

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C1c

2
n,p

(
log p

n

)1−q

, (2.5)

where C1 is a positive constant.

Remark 1. In Theorem 2, cn,p is assumed to satisfy cn,p ≤ M (n/log p)1/2−q/2

for some constant M > 0. This assumption is necessary to obtain a consistent

estimator. If cn,p > M (n/log p)1/2−q/2, we have

inf
Σ̂

sup
Gq(ρ,cn,p)

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ inf

Σ̂
sup

Gq(ρ,M
(

n
log p

)1/2−q/2
)

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C1M

2,
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where the last inequality follows from (2.5). Furthermore by a similar argument

as above, we need the condition c2n,p (log p/n)
1−q → 0 to estimate Σ consistently

under the ℓ1 norm.

Results in Section 3 show that the lower bound given in (2.5) is minimax rate

optimal. A threshold estimator is shown to attain the convergence rate given in

(2.5).

Before we prove the theorem, we need to introduce some notation. Denote by

m∗ the number of non-identity covariance matrices in G0. Thenm∗ = Card (G0)−
1 =

(
p−1
k

)
. Let Σm, 1 ≤ m ≤ m∗, denote a non-identity covariance matrix in

G0, and let Σ0 be the identity matrix Ip. We denote the joint distribution and

density of X1,X2, . . . ,Xn with Xl ∼ N (0,Σm) by PΣm and fm, respectively, and

take P̄ = (1/m∗)
∑m∗

m=1 PΣm .

For two probability measures P and Q with density p and q with respect to

any common dominating measure µ, write the total variation affinity ∥P ∧Q∥ =∫
p∧ qdµ. A major tool for the proof of Theorem 2 is the following lemma which

is a direct consequence of Le Cam’s lemma (cf., Le Cam (1973), Yu (1997)).

Lemma 1. Let Σ̂ be any estimator of Σm based on an observation from a dis-

tribution in the collection {PΣm ,m = 0, 1, . . . ,m∗}, then

sup
0≤m≤m∗

E
∥∥∥Σ̂− Σm

∥∥∥
1
≥ 1

2

∥∥PΣ0 ∧ P̄
∥∥ · inf

1≤m≤m∗
∥Σm − Σ0∥1 .

Proof of Theorem 2. It is easy to see that

inf
1≤m≤m∗

∥Σm − Σ0∥21 = k2a2 ≥ C2c
2
n,p

(
log p

n

)1−q

for some C2 > 0. To prove the theorem, it thus suffices to show that there is a

constant C3 > 0 such that ∥∥PΣ0 ∧ P̄
∥∥ ≥ C3. (2.6)

That immediately implies

sup
0≤m≤m∗

E
∥∥∥Σ̂− Σm

∥∥∥2
1
≥ sup

0≤m≤m∗

(
E
∥∥∥Σ̂− Σm

∥∥∥
1

)2
≥ 1

4
· C2c

2
n,p

(
log p

n

)1−q

· C2
3

which matches the lower bound in (2.5) up to a constant factor.

Now we establish the lower bound (2.6) for the total variation affinity. Since

the affinity
∫
q0 ∧ q1dµ = 1− (1/2)

∫
|q0 − q1| dµ for any two densities q0 and q1,

Jensen’s Inequality implies[∫
|q0 − q1| dµ

]2
=

(∫ ∣∣∣∣q0 − q1
q0

∣∣∣∣ q0dµ)2

≤
∫

(q0 − q1)
2

q0
dµ =

∫ (
q21
q0

− 1

)
dµ.
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Hence
∫
q0 ∧ q1dµ ≥ 1 − (1/2)

[∫ (
q21/q0 − 1

)
dµ
]1/2

. To establish (2.6), it thus
suffices to show that

∆ =

∫
( 1
m∗

∑m∗
m=1 fm)2

f0
− 1 =

1

m2
∗

∑
m,l

∫ (
fmfl
f0

− 1

)
→ 0.

The following lemma is used to calculate the term
∫
(fmfl/f0 − 1) in ∆.

Lemma 2. Let gs be the density function of N (0,Σs), s = 0,m, l. Then∫
gmgl
g0

= [det (I − (Σm − Ip) (Σl − Ip))]
−1/2 .

Lemma 2 implies∫
fmfl
f0

=

(∫
gmgl
g0

)n

= [det (I − (Σm − Ip) (Σl − Ip))]
−n/2 .

Let J(m, l) be the number of overlapping nonzero off-diagonal elements between
Σm and Σl in the first row. Elementary calculations yield that ∥Σm − Σl∥1 =
2(k − J)a and

[det (I − (Σm − Ip) (Σl − Ip))]
1/2 = 1− Ja2,

which is 1 when J = 0. It is easy to see that the total number of pairs (Σm,Σl)
such that J(m, l) = j is

(
p−1
k

)(
k
j

)(
p−1−k
k−j

)
. Hence,

∆ =
1

m2
∗

∑
0≤j≤k

∑
J(m,l)=j

∫ (
fmfl
f0

− 1

)
=

1

m2
∗

∑
0≤j≤k

∑
J(m,l)=j

[(
1− ja2

)−n − 1
]

≤ 1

m2
∗

∑
1≤j≤k

(
p− 1

k

)(
k

j

)(
p− 1− k

k − j

)
(1− ja2)−n. (2.7)

Note that (
1− ja2

)−n ≤
(
1 + 2ja2

)n ≤ exp
(
n2ja2

)
= p2τ1j ,

where the first inequality follows from the fact that ja2 ≤ ka2 ≤ τ1M
2 < 1/2.

Hence,

∆ ≤
∑

1≤j≤k

(
k
j

)(
p−1−k
k−j

)(
p−1
k

) p2τ1j ≤ 2
∑

1≤j≤k

(
k2p2τ1

p− k

)j

.

Recall that k = ⌊cn,p (n/log p)q/2⌋ and cn,p ≤M (n/ log p)1/2−q/2. So we have

k2
p2τ1

p− k
≤ c2n,p

(
n

log p

)q

· p
2τ1

p− k

≤M2

(
n

log p

)1−q ( n

log p

)q

· p
2τ1

p− k

≤ 2M2

(
n

log p

)
· p

2τ1

p
≤ 2M2n(1−ν)/2,
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where the last step follows from the fact that τ1 ≤ (ν − 1) / (4ν). Thus ∆ ≤
Cn(1−ν)/2 → 0, which immediately implies (2.6).

2.2. Minimax lower bounds over P (Fα(ρ,M)) and P (Hα(ρ,M))

We now consider minimax lower bounds for the parameter spaces Fα(ρ,M)

andHα(ρ,M). We show that the minimax rates of convergence over these two pa-

rameter spaces are the same under the ℓ1 norm. Since Hα(ρ,M) ⊂ Fα(ρ, 2M/α),

it thus suffices to establish the minimax lower bound for Hα(ρ,M).

As in Section 2.1, the basic strategy remains to carefully construct a finite

collection of multivariate normal distributions such that the covariance matrices

are “far apart” in ℓ1 norm and yet it is still “sufficiently difficult” to test between

them based on the observed sample. However, the specific construction and the

technical tools used in the analysis are quite different from those in Section 2.1.

Here we mainly rely on Assouad’s Lemma and a version of Fano’s Lemma given

in Tsybakov (2009) to obtain the desired lower bound.

We define the parameter spaces that are appropriate for the minimax lower

bound argument. In this section we assume p ≥ n1/(2α+2). The case p < n1/(2α+2)

is similar and slightly easier. Both lower bound and upper bound for this case

will be discussed in Section 3.2.1.

We construct parameter spaces separately for the cases p ≤ exp
(
n1/(2α+2)

)
and p > exp

(
n1/(2α+2)

)
. For p ≤ exp

(
n1/(2α+2)

)
, set k =

⌊
n1/(2α+2)

⌋
. Without

loss of generality let ρ > 1. Let τ2 be a small constant to be specified later.

Take the parameter space F11 of 2k−1 covariance matrices to consist of all p× p

symmetric matrices with diagonal elements 1 and the first (k − 1) off-diagonal

elements in the first row (and first column by symmetry) equal to either 0 or

τ2n
−1/2, with all other elements 0. Formally,

F11 =

{
Σ(θ) : Σ (θ) = Ip + τ2n

−1/2
k∑

s=2

θs

[
(I {i = 1, j = s})p×p

+(I {i = s, j = 1})p×p

]
,

θ = (θs) ∈ {0, 1}k−1

}
, (2.8)

where Ip is the p× p identity matrix.

We pick τ2 such that 0 < τ2 < min
{
M,M2, 1/16

}
. It is then easy to see

that for any Σ = (σi,j) ∈ F11,

|σ1,j | ≤ τ2n
−1/2 ≤ τ2k

−(α+1) ≤Mj−(α+1)

for all 2 ≤ j ≤ k, and consequently |σi,j | ≤ M |i− j|−(α+1) for all 1 ≤ i ̸= j ≤ p.

In addition, we have maxi (σii) = 1 < ρ. Hence, the collection F11 ⊂ Hα(ρ,M).
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For p ≥ exp
(
n1/(2α+2)

)
, we set k = ⌊(n/log p)1/(2α+1)⌋. Define the p × p

matrix Bm = (bij)p×p by

bij=I {i=m and m+ 1 ≤ j ≤ m+k−1, or j = m and m+ 1 ≤ i ≤ m+k−1} .

In addition to F11 we take

F12 =
{
Σm : Σm = Ip + b

√
τ2 log pBm, 1 ≤ m ≤ m∗

}
, (2.9)

where b = (nk)−1/2 and m∗ = ⌊p/k⌋ − 1. It is easy to see that

(bk)2 log p =
k

n
log p ≤ k−2α

which implies

b
√
τ2 log p ≤Mk−α−1

as long as τ2 < M2, and supi (σii) = 1 < ρ. Then the collection F12 ⊂ Hα(ρ,M).

Let F0 = F11 ∪ F12. It is clear that F0 ⊂ Hα(ρ,M). It will be shown below

separately that for some constant C4 > 0,

inf
Σ̂

sup
F11

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C4n

−α/(α+1), (2.10)

inf
Σ̂

sup
F12

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C4

(
log p

n

)2α/(2α+1)

. (2.11)

Equations (2.10) and (2.11) together imply

inf
Σ̂

sup
F0

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C4

2

[
n−α/(α+1) +

(
log p

n

)2α/(2α+1)
]
, (2.12)

which yields the follow result.

Theorem 3. Suppose we observe independent and identically distributed p-variate

Gaussian random variables X1, . . . ,Xn with covariance matrix Σp×p ∈ Fα(ρ,M)

or Hα(ρ,M). The minimax risks of estimating the covariance matrix Σ satisfy,

for some C > 0,

inf
Σ̂

sup
Σ∈A

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ C

[
n−α/(α+1) +

(
log p

n

)2α/(2α+1)
]
, (2.13)

where A = Fα(ρ,M) or Hα(ρ,M).
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It is shown in Section 3 that the rate of convergence given in the lower

bound (2.13) is optimal. A specific tapering estimator is constructed and shown

to attain the minimax rate of convergence n−α/(α+1) + (log p/n)2α/(2α+1).

We establish the lower bound (2.10) by using Assouad’s Lemma and the lower

bound (2.11) by using a version of Fano’s Lemma given in Tsybakov (2009).

2.2.1. Proof of the lower bound (2.10)

The key technical tool to establish (2.10) is the lemma in Assouad (1983).

It gives a lower bound for the maximum risk over the parameter set Θ = {0, 1}m

for the problem of estimating an arbitrary quantity ψ (θ) belonging to a metric

space with metric d. Let H(θ, θ′) =
∑m

i=1 |θi − θ′i| be the Hamming distance on

{0, 1}m, which counts the number of positions at which θ and θ′ differ. Assouad’s

Lemma provides a minimax lower bound.

Lemma 3 (Assouad). Let Θ = {0, 1}m and let T be an estimator based on an

observation from a distribution in the collection {Pθ, θ ∈ Θ}. Then for all s > 0

max
θ∈Θ

2sEθd
s (T, ψ (θ)) ≥ min

H(θ,θ′)≥1

ds (ψ (θ) , ψ (θ′))

H (θ, θ′)

m

2
min

H(θ,θ′)=1
∥Pθ ∧ Pθ′∥ .

Assouad’s Lemma is connected to multiple comparisons. In total there are

m comparisons. The lower bound has three terms. The first term is basically

the loss one would incur for each incorrect comparison, the last term is the

lower bound for the total probability of type one and type two errors for each

comparison, and m/2 is the expected number of mistakes one would make when

Pθ and Pθ′ are not distinguishable from each other when H (θ, θ′) = 1.

We now prove (2.10). Let X1, . . . ,Xn
i.i.d.∼ N (0,Σ(θ)) with Σ (θ) ∈ F11.

Denote the joint distribution by Pθ. Applying Assouad’s Lemma to the parameter

space F11 with m = k − 1, we have

inf
Σ̂

max
θ∈{0,1}k−1

22Eθ

∥∥∥Σ̂−Σ(θ)
∥∥∥
1
≥ min

H(θ,θ′)≥1

∥Σ (θ)−Σ(θ′)∥1
H (θ, θ′)

k−1

2
min

H(θ,θ′)=1
∥Pθ ∧ Pθ′∥ .

(2.14)

We state the bounds for the two factors on the right hand of (2.14) in two lemmas.

Lemma 4. Let Σ(θ) be defined as in (2.8). Then

min
H(θ,θ′)≥1

∥Σ (θ)− Σ (θ′)∥1
H (θ, θ′)

≥ cn−1/2 (2.15)

for some c > 0.

The proof of Lemma 4 is straightforward and is thus omitted here.
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Lemma 5. Let X1, . . . ,Xn
i.i.d.∼ N (0,Σ(θ)) with Σ(θ) ∈ F11. Denote the joint

distribution by Pθ. Then for some constant c1 > 0

min
H(θ,θ′)=1

∥Pθ ∧ Pθ′∥ ≥ c1.

The proof of Lemma 5 is deferred to Section 6. It follows from Lemma 5,

using k = n1/(2α+2), that

inf
Σ̂

sup
Σ(θ)∈F11

22Eθ

∥∥∥Σ̂− Σ(θ)
∥∥∥2
1
≥ c2k

2
(
n−1/2

)2
= c2k

2n−1 = c2n
−α/(α+1).

2.2.2. Proof of the lower bound (2.11)

Consider the parameter space F12 defined in (2.9). Denote by Σ0 the p× p

identity matrix. Let fm, 1 ≤ m ≤ m∗ = ⌊p/k⌋ − 1, be the joint density of

X1,X2, . . . ,Xn with Xl ∼ N (0,Σm) where Σm ∈ F12. For two probability

measures P and Q with density p and q with respect to a common dominating

measure µ, write the Kullback-Leibler divergence as K(P,Q) =
∫
p log p

qdµ.

The following lemma, which can be viewed as a version of Fano’s Lemma,

gives a lower bound for the minimax risk over the parameter set Θ = {θ0, . . . , θm∗}.

Lemma 6. Let Θ = {θm : m = 0, . . . ,m∗} be a parameter set satisfying

d (θi, θj) ≥ 2s for all 0 ≤ i ̸= j ≤ m∗, where d is a distance over Θ. Let

{Pθ : θ ∈ Θ} be a collection of probability measures defined on a common proba-

bility space satisfying

1

m∗

∑
1≤m≤m∗

K (Pθm ,Pθ0) ≤ c logm∗

with 0 < c < 1/8. Let θ̂ be any estimator based on an observation from a

distribution in the collection {Pθ, θ ∈ Θ}. Then

sup
θ∈Θ

Ed2
(
θ̂, θ
)
≥ s2

√
m∗

1 +
√
m∗

(
1− 2c−

√
2c

logm∗

)
.

We refer to Tsybakov (2009, Sec. 2.6) for more detailed discussions. Now let

Θ = F12, θm = Σm for 0 ≤ m ≤ m∗, and let the distance d be the ℓ1 norm. It is

easy to see that

d (θi, θj)=∥Σi − Σj∥1 = b
√
τ2 log p(k−1)≥

√
1

2
τ2
k log p

n
for all 0≤ i ̸=j≤m∗.

(2.16)

The next lemma, proved in Section 6, gives a bound for the Kullback-Leibler

divergence.
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Lemma 7. For all 1 ≤ m ≤ m∗, distributions in the collection {Pθ, θ ∈ Θ}
satisfy

K (Pθm ,Pθ0) ≤ 2τ2 log p.

By taking the constant τ2 sufficiently small, Lemma 7 yields that

1

m∗

∑
1≤m≤m∗

K (Pθm ,Pθ0) ≤ c logm∗

for some positive constant 0 < c < 1/8. Then the lower bound (2.11) follows

immediately from Lemma 6 and (2.16),

inf
Σ̂

sup
Σm∈F12

E
∥∥∥Σ̂− Σm

∥∥∥2
1
≥ C

(
log p

n

)2α/(2α+1)

for some constant C > 0.

3. Optimal Estimation under the ℓ1 Norm

In this section we consider the upper bounds for the minimax risk and con-

struct specific rate optimal estimators for estimation over the three distribution

classes. These upper bounds show that the rates of convergence given in the

lower bounds established in Section 2 are sharp. More specifically, we show that

a thresholding estimator attains the optimal rate of convergence over the distri-

bution class P (Gq(ρ, cn,p)) and a tapering estimator is minimax rate optimal over

the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)). The two estimators are

introduced and analyzed separately in Sections 3.1 and 3.2.

Given a random sample {X1, . . . ,Xn} from a population with covariance

matrix Σ = Σp×p, the sample covariance matrix is

1

n− 1

n∑
l=1

(
Xl − X̄

) (
Xl − X̄

)T
,

which is an unbiased estimate of Σ, and the maximum likelihood estimator of Σ

is

Σ∗ = (σ∗ij)1≤i,j≤p =
1

n

n∑
l=1

(
Xl − X̄

) (
Xl − X̄

)T
(3.1)

when the Xl’s are normally distributed. The two estimators are close to each

other for large n. We construct thresholding and tapering estimators of the

covariance matrix Σ based on the maximum likelihood estimator Σ∗.
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3.1. Optimal estimation over P (Gq(ρ, cn,p))

Theorem 2 shows that the minimax risk of estimating the covariance ma-

trix Σp×p over the distribution class P (Gq(ρ, cn,p)) has a lower bound of order

c2n,p (log p/n)
1−q. We now prove that this rate is optimal by constructing a thresh-

olding estimator and by showing that this estimator attains the rate given in the

lower bound.

Under the subgaussian assumption (1.4), the sample covariance σ∗i,j is an

average of n random variables with a finite exponential moment, so σ∗i,j satisfies

the large deviation result that there exist constants C1 > 0 and γ > 0 such that

P
(∣∣σ∗ij − σij

∣∣ > v
)
≤ C1 exp

(
− 8

γ2
nv2
)

(3.2)

for |v| ≤ δ, where C1, γ and δ are constants that depend only on ρ. See, for

example, Saulis and Statulevičius (1991) and Bickel and Levina (2008a). The

inequality (3.2) implies that σ∗ij behaves like a subgaussian random variable. In

particular for v = γ
√

log p/n we have

P
(∣∣σ∗ij − σij

∣∣ > v
)
≤ C1p

−8. (3.3)

We define a thresholding estimator as

σ̂ij = σ∗ij · I

(
|σ∗ij | ≥ γ

√
log p

n

)
(3.4)

and set Σ̂ = (σ̂ij)p×p.

The following theorem shows that the thresholding estimator at (3.4) is rate

optimal over the distribution class P (Gq(ρ, cn,p)).

Theorem 4. The thresholding estimator Σ̂ satisfies

sup
P(Gq(ρ,cn,p))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≤ Cc2n,p

(
log p

n

)1−q

, (3.5)

for some constant C > 0. Consequently, the minimax risk of estimating the

covariance matrix Σ the distribution classes P (Gq(ρ, cn,p)) satisfies

inf
Σ̂

sup
P(Gq(ρ,cn,p))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ c2n,p

(
log p

n

)1−q

. (3.6)

A main technical tool for the proof of Theorem 4 is the next lemma, which

is proved in Section 6.
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Lemma 8. Define the event Aij by Aij = {|σ̂ij−σij | ≤ 4min{|σij |, γ
√

log p/n}}.
Then

P (Aij) ≥ 1− 2C1p
−9/2.

Lemma 8 will be applied to show that the thresholding estimator defined in

(3.4) is rate optimal over the distribution class P (Gq(ρ, cn,p)).

Proof of Theorem 4. Let D = (dij)1≤i,j≤p with dij = (σ̂ij − σij) I(A
c
ij). Then

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≤ 2E

∥∥∥Σ̂− Σ−D
∥∥∥2
1
+ 2E ∥D∥21

≤ 2E

[
sup
j

∑
i

|σ̂ij − σij | I(Aij)

]2
+ 2E ∥D∥21

≤ 32

[
sup
j

∑
i

min

{
|σij | , γ

√
log p

n

}]2
+ 2E ∥D∥21 . (3.7)

We will see that the first term in (3.7) is dominating and bounded by

Cc2n,p (log p/n)
1−q, while the second term, E ∥D∥21 , is negligible.

Pick a k∗ such that (cn,p/k
∗)1/q ≥

√
log p/n ≥ [cn,p/ (k

∗ + 1)]1/q, which

implies k∗ (log p/n)q/2 = (1 + o (1)) cn,p. Then we have

∑
i

min

{
|σij | , γ

√
log p

n

}

≤

∑
i≤k∗

+
∑
i>k∗

min

{∣∣σ[i]j∣∣ , γ√ log p

n

}

≤ C5k
∗
√

log p

n
+ C5

∑
i>k∗

(cn,p
i

)1/q
≤ C6

[
k∗
√

log p

n
+ c1/qn,p · (k∗)−1/q · k∗

]
≤ C7cn,p

(
log p

n

)(1−q)/2

,

which gives (3.5) if E ∥D∥21 = O (1/n) ; this can be shown as follows. Note that

E ∥D∥21 ≤ p
∑
ij

Ed2ij = p
∑
ij

E
{[
d2ijI(A

c
ij ∩

{
σ̂ij = σ∗ij

}
) + d2ijI(A

c
ij ∩ {σ̂ij = 0}

]}
= p

∑
ij

E
{(
σ∗ij − σij

)2
I(Ac

ij)
}
+ p

∑
ij

Eσ2ijI(Ac
ij ∩ {σ̂ij = 0} = R1 +R2,
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where

R1 = p
∑
ij

E
{(
σ∗ij − σij

)2
I(Ac

ij)
}
≤ p

∑
ij

[
E
(
σ∗ij − σij

)6]1/3 P2/3
(
Ac

ij

)
≤ C8p · p2 ·

1

n
· p−3 =

C8

n
,

since P
(
Ac

ij

)
≤ 2C1p

−9/2 from Lemma 8, and

R2 = p
∑
ij

Eσ2ijI
(
Ac

ij ∩ {σ̂ij = 0}
)

= p
∑
ij

Eσ2ijI(|σij | ≥ 4γ

√
log p

n
)I(|σ∗ij | ≤ γ

√
log p

n
)

≤ p
∑
ij

σ2ijEI(|σij | ≥ 4γ

√
log p

n
)I(|σij | −

∣∣σ∗ij − σij
∣∣ ≤ γ

√
log p

n
)

≤ p
∑
ij

σ2ijEI(|σij | ≥ 4γ

√
log p

n
)I(
∣∣σ∗ij − σij

∣∣ > 3

4
|σij |)

≤ p

n

∑
ij

nσ2ijC1 exp

(
− 9

2γ2
nσ2ij

)
I(|σij | ≥ 4γ

√
log p

n
)

=
p

n

∑
ij

[
nσ2ij · C1 exp

(
− 1

2γ2
nσ2ij

)]
· exp

(
− 4

γ2
nσ2ij

)
I(|σij | ≥ 4γ

√
log p

n
)

≤ C9
p

n
· p2 · p−64 ≤ C9

n
.

3.2. Optimal estimation over P (Fα(ρ,M)) and P (Hα(ρ,M))

We now turn to optimal estimation over the distribution classes P (Fα(ρ,M))

and P (Hα(ρ,M)). We construct estimators of the covariance matrix Σ by ta-

pering the maximum likelihood estimator Σ∗. For a given even integer k with

1 ≤ k ≤ p, we define a tapering estimator as

Σ̂ = Σ̂k =
(
wijσ

∗
ij

)
p×p

, (3.8)

where σ∗ij are the entries in the maximum likelihood estimator Σ∗ and the weights

are

wij = k−1
h {(k − |i− j|)+ − (kh − |i− j|)+} (3.9)
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Figure 1. The weights as a function of |i− j|.

with kh = k/2. Without loss of generality we assume that k is even. Note that

the weights wij can be rewritten as

wij =


1 when |i− j| ≤ kh,

2− |i−j|
kh

when kh < |i− j| < k,

0 otherwise.

See Figure 1 for a plot of the weights wij as a function of |i− j|.
This class of tapering estimators was introduced in Cai, Zhang and Zhou

(2010) for covariance matrix estimation over the distribution class P (Fα(ρ,M)),

and was shown to be minimax rate optimal under the spectral norm and Frobe-

nius norm with appropriately chosen tapering parameter k. The optimal choice

of k critically depends on the norm under which the estimation error is measured.

We shall see that the optimal choice of the tuning parameter under the ℓ1 norm

loss is different from that under either the spectral norm or the Frobenius norm.

The tapering estimator defined in (3.8 )has an important property: it can be

rewritten as a sum of many small block matrices along the diagonal. This special

property is useful for our technical arguments. Define the block matrices

U
∗(m)
l =

(
σ∗ijI {l ≤ i < l +m, l ≤ j < l +m}

)
p×p

and set

S∗(m) =

p∑
l=1−m

U
∗(m)
l

for all integers 1−m ≤ l ≤ p and m ≥ 1.

Lemma 9. The tapering estimator Σ̂k given in (3.8) can be written as

Σ̂k = k−1
h

(
S∗(k) − S∗(kh)

)
. (3.10)
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We now consider the performance of the tapering estimator under the

ℓ1 norm and establish the minimax upper bounds for the parameter spaces

P (Fα(ρ,M)) and P (Hα(ρ,M)). We will show that the minimax rates of con-

vergence over these two parameter spaces are the same under the ℓ1 norm. Since

P (Hα(ρ,M)) ⊂ P (Fα(ρ, 2M/α)), it thus suffices to establish the minimax upper

bound for P (Fα(ρ,M)).

We focus on the case p ≥ n1/(2α+2). The case p < n1/(2α+2), to be discussed

in Section 3.2.1, is similar and slightly easier.

Theorem 5. Suppose p ≥ n1/(2α+2). The tapering estimator Σ̂k at (3.10) satis-

fies

sup
A

E
∥∥∥Σ̂k − Σ

∥∥∥2
1
≤ C

k2 + k log p

n
+ Ck−2α (3.11)

for k = o (n) , log p = o (n), and some constant C > 0, where A = P (Fα(ρ,M))

or P (Hα(ρ,M)). In particular, the estimator Σ̂ = Σ̂k with

k = min

{
n1/(2α+2),

(
n

log p

)1/(2α+1)
}

(3.12)

satisfies

sup
A

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≤ C

[
n−α/(α+1) +

(
log p

n

)2α/(2α+1)
]
, (3.13)

where A = P (Fα(ρ,M)) and P (Hα(ρ,M)).

Together with Theorem 3, Theorem 5 shows that the tapering estimator

with the optimal choice of the tapering parameter k given in (3.12) attains the

optimal rate of convergence over both P (Fα(ρ,M)) and P (Hα(ρ,M)).

Proof of Theorem 5. It is easy to see that the minimum of (k2 + k log p)/n+

k−2α is attained at k ≍ n1/(2α+2) with the minimum value of order n−α/(α+1)

when p ≤ exp
(
n1/(2α+2)

)
. For p ≥ exp

(
n1/(2α+2)

)
, the minimum is attained at

k ≍ (n/log p)1/(2α+1) and the minimum value is of order (log p/n)2α/(2α+1).

Note that Σ∗ is translation invariant and so is Σ̂. We assume EXl = 0

hereafter. Write

Σ∗ =
1

n

n∑
l=1

(
Xl − X̄

) (
Xl − X̄

)T
=

1

n

n∑
l=1

XlX
T
l − X̄X̄

T
,

where X̄X̄
T
is a higher order term. Denote X̄X̄

T
byG = (gij). Since Egij ≤ C/n,

it is easy to see that

E
∥∥∥(wijgij)p×p

∥∥∥2
1
≤ C

k2 log p

n2
≤ C

k log p

n
, for k ≤ n.
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In what follows we ignore this negligible term and focus on the dominating term

(1/n)
∑n

l=1XlX
T
l . Set Σ̃ = (1/n)

∑n
l=1XlX

T
l and write Σ̃ = (σ̃ij)1≤i,j≤p. Let

Σ̆ = (wij σ̃ij)1≤i,j≤p (3.14)

with wij given in (3.9). To prove Theorem 5, it suffices to show

sup
Fα(ρ,M)

E
∥∥∥Σ̆− Σ

∥∥∥2
1
≤ Cn−α/(α+1) + C

(
log p

n

)2α/(2α+1)

. (3.15)

Let Xl =
(
X l

1, X
l
2, . . . , X

l
p

)T
. We then write σ̃ij = (1/n)

∑n
l=1X

l
iX

l
j . It is easy

to see

Eσ̃ij = σij , (3.16)

Var(σ̃ij) ≤
C1

n
, (3.17)

for some C1 > 0.

It is easy to bound the bias part,

∥∥∥EΣ̆− Σ
∥∥∥2
1
≤

 max
i=1,...,p

∑
j:|i−j|>k

|σij |

2

≤M2k−2α. (3.18)

We show that the variance

E
∥∥∥Σ̆− EΣ̆

∥∥∥2
1
≤ C2

k2 + k log p

n
. (3.19)

It then follows immediately that

E
∥∥∥Σ̆− Σ

∥∥∥2
1
≤ 2E

∥∥∥Σ̆− EΣ̆
∥∥∥2
1
+ 2

∥∥∥EΣ̆− Σ
∥∥∥2
1
≤ 2C2

(
k2 + k log p

n
+ k−2α

)
.

This proves (3.15) and (3.11) then follows. Since p ≥ n1/(2α+2), we can set

k =


⌊
n1/(2α+2)

⌋
, for p ≤ exp

(
n1/(2α+2)

)⌊(
n

log p

)1/(2α+1)
⌋
, otherwise

(3.20)

and the estimator Σ̂ with k given in (3.20) satisfies

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≤ 4C2

[
n−α/(α+1) +

(
log p

n

)2α/(2α+1)
]
.

Theorem 5 is then proved.
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It remains to show (3.19). The key idea in the proof is to write the whole

matrix as an average of a large number of small block matrices, and for each small

block matrix the classical random matrix theory can be applied. The following

lemma shows that the ℓ1 norm of the random matrix Σ̆−EΣ̆ is controlled by the

maximum of p number of the ℓ1 norms of k × k random matrices.

The next lemmas are proved in Section 6. Define

U
(m)
l = (σ̃ijI {l ≤ i < l +m, l ≤ j < l +m})p×p (3.21)

for all integers 1−m ≤ l ≤ p and m ≥ 1.

Lemma 10. Let Σ̆ be defined as in (3.10). Then∥∥∥Σ̆− EΣ̆
∥∥∥
1
≤ 3 max

1≤l≤p−k+1

∥∥∥U (k)
l − EU (k)

l

∥∥∥
1
.

Lemma 11. There exists a constant c0 > 0 such that

P
{∥∥∥U (m)

l − EU (m)
l

∥∥∥2
1
> c0

(
m2

n
+ x2

m

n

)}
≤ exp

(
−2x2

)
(3.22)

for all x > 0 and 1 ≤ l ≤ p.

It follows from Lemmas 10 and 11 that

E
∥∥∥Σ̆− EΣ̆

∥∥∥2
1
≤ C3

(
k2 + k log p

n

)
+ C3k

−2α

by plugging x2 = C4max {m, log p} into (3.22), for some C4 > 0.

The lower bound given in Theorem 3 and the upper bound given in Theorem

5 together show that the minimax risks over the distribution classes P (Fα(ρ,M))

and P (Hα(ρ,M)) when p ≥ n1/(2α+2), satisfy

inf
Σ̂

sup
P(Fα(ρ,M))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ inf

Σ̂
sup

P(Hα(ρ,M))
E
∥∥∥Σ̂− Σ

∥∥∥2
1

≍ n−α/(α+1) +

(
log p

n

)2α/(2α+1)

. (3.23)

3.2.1. Optimal estimation over P (Fα(ρ,M)) and P (Hα(ρ,M)): the case

of p < n1/(2α+2)

For estimation over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)),

for both the minimax lower and upper bounds, we have so far focused on the

high dimensional case with p ≥ n1/(2α+2). In this section we consider the case
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p < n1/(2α+2) and show that the minimax risk of estimating the covariance matrix

Σ over the distribution classes P (Fα(ρ,M)) and P (Hα(ρ,M)) satisfies

inf
Σ̂

sup
A

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ p2

n
,

where A = P (Fα(ρ,M)) and P (Hα(ρ,M)), when p < n1/(2α+2).

This case is relatively easy. The upper bound can be attained by the sample

covariance matrix Σ̂. By (3.19) with k = p we have,

inf
Σ̂

sup
P(Fα(ρ,M))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≤ C

p2 + p log p

n
≤ 2C

p2

n
. (3.24)

The lower bound can also be obtained by the application of Assouad’s Lemma

and by using the same parameter space F11 with k = p, i.e.,

F11 =

{
Σ(θ) : Σ (θ) = Ip + τ2n

−1/2
p∑

s=2

θs

[
(I {i = 1, j = s})p×p

+(I {i = s, j = 1})p×p

]
,

θ = (θs) ∈ {0, 1}p−1

}

as in Section 2.2, where τ2 satisfies 0 < τ2 < min {M, 1/16} such that the collec-

tion F11 ⊂ Hα(ρ,M). We obtain, as at (2.14) in Section 2.2.1,

inf
Σ̂

sup
F11

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≥ min

H(θ,θ′)≥1

∥Σ(θ)− Σ(θ′)∥1
H (θ, θ′)

p− 1

2
min

H(θ,θ′)=1
∥Pθ ∧ Pθ′∥

≥ c
(
pn−1/2

)2
≥ c1

p2

n
. (3.25)

Inequalities (3.24) and (3.25) together yield the minimax rate of convergence

for the case p ≤ n1/(2α+2),

inf
Σ̂

sup
P(Fα(ρ,M))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ inf

Σ̂
sup

P(Hα(ρ,M))
E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ p2

n
. (3.26)

Combining (3.23) with (3.26), the optimal rate of convergence over two distribu-

tion classes P (Fα(ρ,M)) and P (Hα(ρ,M)) can be summarized as

inf
Σ̂

sup
P(Fα(ρ,M))

E
∥∥∥Σ̂− Σ

∥∥∥2
1
≍ inf

Σ̂
sup

P(Hα(ρ,M))
E
∥∥∥Σ̂− Σ

∥∥∥2
1

≍min

{
n−α/(α+1) +

(
log p

n

)2α/(2α+1)

,
p2

n

}
.
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4. Estimation of the Inverse Covariance Matrix

In addition to the covariance matrix, the inverse covariance matrix Σ−1 is
also of significant interest in many applications. The technical analysis given in
the previous sections can be applied to obtain the minimax rate for estimating
Σ−1 under the ℓ1 norm.

For estimating the inverse covariance matrix Σ−1 it is necessary to require
the ℓ1 norm of Σ−1 to be bounded. For a positive constant M1 > 0, set

Gq(ρ, cn,p,M1) = Gq(ρ, cn,p) ∩
{
Σ :
∥∥Σ−1

∥∥
1
≤M1

}
, (4.1)

Fα(ρ,M,M1) = Fα(ρ,M) ∩
{
Σ :
∥∥Σ−1

∥∥
1
≤M1

}
, (4.2)

Hα(ρ,M,M1) = Hα(ρ,M) ∩
{
Σ :
∥∥Σ−1

∥∥
1
≤M1

}
, (4.3)

and define P (Gq(ρ, cn,p,M1)) to be the set of distributions of X1 that satisfy both
(1.4) and (4.1). The parameter spaces P (Fα(ρ,M,M1)) and P (Hα(ρ,M,M1))
are defined similarly.

Assume that

c2n,p

(
log p

n

)1−q

→ 0, (4.4)

which is necessary to obtain a consistent estimator of Σ under ℓ1 norm.
The following theorem gives the minimax rates of convergence for estimating

Σ−1 over the three parameter spaces.

Theorem 6. The minimax risk of estimating the inverse covariance matrix Σ−1

over the distribution class P (Gq(ρ, cn,p,M1)) satisfies

inf
Ω̂

sup
P(Gq(ρ,cn,p,M1))

E
∥∥∥Ω̂− Σ−1

∥∥∥2
1
≍ c2n,p

(
log p

n

)1−q

(4.5)

under assumptions (2.1) and (4.4), and the minimax risks of estimating
the covariance matrix Σ over the distribution classes P (Fα(ρ,M,M1)) and
P (Hα(ρ,M,M1)) satisfy

inf
Ω̂

sup
A

E
∥∥∥Ω̂− Σ−1

∥∥∥2
1
≍ min

{
n−α/(α+1) +

(
log p

n

)2α/(2α+1)

,
p2

n

}
, (4.6)

where A is P (Fα(ρ,M,M1)) or P (Hα(ρ,M,M1)).

Remark 2. For estimating the inverse covariance matrix Σ−1, we have assumed
the ℓ1 norm of Σ−1 to be uniformly bounded. This condition is satisfied if the
variances σii on the diagonal of Σ are bounded from below by some constant
c0 > 0 and the correlation matrix is diagonally dominant in the sense that

max
1≤i≤p

∑
j,j ̸=i

|σij |√
σiiσjj

≤ 1− ε (4.7)
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for some ε > 0. This can be seen as follows. Define Wp×p = diag (σ11, . . . , σpp),

and write

Σ−1 = (W − (W − Σ))−1 =W−1/2 (I − V )−1W−1/2,

where V = W−1/2 (W − Σ)W−1/2. The assumption (4.7) implies that ∥V ∥1 ≤
1− ε, so

(I − V )−1 =
∑
i=0

V i,

which implies∥∥Σ−1
∥∥
1
≤
∥∥∥W−1/2

∥∥∥2
1

∥∥∥(I − V )−1
∥∥∥
1
≤ c−1

0

∑
i=0

∥V ∥i1 ≤ (c0ε)
−1.

Proof of Theorem 6. The proof is similar to those for estimating the covariance

matrix Σ. We only sketch the main steps below.

(I). Upper bounds. Let

Ω̂ =

{
Σ̂−1 if Σ̂−1 exists, and

∥∥∥Σ̂−1
∥∥∥
1
≤ n

I otherwise
.

Define the event A2 =
{
Σ̂−1 exists, and

∥∥∥Σ̂−1
∥∥∥
1
≤ n

}
. On the event A2 we write

Σ̂−1 − Σ−1 = Σ̂−1
(
Σ− Σ̂

)
Σ−1

so that∥∥∥Σ̂−1 − Σ−1
∥∥∥
1
=
∥∥∥Σ̂−1

(
Σ− Σ̂

)
Σ−1

∥∥∥
1
≤
∥∥∥Σ̂−1

∥∥∥
1

∥∥∥Σ− Σ̂
∥∥∥
1

∥∥Σ−1
∥∥
1
.

Note that∥∥∥Σ̂−1
∥∥∥
1
≤
∥∥∥∥(I + (Σ̂− Σ

)
Σ−1

)−1
∥∥∥∥
1

∥∥Σ−1
∥∥
1
≤
∥∥Σ−1

∥∥
1
[1 +

∞∑
k=1

(∥H∥1)
k], (4.8)

where H =
(
Σ̂− Σ

)
Σ−1. Define

A3 =
{∥∥∥Σ̂− Σ

∥∥∥
1
≤ ε
}

for some 0 < ε < 1/(2M1). It is easy to show that

P (Ac
3) ≤ CDn

−D (4.9)
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for every D > 0, using (3.2), (3.22), and (4.4). On A3 we see that

∥H∥1 =
∥∥∥(Σ̂− Σ

)
Σ−1

∥∥∥
1
≤ ε

∥∥Σ−1
∥∥
1
<

1

2
.

Since
∥∥Σ−1

∥∥
1
≤M1, which implies

∥∥∥Σ̂−1
∥∥∥
1
≤ 2M1 on A3 by (4.8), we have

∥∥∥Ω̂− Σ−1
∥∥∥2
1
=
∥∥∥Σ̂−1 − Σ−1

∥∥∥2
1
≤ C

∥∥∥Σ̂− Σ
∥∥∥2
1

on A2 ∩A3. It is actually easy to see A3 ⊂ A2 and∥∥∥Ω̂− Σ−1
∥∥∥2
1
≤ Cn2.

Let B be one of the three parameter spaces P (Gq(ρ, cn,p,M1)), P (Fα(ρ,M,M1)) ,

and P (Hα(ρ,M,M1)). We have

sup
B

E
∥∥∥Ω̂−Σ−1

∥∥∥2
1
= sup

B
E
{∥∥∥Σ̂−1−Σ−1

∥∥∥2
1
I(A3)

}
+sup

B
E
{∥∥∥Ω̂−Σ−1

∥∥∥2
1
I(Ac

3)

}
≤ C sup

B
E
∥∥∥Σ̂− Σ

∥∥∥2
1
+ Cn2 sup

B
P (Ac

3) ≤ C sup
B

E
∥∥∥Σ̂− Σ

∥∥∥2
1
,

where the last step follows from (4.9).

(II). Lower bounds. We use an elementary and unified argument to derive the

lower bounds for estimating the inverse covariance matrices for all three parame-

ter spaces. The basic strategy is to directly carry over the minimax lower bounds

for estimating Σ to the ones for estimating Σ−1. The following is a simple but

very useful observation. Note that

∥Σ1 − Σ2∥1 =
∥∥Σ1

(
Σ−1
1 − Σ−1

2

)
Σ2

∥∥
1
≤ ∥Σ1∥1

∥∥Σ−1
1 − Σ−1

2

∥∥
1
∥Σ2∥1 ,

which implies ∥∥Σ−1
1 − Σ−1

2

∥∥
1
≥ ∥Σ1∥−1

1 ∥Σ2∥−1
1 ∥Σ1 − Σ2∥1 .

If ∥Σ1∥1 ≤ C and ∥Σ2∥1 ≤ C for some C > 0, we have∥∥Σ−1
1 − Σ−1

2

∥∥
1
≥ C−2 ∥Σ1 − Σ2∥1 . (4.10)

Equation (4.10) shows that a lower bound for estimating Σ yields one for esti-

mating Σ−1 over the same parameter space.

We first consider the lower bounds for P (Hα(ρ,M,M1)). Set F0= F11∪F12,

where F11 and F12 are defined in (2.8) and (2.9), respectively. Over the parameter
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space F11 the proof is almost identical to the proof of the lower bound (2.10) in

Section 2.2 except that here we need to show

min
H(θ,θ́)≥1

∥∥Σ−1 (θ)− Σ−1 (θ′)
∥∥
1

H (θ, θ́)
≥ ca

instead of (2.15), for some c > 0. Actually the inequality follows from (2.15)

together with (4.10), since ∥Σ(θ)∥1 and ∥Σ(θ′)∥1 are bounded above by a finite

constant. For F12 the lower bound argument is almost identical to the proof of

the lower bound (2.11) by using a version of Fano’s Lemma, except that we need

∥Σ−1
i − Σ−1

j ∥1 ≥
√
c
k log p

n

for some c > 0 and all 0 ≤ i ̸= j ≤ m∗ instead of (2.16). The inequality follows

from (2.16) and (4.10).

The proof for the lower bound for the parameter space P (Gq(ρ, cn,p,M1)) is

almost identical to that of Theorem 2. The only different argument in the proof

is that

inf
m

∥∥Σ−1
m − Σ−1

0

∥∥2
1
≥ Cc2n,p

(
log p

n

)1−q

for some C > 0; this is true since ∥Σm∥1 is uniformly bounded from above by a

fixed constant.

5. Discussions

In this paper we have established the optimal rates of convergence for esti-

mating the covariance matrices over the three commonly used parameter spaces

under the matrix ℓ1 norm. Deriving the minimax lower bounds requires a careful

construction of collections of least favorable multivariate normal distributions

and the application of different lower bound techniques in various settings. The

lower bound arguments also provide insight into where the difficulties of the

covariance matrix estimation problem arise.

It is shown that the thresholding estimator originally introduced in Bickel

and Levina (2008b) for estimating sparse covariance matrices under the spec-

tral norm attains the optimal rate of convergence over the parameter space

P (Gq(ρ, cn,p)) under the matrix ℓ1 norm. For minimax estimation over the other

two parameter spaces P (Fα(ρ,M)) and P (Hα(ρ,M)), a tapering estimator is

constructed and shown to be rate optimal. For estimation over these two pa-

rameter spaces, compared to the optimal tapering estimators under the spectral

and Frobenius norms given in Cai, Zhang and Zhou (2010), the best choice of
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the tapering parameter is different under the ℓ1 norm. Consider the case p ≥ n.

The optimal choice of k under the ℓ1 norm is

k1 = min

{
n1/(2α+2),

(
n

log p

)1/(2α+1)
}
.

In contrast, the best choice of k under the spectral norm is k2 = n1/(2α+1), which

is always larger than k1. For estimation under the Frobenius norm, the optimal

choice of k over P (Hα(ρ,M)) is kF = n1/(2α+2). This coincides with k1 when

log p ≤ n1/(2α+2), and kF > k1 when log p≫ n1/(2α+2).

For estimation over the parameter spaces P (Fα(ρ,M)) and P (Hα(ρ,M)),

it is also interesting to compare with the banding estimator introduced in Bickel

and Levina (2008a). They considered the estimator

Σ̂B =
(
σ∗ijI {|i− j| ≤ k}

)
and proposed the banding parameter

k =

(
n

log p

)1/(2α+2)

.

Although this estimator was originally introduced for estimation under the spec-

tral norm, it is still interesting to consider its performance under the matrix

ℓ1 norm. The estimator achieves the rate of convergence (log p/n)α/(α+1) un-

der the matrix ℓ1 norm, which is inferior to the optimal rate min{n−α/(α+1) +

(log p/n)2α/(2α+1), p2/n} given at (1.6). Take for example α = 1/2 and p = e
√
n.

In this case (log p/n)α/(α+1) = n−1/6, while the optimal rate is n−1/4. On the

other hand, it can be shown by using (3.22) that the banding estimator with the

same optimal k for the tapering estimator described at (3.12) of Section 3.2 is

also rate optimal. In this sense there is no fundamental differences between the

tapering and banding estimators for estimation over these two parameter spaces.

We leave the detailed technical argument to the readers.

Our technical analysis also shows that covariance matrix estimation has quite

different characteristics from those in the classical Gaussian sequence estimation

problems. Johnstone (2011) gives a comprehensive treatment of minimax and

adaptive estimation under the Gaussian sequence models. See also Cai, Liu and

Zhou (2011) for Gaussian sequence estimation in the context of wavelet thresh-

olding. In the matrix estimation problems, with the exception of the squared

Frobenius norm loss, the loss functions are typically not separable as in the se-

quence estimation problems. For example, in this paper the loss function is not
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the usual squared vector ℓ2 norm or vector ℓ1 norm, which are sums of element-

wise losses, but is the matrix ℓ1 norm,

L
(
Σ̂,Σ

)
= max

i

∑
j

|σ̂ij − σij | .

This loss can be viewed as the maximum of p number of ℓ1 losses for vectors

and it cannot be decomposed as a sum of elementwise losses. Similarly the

spectral norm loss is also not separable. This makes the theoretical analysis of

the matrix estimation problems more involved. In addition, each element σ∗ij of

the sample covariance matrix is asymptotically normal with the mean σij and

the standard deviation of order 1/
√
n, but the σ∗ij ’s are neither exactly normal

nor homoskedastic as in the classical Gaussian sequence estimation problems. In

addition, the σ∗ij ’s are dependent. These create additional technical complications

and more care is thus needed.

In Cai and Zhou (2011) and Cai, Liu and Zhou (2011), we considered the

problems of optimal estimation of sparse covariance and sparse precision matrices

under the spectral norm. The spectral norm is bounded from above by the matrix

ℓ1 norm, but is often much smaller than the matrix ℓ1 norm. The lower bounds

in this paper are not sufficient for optimal estimation in those settings. New

and much more involved lower bounds arguments are developed in Cai and Zhou

(2011) and Cai, Liu and Zhou (2011) to overcome the technical difficulties there.

6. Proofs of Technical Lemmas

We prove the technical lemmas that are used in the proofs of the main results

in the previous sections.

Proof of Lemma 5. When H (θ, θ′) = 1, Pinsker’s Inequality (see, e.g., Csiszár

(1967)) implies

∥Pθ′−Pθ∥21 ≤ 2K (Pθ′ |Pθ)=n
[
tr
(
Σ
(
θ′
)
Σ(θ)−1

)
−log det

(
Σ
(
θ′
)
Σ(θ)−1

)
−p
]
.

For a matrix A = (aij), let ∥A∥F =
√∑

ij a
2
i,j . It is easy to see that

tr
(
Σ
(
θ′
)
Σ(θ)−1

)
− log det

(
Σ
(
θ′
)
Σ(θ)−1

)
− p ≤

∥∥Σ (θ′)− Σ(θ)
∥∥2
F

(4.11)

when ∥Σ (θ)− I∥2 ≤ 1/4 and ∥Σ (θ′)− I∥2 ≤ 1/4, and

∥Σ(θ)− I∥2 ≤ ∥Σ(θ)− I∥1 ≤ τ2kn
−1/2 ≤ τ2 <

1

4
(4.12)

for τ2 < 1/16. Inequalities (4.11) and (4.12) imply

∥Pθ′ − Pθ∥21 ≤ n
∥∥Σ (θ′)− Σ(θ)

∥∥2
F
= n · 2τ22

(
n−1/2

)2
= 2τ22 < 1,
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and the lemma follows immediately.

Proof of Lemma 7. When τ2 < 1/16,

∥Σ(θj)− I∥2 ≤ ∥Σ(θj)− I∥1 ≤
√
τ2 log pkb =

√
τ2k log p

n

=
√
τ2

(
log p

n

)−α/(2α+1)

<
1

4
.

Inequality (4.11) gives

K
(
Pθj ,Pθ0

)
≤ n ∥Σ(θj)− Σ (θ0)∥2F ≤ n · 2τ2kb2 log p ≤ 2τ2 log p.

Proof of Lemma 8. Let A1 =

{∣∣∣σ∗ij∣∣∣ ≥ γ
√

log p
n

}
. From the definition of σ̂ij

we have

|σ̂ij − σij | = |σij | · I(A1) + |σ∗ij − σij | · I(Ac
1).

It is easy to see

A1 =

{∣∣σ∗ij − σij + σij
∣∣ ≥ γ

√
log p

n

}
⊂

{∣∣σ∗ij − σij
∣∣ ≥ γ

√
log p

n
− |σij |

}
,

and Ac
1 =

{∣∣σ∗ij − σij + σij
∣∣ < γ

√
log p

n

}
⊂

{∣∣σ∗ij − σij
∣∣ > |σij | − γ

√
log p

n

}
by the triangle inequality. Note that (3.3) implies

P (A1) ≤ P

(∣∣σ∗ij − σij
∣∣ > 3γ

4

√
log p

n

)
≤ C1p

−9/2, when |σij | < γ
4

√
log p
n ,

P (Ac
1) ≤ P

(∣∣σ∗ij − σij
∣∣ > γ

√
log p

n

)
≤ C1p

−8, when |σij | > 2γ
√

log p
n .

Thus

|σ̂ij − σij | =


|σij | |σij | < γ

4

√
log p
n ,∣∣∣σ∗ij − σij

∣∣∣ or |σij | γ
4

√
log p
n ≤ |σij | ≤ 2γ

√
log p
n ,∣∣∣σ∗ij − σij

∣∣∣ |σij | > 2γ
√

log p
n ,

with a probability of at least 1− C1p
−9/2 for all settings. Since

P

(∣∣σ∗ij − σij
∣∣ ≤ γ

√
log p

n

)
≥ 1− C1p

−8,
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it then is easy to see that for each of the three settings above we have

|σ̂ij − σij | ≤ 4min

{
|σij | , γ

√
log p

n

}
with a probability of at least 1− 2C1p

−9/2.

Proof of Lemma 9. It is easy to see

kwij =# {l : (i, j) ⊂ {l, . . . , l + 2k − 1}} −# {l : (i, j) ⊂ {l, . . . , l + k − 1}}
= (2k − |i− j|)+ − (k − |i− j|)+,

which takes value in [0, k]. Clearly from the above, kwij = k for |i− j| ≤ k.

Proof of Lemma 10. Set S(m) =
∑p

l=1−m U
(m)
l . Without loss of generality we

assume that p can be divided by m. Set δ
(m)
l = U

(m)
l − EU (m)

l . By (3.10)∥∥∥S(m) − ES(m)
∥∥∥
1
≤

m∑
l=1

∥∥∥∥∥ ∑
−1≤j < p/m

δ
(m)
jm+l

∥∥∥∥∥
1

. (4.13)

Since the δ
(m)
jm+l are diagonal blocks of their sum over −1 ≤ j < p/m, we have∥∥∥S(m) − ES(m)

∥∥∥
1
≤ m max

1≤l≤m

∥∥∥∥∥ ∑
0≤j < p/m

δ
(m)
jm+l

∥∥∥∥∥
1

≤ m max
2−m≤l≤p

∥∥∥δ(m)
l

∥∥∥
1
.

This and (3.10) imply the conclusion, since δ
(k)
l and δ

(2k)
l are all sub-blocks of a

certain matrix δ
(2k)
l with 1 ≤ l ≤ p− 2k + 1.

Proof of Lemma 11. A key technical tool for the extension is the following
lemma which was established in Section 7 of Cai, Zhang and Zhou (2010).

Lemma 12. There is a constant ρ1 > 0 such that

P
{∥∥∥U (m)

l − EU (m)
l

∥∥∥ > x
}
≤ 5m exp

(
−nx2ρ1

)
for all 0 < x < ρ1 and 1−m ≤ l ≤ p.

Set c0 = 2/ρ1. From the fact ∥Am×m∥21 ≤ m ∥Am×m∥2 for any symmetric
matrix Am×m and Lemma 12, we have

P
{∥∥∥U (m)

l − EU (m)
l

∥∥∥2
1
> c0

(
m2

n
+ x2

m

n

)}
≤ P

{∥∥∥U (m)
l − EU (m)

l

∥∥∥2 > c0

(
m

n
+
x2

n

)}
≤ 5m exp

(
−c0

(
m+ x2

)
ρ1
)

=

(
5

e2

)m

exp
(
−2x2

)
≤ exp

(
−2x2

)
.
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COMMENT

Lingzhou Xue and Hui Zou

University of Minnesota

We would like to first congratulate Professors Cai and Zhou for their path-
breaking contributions to high-dimensional covariance matrix estimation. Their
work greatly deepens our understandings about the nature of large covariance
matrix estimation. The technical ideas developed in their work are very useful
for studying many high-dimensional learning problems.

1. Geometric Decay Spaces

Throughout this discussion we assume log(p) ≪ n < p and the loss function
is the matrix ℓ1 norm. In their paper, Cai and Zhou (2012) have shown that
thresholding is minimax optimal for estimating Σ over the weak ℓq ball

Gq(ρ, cn,p) = {Σ : max
1≤j≤p

|σ[k]j |q ≤ cn,pk
−1, ∀ k, and max

i
σii ≤ ρ, 0 ≤ q < 1},

and that tapering/banding is minimax optimal for estimating Σ over

Hα(ρ,M) = {Σ : |σij | ≤M |i− j|−(α+1) for i ̸= j and max
i
σii ≤ ρ}.

Beyond the polynomial decay space, it is natural to consider covariance ma-
trices with a geometric decay rate. We introduce the parameter spaces

Aη(ρ,M) = {Σ : |σij | ≤Mη|i−j| for i ̸= j and max
i
σii ≤ ρ},

Bη(ρ,M) = {Σ : max
1≤j≤p

|σ[k]j | ≤Mηk,∀k and max
i
σii ≤ ρ},

tcai@wharton.upenn.edu
huibin.zhou@yale.edu
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Figure A.1. A slow geometric decay curve versus a slow polynomial decay
curve.

where 0 < η < 1. The popular autoregressive matrices belong to geometric decay
spaces such as Aη(ρ,M) and Bη(ρ,M). Figure A.1 compares a slow geometric
decay curve (with η = 0.9) and a slow polynomial decay curve (with α =
0.1). It is interesting to see that the geometric decay curve is well above the
polynomial curve. The reason is that in the polynomial decay case the constant
M should be less than 0.705 in order to keep the covariance matrix positive
definite. This example suggests that the geometric decay space deserves some
special consideration. An important technical contribution in Cai and Zhou
(2012) is their carefully designed least favorable distributions for establishing the
minimax lower bounds. We follow their idea and give minimax rates under the
ℓ1 norm for geometric decay spaces.

Theorem 1. Thresholding attains the minimax risk of estimating Σ under the
matrix ℓ1-norm over Bη(ρ,M), with minimax rate

inf
Σ̂

sup
Bη(ρ,M)

E
∥∥Σ̂− Σ

∥∥2
1
≍ log p

n
· log2( n

log p
). (A.1.1)

Tapering and banding both attain the minimax risk of estimating Σ under the
ℓ1-norm over Aη(ρ,M), with minimax rate

inf
Σ̂

sup
Aη(ρ,M)

E
∥∥Σ̂− Σ

∥∥2
1
≍ log p

n
· log( n

log p
). (A.1.2)

Theorem 1 also indicates that thresholding is nearly minimax optimal for
estimating Σ over Aη(ρ,M). To see that, for Σ ∈ Aη(ρ,M) we have

|σ[k]j | = min
1≤i≤k

|σ[i]j | ≤ min
1≤i≤k

Mη|[i]−j| ≤Mηk/2 =M
√
ηk,
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which immediately implies that Aη(ρ,M) ⊂ B√
η(ρ,M). By Theorem 1 we know

that the thresholding estimator achieves a rate of convergence of (log p/n) ·
log2(n/log p) over Aη(ρ,M). This rate of convergence differs from the exact

minimax lower bound by the factor log(n/log p).

The above nearly minimax result is not true in the polynomial decay spaces.

Note that Hα(ρ,M) ⊂ G1/(α+1)(ρ, 2M
1/(α+1)). If we apply the thresholding esti-

mator to estimate Σ over Hα(ρ,M), the rate of convergence is (log p/n)α/(1+α).

Comparing it to the minimax rate over Hα(ρ,M) given in Theorem 1 of Cai

and Zhou (2012), we see that tapering/banding is fundamentally better than

thresholding for estimating bandable matrices over a polynomial decay space.

2. Double Thresholding?

Thresholding estimator is permutation-invariant, whereas banding/tapering

estimator requires a natural ordering among variables. It is of interest to combine

the strengths of banding and thresholding. This motivates us to consider the

double thresholding estimator Σ̂double = (σ̂doubleij )p×p by performing the entry-

wise double thresholding rule

σ̂doubleij = σ̃blockij · I(|σ̃blockij | ≥ λ2), (A.2.1)

where

σ̃blockij = σ̂ij · I
(

max
(s,t):s−t=i−j

|σ̂st| ≥ λ1
)
.

We conducted a small simulation study to compare five regularized covari-

ance matrix estimators (banding, tapering, simple thresholding, block thresh-

olding, and double thresholding). In the simulation study, we considered four

covariance models.

• Model 1: σij = (1− |i− j|/γ)+ for γ = 0.05p.

• Model 2: σij = sij · (siisjj)−1/2, where S = (Ip×p+U)T (Ip×p+U) = (sij)p×p

with U being a sparse matrix with exactly κ nonzero entries equal to +1 or

−1 with equal probability for κ = p.

• Model 3: σij = I{i=j} + aij(1 + ϵ)−1/2 · I{i̸=j}, where aij is equal to 0 or

0.6 · |i− j|−1.3 with equal probability, and ϵ is chosen to be the absolute value

of the minimal eigenvalue of (I{i=j} + aij · I{i ̸=j})p×p plus 0.01.

• Model 4: σij = I{i=j} + (1 + ϵ)−1/2 · (bij · I{0<|i−j|≥0.5p} + cij · I{|i−j|>0.5p}),

where bij or cij equals 0 with probability 0.7 and equals 0.7|i−j| or 0.7|i−j−0.5p|

with probability 0.3, and ϵ is chosen to be the absolute value of the minimal

eigenvalue of (I{i=j} + bij · I{0<|i−j|≥0.5p} + cij · I{|i−j|>0.5p})p×p plus 0.01.



1352 T. TONY CAI AND HARRISON H. ZHOU

Table A.1. Comparison of banding, tapering, simple thresholding, block
thresholding and double thresholding estimators. The standard errors are
also shown in the bracket.

Model 1 Model 2 Model 3 Model 4

Banding
5.55 4.60 1.98 2.15
(0.08) (0.00) (0.01) (0.01)

Tapering
5.66 4.60 1.98 2.19
(0.10) (0.00) (0.01) (0.01)

Simple Thresholding
10.61 3.38 2.19 2.40
(0.19) (0.03) (0.02) (0.02)

Block Thresholding
5.66 4.60 1.91 1.97
(0.08) (0.00) (0.01) (0.01)

Double Thresholding
5.68 3.38 1.87 1.82
(0.08) (0.03) (0.01) (0.02)

For each model we generated a training data set with n = 100 and p = 500 to

construct the five estimators, and we also generated an independent validations

set of size 100 to tune each estimator. The procedure was repeated 100 times.

The estimation accuracy was measured by the matrix ℓ1 norm averaged over

100 replications. The simulation results are summarized in Table A.1. Model 1

is designed for banding/tapering, and simple thresholding fails miserably there,

while blockwise thresholding works as well as tapering. Model 2 is designed for

thresholding, and it has a total of 1546 nonzero off-diagonal entries. Banding

and tapering fail, as does blockwise thresholding. Model 3 and Model 4 are more

interesting examples, because neither banding/tapering nor simple thresholding

can give the best estimation. Blockwise thresholding does better than band-

ing/tapering and simple thresholding. However, the best results are given by

double thresholding: it significantly outperforms the other four estimators. This

simulation study suggests that the double thresholding estimator deserves a more

thorough theoretical investigation.

Appendix

For the sake of completeness we give the proof of Theorem 1.

Proof of Theorem 1. We first establish the upper bounds. Recall the thresh-

olding estimator as defined in Cai and Zhou (2012), σ̂ij = σ∗ij · I{|σ∗
ij |≥γ

√
log p/n},

where γ is chosen such that Pr(|σ∗ij − σij | > γ
√

log p/n) ≤ C1p
−8. There exists

some integer k∗ such that Mηk
∗
> γ

√
log p/n ≥Mηk

∗+1. Then we have

∑
i

min

{
|σij |, γ

√
log p

n

}
≤ k∗ · γ

√
log p

n
+M

∑
i>k∗

ηi ≤ C

√
log p

n
log(

n

log p
).
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Applying (3.6) and E∥D∥21 = O(1/n) as in Cai and Zhou (2012) yields

sup
Bη(ρ,M)

E∥Σ̂− Σ∥21 ≤ C

[
log p

n
log2(

n

log p
) +

1

n

]
≤ C

log p

n
· log2( n

log p
).

For the tapering estimator, we can use the steps for proving Theorem 5 in
Cai and Zhou (2012) to obtain

sup
Aη(ρ,M)

E
∥∥Σ̂k − Σ

∥∥2
1
≤ C

k2 + k log p

n
+ C

ηk

(1− η)2
.

Therefore the tapering estimator with k = log(n/log p)/log(1/η) can have the
rate of convergence

sup
Aη(ρ,M)

E
∥∥Σ̂k − Σ

∥∥2
1
≤ C

log p

n
· log( n

log p
).

We now prove the lower bounds. Let H = {H1,k,H2,k, · · · ,Hm∗,k} be the
collection of symmetric matrices with exactly k elements equal to 1 in the first
row/column and the rest zeros. To show (A.1.1) we consider

B0 = {Σ0 = ρ · Ip and Σm = ρ · Ip + a ·Hm,k : 1 ≤ m ≤ m∗} ,

where k = ⌊log(n/log p)/2 log(1/η)⌋ and a =
√
τ log p/n for some small constant

τ . Since a ≤ ηk still holds, B0 is a subclass of Bη(ρ,M). Note that B0 is similar
to the space defined in (2.2) in Cai and Zhou (2012) but with a differen k value.
Then by Le Cam’s lemma and arguments in Section 2.1 of Cai and Zhou (2012),
we can show that

sup
0≤m≤m∗

E∥Σ̂− Σm∥21 ≥
1

2
∥P0 ∧ P̄∥ · inf

1≤m≤m∗
∥Σm − Σ0∥21 ≥ c

log p

n
· log2( n

log p
).

Thus the lower bound in (A.1.1) is proved.
To show (A.1.2) we consider

A0 =
{
Σm = ρ · Ip + a ·Bm,k : 0 ≤ m ≤ m∗ =

⌊p
k

⌋
− 1
}
,

where k = log(n/log p)/2 log(1/η), a =
√

log p/16nk, and Bm,k = (bij)1≤i,j≤p

with
bij = I{i=m and k+1≤j≤m+k−1} + I{j=m and k+1≤i≤m+k−1}.

Since a2 ≤ log p/n = η2k, a ≤ ηk obviously holds. Then it is easy to show that
A0 is a subclass of Aη(ρ,M). Note that A0 is similar to the space defined in
(2.8) in Cai and Zhou (2012), but with a differen k value. Then by Fano’s lemma
and the arguments in Section 2.2, we can have

inf
Σ̂

sup
A0(k,a)

E
∥∥Σ̂− Σ

∥∥2
1
≥ c · log p

n
· log( n

log p
).

Thus the lower bound in (A.1.2) is proved.
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COMMENT

Tingni Sun and Cun-Hui Zhang

Rutgers University

The estimation of covariance matrices and their inverses is a problem of great

practical value and theoretical interest. We congratulate the authors for making

an important contribution to it by finding the rate of minimax risk with the ℓ1
operator norm as the loss function.

A natural question arising from this interesting paper is the minimax rate

when the loss is the ℓw operator norm ∥M∥w=max∥u∥w=1 ∥Mu∥w. For Gq(ρ, cn,p),

the minimax rate has already been established in Cai and Zhou (2012). For

A = Fα(ρ,M) or A = Hα(ρ,M), the upper bound for w ∈ [1, 2],

inf
Σ̂

sup
A

E
∥∥Σ̂−Σ

∥∥2
w
. min

{
n−2α/(2α+2/w)+

( log p
n

)2α/(2α+2/w−1)
,
p2/w

n

}
, (B.1)

follows from the ∥ · ∥2 bound on the variance term of the tapering estimator and

the ∥ · ∥1 bound on the bias term, since ∥M∥w ≤ min
(
∥M∥1, k1/w−1/2∥M∥2

)
for

symmetric M ∈ Rk×k. Since Σ is symmetric, (B.1) is also valid with w replaced

by w/(w − 1) ∈ [2,∞]. For w = 1, this gives the minimax rate of the authors.

However, it is unclear if the lower bound argument works for w ∈ (1, 2).

Recent advances in high-dimensional data have been focused on the esti-

mation of high-dimensional objects. However, the estimation of low-dimensional

functionals of high-dimensional objects is also of interest. A rate minimax estima-

tor of a high-dimensional parameter does not automatically yield rate minimax

estimates of its low-dimensional functionals. For example, instead of the entire

lzxue@stat.umn.edu
zouxx019@umn.edu
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covariance matrix or its inverse, one might be more interested in the relation-

ship between individual pairs of variables. In what follows, we consider efficient

estimation of partial correlation with high-dimensional Gaussian data.

The partial correlation is of primary interest in Gaussian-Markov graphical

models. Let X = (X1, . . . , Xp)
⊤ be a N(0,Σ) random vector. The partial corre-

lation between Xj and Xk, say rjk, is their conditional correlation given all other

variables. It can be also written as the error correlation in the linear regression

of X{j,k} against X{j,k}c . In general, for any proper subset A ⊂ {1, . . . , p}, a
multivariate linear regression model can be written as

XA = XAcβAc,A + εA. (B.2)

For A = {j, k}, the partial correlation rjk is the correlation between the two

entries of εA. Throughout the sequel, we consider sets A of bounded size.

It is well known that the conditional distribution of XA given XAc is

XA|XAc ∼ N(XAcΣ−1
Ac,AcΣAc,A,ΣA − ΣA,AcΣ−1

Ac,AcΣAc,A).

Thus, the coefficient matrix in (B.2) is βAc,A = Σ−1
Ac,AcΣAc,A and the residual

εA follows the multivariate normal distribution N(0,ΣA − ΣA,AcΣ−1
Ac,AcΣAc,A).

Let Θ = Σ−1 be the precision matrix. It follows easily from the block inver-

sion formula that the covariance matrix for the residual εA is Θ−1
A = ΣA −

ΣA,AcΣ−1
Ac,AcΣAc,A. Thus,

rjk = −
Θjk

(ΘjjΘkk)1/2
. (B.3)

We consider the slightly more general problem of estimating a smooth function

of Θ−1
A , say τ = τ(Θ−1

A ).

Suppose we have a data matrix X ∈ Rn×p with iid rows from N(0,Σ). An

oracle expert observing both X and εA = XA−XAcβAc,A can estimate τ by the

oracle MLE

τ∗ = τ
(ε⊤AεA

n

)
(B.4)

due to the sufficiency of εA for ΘA. Our idea is to find an estimator close to

the oracle τ∗. For |A| = 1, this was done in Sun and Zhang (2011), where the

scaled Lasso is used to jointly estimate the coefficient vector and the noise level

in univariate linear regression. This noise level estimator was proven to be within

o(n−1/2) of the oracle τ∗ under certain “large-p-smaller-n” settings. We extend

their results to |A| > 1 as follows.
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Let Xj ∈ Rn be the j-th column of X. For each j ∈ A, we apply the scaled

Lasso to the univariate linear regression of Xj against XAc as follows:

{β̂Ac,j , σ̂j} = argmin
bAc ,σ

{∥Xj −XAcbAc∥2

2nσ
+
σ

2
+ λ

∑
k∈Ac

∥Xk∥2
|bk|√
n

}
. (B.5)

Let β̂Ac,j , j ∈ A, be the columns of β̂Ac,A and zA = XA −XAc β̂Ac,A. Define

τ̂ = τ
(z⊤

AzA
n

)
(B.6)

as the scaled Lasso estimator of τ(Θ−1
A ). The following theorem gives an error

bound for the estimator τ̂ in (B.6) by comparing it with the oracle MLE.

Theorem 1. Suppose τ : RA×A → R is a unit Lipschitz function in a neighbor-

hood {M : ∥M −Θ−1
A ∥2 ≤ η0}. Let τ̂ be given by (B.6) with λ = {3(log p)/n}1/2

in (B.5). Let sA = maxj∈A
∑

k∈Ac min(1, |Θjk|/λ). Suppose that for a fixed M0,

∥Θ∥2 + ∥Σ∥2 ≤ M0. Then there exist constants a0 > 0 and C0 < ∞, both

depending on {η0,M0} only, such that for sA ≤ a0n/ log p,

P
{∣∣τ̂ − τ∗

∣∣ > C0sA(log p)

n

}
≤ p−1/3,

where τ∗ is the oracle MLE (B.4). In particular, if sA(log p)/
√
n = o(1), then√

nFτ (τ̂ − τ)
D−→ N(0, 1),

where Fτ is the minimum Fisher information for the estimation of τ .

The proof of Theorem 1 and additional related results will be presented in

a forthcoming paper. Since the oracle MLE τ∗ in (B.4) is based on an |A|-
dimensional regular multivariate normal model, εA ∼ N(0,Θ−1

A ), and |A| is

bounded, τ∗ is efficient. This gives the efficiency of τ̂ .

Now consider the estimation of the partial correlation (B.3). With A = {j, k}
in (B.5), the oracle and scaled Lasso estimators are

r∗jk =
ε⊤j εk

(∥εj∥2∥εk∥2)
, r̂jk =

z⊤
j zk

(∥zj∥2∥zk∥2)
. (B.7)

Corollary 1. Let r∗jk and r̂jk be given by (B.7). Suppose the conditions of

Theorem 1 hold with A = {j, k} and s = sA. Then, r̂jk − r∗jk = OP (s(log p)/n).

Consequently, if s(log p)/
√
n→ 0, then
√
n(r̂jk − rjk)

(1− r̂2jk)

D−→ N(0, 1).
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Table B.1. Mean and standard error of the scaled Lasso estimator for the
partial correlation and the ratio of the simulated and theoretical MSEs,
κ =MSE/{(1− r2jk)

2/n}.

Example 1: five-diagonal precision matrix
r12 = −0.6 r13 = −0.1 r14 = 0

p Mean±SE(r̂) κ Mean±SE(r̂) κ Mean±SE(r̂) κ
200 -0.626 ± 0.055 0.894 -0.042 ± 0.083 1.037 -0.010 ± 0.097 0.937
1000 -0.643 ± 0.056 1.214 -0.043 ± 0.088 1.104 -0.007 ± 0.089 0.797

Example 2: exponential decay precision matrix
r12 = −0.6 r13 = −0.36 r14 = −0.216

p Mean±SE(r̂) κ Mean±SE(r̂) κ Mean±SE(r̂) κ
200 -0.551 ± 0.064 1.602 -0.236 ± 0.079 2.846 -0.042 ± 0.100 4.412
1000 -0.539 ± 0.079 2.425 -0.224 ± 0.089 3.475 -0.029 ± 0.101 4.962

Since r∗jk is the (oracle) MLE of the correlation based on iid bivariate normal

observations,
√
n(r∗jk − rjk) converges to N(0, (1 − r2jk)

2) in distribution. Thus,

Corollary 1 directly follows from Theorem 1.

A major difference between our theory and existing work based on variable

selection is that Θ is allowed to have many elements of small and moderate

magnitude in Theorem 1 and Corollary 1. This is similar to Zhang and Zhang

(2011) where statistical inference of regression coefficients is considered.

We present some simulation results to demonstrate the performance of the

scaled Lasso for partial correlation. Two examples are considered. The first

example is a five-diagonal precision matrix with Θjj = 1, Θj−1,j = Θj,j−1 = 0.6,

and Θj−2,j = Θj,j−2 = 0.1. In the second example, we set Θjk = 0.6|j−k| (no entry

of the precision matrix is exactly zero). The partial correlations are computed

by rjk = −Θjk/(ΘjjΘkk)
1/2. We generated a random sample of size n = 100

from N(0,Σ) with Σ = Θ−1. The scaled Lasso estimator was computed with

λ = {(log p)/n}1/2. For each example, we took p = 200 and p = 1, 000.

Table B.1 shows the scaled Lasso estimates for r12, r13, and r14 based on

100 replications. In Example 1, r̂jk is quite accurate, as the condition of small

sA(log p)/
√
n holds well with values 0.8, 1.3, and 1.5 for the estimation of r12,

r13, and r14 when p = 200, and with values 1.0, 1.6, and 1.9 when p = 1, 000.

In Example 2, the scaled Lasso deteriorates as the condition sA(log p)/
√
n starts

to fail, with values 2.3, 2.8, and 3.4 for the estimation of r12, r13, and r14 when

p = 200, and with values 2.8, 3.5, and 4.2 when p = 1, 000.
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COMMENT

Philippe Rigollet and Alexandre B. Tsybakov

Princeton University and CREST-ENSAE

1. Introduction

Estimation of covariance matrices in various norms is an issue that finds

applications in a wide range of statistical problems and especially in principal

component analysis. It is well known that, without further assumptions, the

empirical covariance matrix Σ∗ is the best possible estimator in many ways, and

in particular in a minimax sense. However, it is also well known that Σ∗ is not

an accurate estimator when the dimension p of the observations is high. The

minimax analysis carried out by Tony Cai and Harry Zhou (Cai and Zhou (2012)

in what follows) guarantees that for several classes of matrices with reasonable

structure (sparse or banded matrices), the fully data-driven thresholding estima-

tor achieves the best possible rates when p is much larger than the sample size n.

This is done, in particular, by proving minimax lower bounds that ensure that

no estimator can perform better than the hard thresholding estimator, uniformly

over the sparsity classes Gq for each 0 ≤ q < 1. This result has a flavor of uni-

versality in the sense that one and the same estimator is minimax optimal for

several classes of matrices.

Our comments focus on the sparsity classes of matrices.

tingni@stat.rutgers.edu
czhang@stat.rutgers.edu
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(a) Optimal rates. Optimal rates are obtained in Cai and Zhou (2012) under the

assumption that the dimension is very high: p ≥ nν , ν > 1. Thus, the case of

dimensions smaller than n, or even p ≈ n, is excluded. This seems to be due to

the technique employed to prove the lower bound (Theorem 2 in Cai and Zhou

(2012)). Indeed, by a different technique, we show that the lower bound holds

without this assumption, cf. Theorem 1 below. Furthermore, in general, our

lower rate ψ(1) is different from that obtained in Cai and Zhou (2012) and

has ingredients similar to the optimal rate for the Gaussian sequence model.

We conjecture that it is optimal for all admissible configurations of n, p, and

sparsity parameters.

(b) Frobenius norm and global sparsity. We argue that the Frobenius norm is

naturally adapted to the structure of the problem, at least for Gaussian

observations, and we derive optimal rates under the Frobenius risk and global

sparsity assumption.

(c) Approximate sparsity. Again under the Frobenius risk, one can obtain not

only the minimax results but also oracle inequalities. We demonstrate it for

the soft-thresholding estimator. This allows us to deal with a more general

setup where the covariance matrix is not necessarily sparse but can be well

approximated by a sparse matrix.

Below we denote by ∥A∥ the Frobenius norm of a matrix A:

∥A∥2 = tr(AA⊤) =
∑
i,j

a2ij ,

where tr(B) stands for the trace of square matrix B. Moreover, for q > 0, we

denote by |v|q the ℓq-norm of a vector v and by |A|q the ℓq norm of the off-

diagonal entries of A. We set |A|0 =
∑

i̸=j I(aij ̸= 0) (the number of non-zero

off-diagonal entries of A). The operator ℓq → ℓq norm of A is denoted by ∥A∥q.

2. Frobenius Norm and Sparsity

The cone of positive semi-definite (PSD) matrices can be equipped with a

variety of norms, even more so than a vector space. Cai and Zhou (2012) choose

the ∥ · ∥1 norm and consider classes of matrices that are essentially adapted to

this metric. For example, the class Gq defined in (1) controls the largest ℓq norm

of the columns of the covariance matrix Σ with 0 ≤ q < 1 while the ∥ · ∥1 norm

measures the largest ℓ1 norm of the columns of Σ̂−Σ. Theorem 1 below indicates

that for q = 1 consistent estimators do not exist.

One may wonder whether faster rates can be obtained if, for example, Σ has

one row/column with large ℓq norm and all other rows/columns have small ℓq
norm. It is quite clear that the ∥ · ∥1 norm fails to capture such a behavior and
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we need to resort to other norms. As we see below, this is achievable when the
Frobenius norm is used.

The Frobenius norm is a rather weak norm on the PSD cone. Indeed, it is
very much a vector norm unlike the ∥ · ∥1 norm used by Cai and Zhou (2012)
or the spectral norm, that are both operator norms. However, the choice of a
norm is rather subjective but some general guidelines exist in a given statistical
setup. It can be motivated by the idea of minimizing the Kullback-Leibler diver-
gence between the true distribution and its estimator (see, e.g., Rigollet (2012)).
This principle naturally gives rise to the use of the Frobenius norm in Gaussian
covariance matrix estimation, as indicated by the following lemma.

Lemma 1. Let Ip be the p×p identity matrix and ∆ be a symmetric p×p matrix
such that Ip+∆ is PSD. Denote by PΣ the distribution of Np(0,Σ) (a zero-mean
normal random variable in Rp with covariance matrix Σ > 0). Then, for any
0 < ε < 1, the Kullback-Leibler divergence between PIp+ε∆ and PIp satisfies

KL(PIp+ε∆, PIp) ≤
g(−ε)

2
∥∆∥2 ,

where

g(ε) =
ε− log(1 + ε)

ε2
.

Moreover if ∥∆∥2 ≤ 1, we have

KL(PIp+ε∆, PIp) ≥
(1− log 2)ε2

2
∥∆∥2 . (C.2.1)

Proof. Take Σ = Ip + ε∆ and observe that

KL(PΣ, PIp) = E log

(
dPΣ

dPIp

(X)

)
=

1

2
E log

(
1

det(Σ)

)
+

1

2
E[X⊤X −X⊤Σ−1X] ,

where X ∼ Np(0,Σ). Let λ1, . . . , λp denote the eigenvalues of ∆ and recall that
det(Σ) =

∏
j(1 + ελj). Moreover,

E[X⊤X −X⊤Σ−1X] = tr(E[XX⊤]− Σ−1E[XX⊤]) = tr(Σ− Ip) =
∑
j

ελj .

Therefore,

KL(PΣ, PIp) =
1

2

p∑
j=1

[ελj − log(1 + ελj)] ≤
1

2

p∑
j=1

g(ελj)λ
2
j .

Note now that since Ip +∆ is PSD, then λj ≥ −1 for all j = 1, . . . , p. Therefore,
since g is monotone decreasing on (−1,∞), it yields g(ελj) ≤ g(−ε). The second
statement of the lemma follows by observing that if ∥∆∥2 ≤ 1, then ελj ≤ ε ≤ 1
for all j = 1, . . . , p.
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3. Minimax Lower Bounds over Classes of Sparse Matrices

We denote by σij the elements of Σ and by σ(j) the jth column of Σ with

its jth component replaced by 0. For any q > 0, R > 0, we define the following

classes of matrices:

G(0)
q (R) =

{
Σ ∈ C>0 : |Σ|qq ≤ R , σii = 1, ∀i

}
,

G(1)
q (R) =

{
Σ ∈ C>0 : max

1≤j≤p
|σ(j)|qq ≤ R , σii = 1,∀i

}
,

where C>0 is the set of all positive definite symmetric p × p matrices. For q =

0, we define the classes G(0)
0 (R) and G(1)

0 (R) analogously, with the respective

constraints |Σ|0 ≤ R and max1≤j≤p |σ(j)|0 ≤ R. Here R is an integer for the class

G(1)
0 (R), and an even integer for G(0)

0 (R) in view of the symmetry. We assume

that R = 2k ≤ p(p− 1) for G(0)
0 (R) and R = k ≤ p− 1 for G(1)

0 (R), where k is an

integer. Set

ψ(0)=R1/2

(
1

n
log

(
1+

c0p
2

Rnq/2

))1/2−q/4

, ψ(1)=R

(
1

n
log
(
1 +

c0p

Rnq/2

))(1−q)/2

,

for some positive constant c0 that does not depend on the parameters p, n,R.

The following minimax lower bounds hold.

Theorem 1. Fix R > 0, 0 ≤ q ≤ 2, C0 > 0, and integers n ≥ 1, p ≥ 2. Consider

the conditions

R

(
log p

n

)1−q/2

≤ C0, R

(
log p

n

)(1−q)/2

≤ C0, R−1

(
log p

n

)q/2

≤ C0.

(C.3.1)

Let X1, . . . , Xn be i.i.d. Np(0,Σ) random vectors, and let w : [0,∞) → [0,∞) be

a monotone non-decreasing function such that w(0) = 0 and w ̸≡ 0. Then there

exist constants c0 > 0, c1 > 0, c > 0, depending only on C0 such that, under the

first and third conditions in (C.3.1),

inf
Σ̂

sup
Σ∈G(0)

q (R)

EΣw
(∥∥Σ̂− Σ

∥∥
c1ψ(0)

)
≥ c, (C.3.2)

and under the second and third conditions in (C.3.1),

inf
Σ̂

sup
Σ∈G(1)

q (R)

EΣw
(∥∥Σ̂− Σ

∥∥
1

c1ψ(1)

)
≥ c, ∀ 0 ≤ q ≤ 1, (C.3.3)

where EΣ denotes the expectation with respect to the joint distribution of X1, . . .,

Xn and the infimum is taken over all estimators based on X1, . . . , Xn.
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Proof. We first prove (C.3.2) with q = 0 and R = 2k. Assume first that

k ≤ p2/16. We use Theorem 2.7 in Tsybakov (2009). It is enough to check that

there exists a finite subset N of G(0)
0 (2k) such that, for some constant C > 0 and

some ψ ≥ Cψ(0), we have

(i) ∥Σ− Σ′∥ ≥ ψ , ∀ Σ ̸= Σ′ ∈ N ∪ {Ip},
(ii) nKL(PΣ, PIp) ≤ 2−4 log(cardN ) , ∀ Σ ∈ N .

We show that these conditions hold for

ψ =

(
k

n
log

(
1 +

ep(p− 1)

2k

))1/2

.

Let B be the family of all p × p symmetric binary matrices, banded such that

for all B ∈ B, bij = 0 if |i − j| >
√
k, with 0 on the diagonal and exactly k

nonzero over-diagonal entries equal to 1. Let M be the number of elements in

the over-diagonal band where the entry 1 can only appear. For k ≤ p2/4 we

have M ≥ p
√
k − k ≥ p

√
k/2. Therefore for, k ≤ p

√
k/4, Lemma A.3 in Rigollet

and Tsybakov (2011) implies that there exists a subset B0 of B such that for any

B,B′ ∈ B0, B ̸= B′, we have ∥B −B′∥2 ≥ (k + 1)/4, and

log(cardB0) ≥ C1k log

(
1 +

ep

4
√
k

)
(C.3.4)

for some absolute constant C1 > 0. Consider the family of matrices N = {Σ =

Ip +
a
2B : B ∈ B0} where

a = a0

(
1

n
log

(
1 +

ep

4
√
k

))1/2

for some a0 > 0. All matrices in N have at most 2
√
k nonzero elements equal

to a in each row. Therefore, the first inequality in (C.3.1) guarantees that for a0
small enough, matrices Ip+aB with B ∈ B0 and, a fortiori, Σ ∈ N are diagonally

dominant and hence PSD. Thus, N ⊂ G(0)
0 (2k) for sufficiently small a0 > 0. Also,

for any Σ,Σ′ ∈ N , Σ ̸= Σ′, we have

∥Σ− Σ′∥2 ≥ C2a
2k

for some absolute constant C2 > 0. It is easy to see that this inequality also

holds with a different C2 if Σ or Σ′ is equal to Ip. The above display implies (i).

To check (ii), observe first that since Ip + aB is PSD, we can apply Lemma 1

with ∆ = aB, ε = 1/2, to get

nKL(PΣ, PIp) ≤
na2g(−1/2)

2
∥B∥2 ≤ a2kn , ∀ Σ ∈ N .
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To prove (ii), it suffices to take a20 < 2−4C1, and to use (C.3.4). This proves

(C.3.2) with q = 0 under the assumption k ≤ p2/16. The case q = 0, k > p2/16

corresponds to a rate ψ(0) of order
√
p/n and is easily treated via the Varshamov-

Gilbert argument (we omit the details).

Next, observe that (C.3.2), for 0 < q ≤ 2, follows from the case q = 0. Indeed,

let k be the maximal integer such that 2kaq ≤ R (we assume a0 small enough

to have k ≥ 1, cf. the third inequality in (C.3.1)). Hence, |Σ|qq = 2kaq ≤ R for

any Σ ∈ N . Also, a
√
k ≤ R1/2a1−q/2/

√
2 and thus the first inequality in (C.3.1)

ensures the positive definiteness of all Σ ∈ N for small a0. For this choice of k,

we have k + 1 > Ra−q/2 and k ≤ C3Rn
q/2 with some constant C3 > 0. It can

be easily shown that (i) holds with

ψ2 ≥ CR

(
1

n
log

(
1 +

ep2

Ra−q

))1−q/2

≥ CR

(
1

n
log

(
1 +

c0p
2

Rnq/2

))1−q/2

.

The proof of (C.3.3) is quite analogous, with the only difference that B is now

defined as the set of all symmetric binary matrices with exactly k off-diagonal

entries equal to 1 in the first row and in the first column, and all other entries

0. Then, for k ≤ (p− 1)/2, Lemma A.3 in Rigollet and Tsybakov (2011) implies

that there exists a subset B1 of B such that for any two distinct B,B′ ∈ B1, we

have |b(1) − b′(1)|1 ≥ (k + 1)/4 (consequently, ∥B −B′∥1 ≥ (k + 1)/4) and

log(cardB1) ≥ C1k log

(
1 +

e(p− 1)

k

)
. (C.3.5)

Here, b(1), b
′
(1) are the first columns of B,B′ with their first components replaced

by 0. Thus, for any two distinct matrices Σ and Σ′ belonging to the family

N ′ = {Σ = Ip +
a
2B : B ∈ B1}, we have ∥Σ− Σ′∥21 ≥ C4a

2k2 for some constant

C4 > 0. Here, N ′ ⊂ G(1)
0 (k) thanks to the second inequality in (C.3.1). Also, by

Lemma 1, KL(PΣ, PIp) ≤ a2k for all Σ ∈ N ′. These remarks and (C.3.5) imply

the suitably modified (i) and (ii) for the choice

a = a0

(
1

n
log

(
1 +

e(p− 1)

k

))1/2

with a0 small enough. The rest of the proof follows the same lines as the proof

of (C.3.2).

The lower bound (C.3.3) and Theorem 4 in Cai and Zhou (2012) imply

that the rate R((log p)/n)(1−q)/2 is optimal on the class G(1)
q (R) under the ∥ · ∥1

norm if Rnq/2 ≤ pα with some α < 1. In particular, for q = 0 this optimality

holds under the quite natural condition k = O(pα), and no lower bound on p
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in terms of n is required. Clearly, this is also true when we drop the condition

Σ > 0 in the definition of G(1)
q (R) and consider a weak ℓq constraint as in Cai

and Zhou (2012).

Note that the rate ψ(0) is very similar to the optimal rate in the Gaussian

sequence model, cf. Section 11.5 in Johnstone (2011). This is due to the similarity

between the vector ℓ2 norm and the Frobenius norm. The rate ψ(1) is different

but nevertheless has analogous ingredients. Observe also that, in contrast to the

remark after Theorem 1 in Cai and Zhou (2012), we prove the Frobenius and

the ∥ · ∥1-norm lower bounds (C.3.2) and (C.3.3) by exactly the same technique.

The key point is the use of the “k-selection lemma” (Lemma A.3 in Rigollet and

Tsybakov (2011)). The lower bound (C.3.3) improves upon Theorem 2 in Cai

and Zhou (2012) in two aspects. First, it does not need the assumption p ≥ nν ,

ν > 1, and provides insight on the presumed optimal rate for any configuration of

n, p,R. Second, it is established for general loss functions w, in particular for the

“in probability” loss that we consider below. The technique used in Theorem 2

of Cai and Zhou (2012) is not adapted for this purpose as it applies to special

losses derived from w(t) = t.

4. Approximate Sparsity and Optimal Rates

Along with the hard thresholding estimator considered by Cai and Zhou

(2012), one can use the soft thresholding estimator Σ̃ defined as the matrix with

off-diagonal elements

σ̃ij = sign(σ∗ij)(|σ∗ij | − τ)+ ,

where σ∗ij are the elements of the sample covariance matrix Σ∗, τ > 0 is a

threshold, and (·)+ denotes the positive part. The diagonal elements of Σ̃ are all

set to 1 since we consider the classes G(j)
q (R), j = 0, 1. Then Σ̃ = Ip+Σ̃off where

Σ̃off admits the representation (the minimum is taken over all p × p matrices S

with zero diagonal):

Σ̃off = argmin
S: diag(S)=0

{
|S − Σ∗|22 + 2τ |S|1

}
.

Take the threshold

τ = Aγ

√
log p

n
, (C.4.1)

where A > 1 and γ is the constant in the inequality (3.2) in Cai and Zhou (2012).

Theorem 2. Let X1, . . . , Xn be i.i.d. random vectors in Rp with covariance ma-

trix Σ such that (3.2) in Cai and Zhou (2012) holds. Assume that p, n, and A are

such that τ ≤ δ, where δ is the constant introduced after (3.2) in Cai and Zhou
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(2012). Then there exists C∗ > 0 such that, with probability at least 1−C∗p
2−2A2

,

∥∥Σ̃− Σ
∥∥2 ≤ min

S

∥S − Σ∥2 +

(
1 +

√
2

2

)2

A2γ2
|S|0 log p

n

 , (C.4.2)

where minS denotes the minimum over all p× p matrices.

Proof. Write σ∗ij = σij + ξij where the ξij = σ∗ij − σij are zero-mean random

variables, i ̸= j. Thus, considering σ∗ij as observations, we have a sequence model

in dimension p(p−1). It is easy to see that it is a special case of the trace regres-

sion model studied in Koltchinskii, Lounici, and Tsybakov (2011) where A0 is a

diagonal matrix with the p(p−1) off-diagonal entries of Σ on the diagonal. In the

notation of Koltchinskii, Lounici, and Tsybakov (2011), the corresponding matri-

ces Xi are diagonalizations of canonical basis vectors, the norm ∥·∥L2(Π) coincides

with the norm | · |2, and rank(B) is equal to the number of non-zero entries of

diagonal matrix B. Thus, Assumption 1 in Koltchinskii, Lounici, and Tsybakov

(2011) is satisfied with µ = 1, and we can apply Theorem 1 in Koltchinskii,

Lounici, and Tsybakov (2011). It yields a deterministic statement:

∣∣Σ̃− Σ
∣∣2
2
≤ min

S

|S − Σ|22 +

(
1 +

√
2

2

)2

τ2|S|0


provided τ > 2maxi̸=j |σ∗ij − σij |. From (3.2) in Cai and Zhou (2012) and a

union bound, we obtain that, for τ defined in (C.4.1), this inequality holds with

probability greater than 1− C∗p
2−2A2

.

Corollary 2. Under the assumptions of Theorem 2, for any 0 < q < 2, there

exist constants C ′, C∗ > 0 such that with probability at least 1− C∗p
2−2A2

,

∥∥Σ̃− Σ
∥∥2 ≤ min

S

{
2∥S − Σ∥2 + C ′|S|qq

(
log p

n

)1−q/2
}
. (C.4.3)

Proof. Let |s[l]|, l = 1, . . . , p(p−1), denote the absolute values of the off-diagonal

elements of S ordered in a decreasing order. Note that for any p × p matrix S

and any 0 < q < 2 we have |s[l]|q ≤ |S|qq/l. Fix an integer k ≤ p(p − 1). Taking

s′ij = sij if |sij | ≥ |s[k]| and s′ij = 0 otherwise, we get that for any S there exists

a p× p matrix S′ with |S′|0 = k such that

|S − S′|22 =
∑
l>k

s2[l] ≤ |S|2q
∑
l>k

l−2/q ≤
|S|2qk1−2/q

2/q − 1
.



1366 T. TONY CAI AND HARRISON H. ZHOU

Together with Theorem 2, this implies that for any integer k ≤ p(p− 1) we have

∣∣Σ̃− Σ
∣∣2
2
≤ min

S

2|S − Σ|22 +
|S|2qk1−2/q

2/q − 1
+

(
1 +

√
2

2

)2

A2γ2
k log p

n

 .

Optimizing the right hand side over k completes the proof.

Note that the oracle inequalities (C.4.2) and (C.4.3) are satisfied for any

covariance matrix Σ, not necessarily for sparse Σ. They quantify a trade-off

between the approximation and sparisty terms. Their right-hand sides are small

if Σ is well approximated by a matrix S with a small number of entries or with

small ℓq norm of the off-diagonal elements. If the matrix Σ is sparse, Σ ∈ G(0)
q (R),

the oracle inequalities (C.4.2) and (C.4.3) imply that

sup
Σ∈G(0)

q (R)

PΣ

(
∥Σ̃− Σ∥ > C ′′R1/2

(
log p

n

)1/2−q/4
)

≤ C∗p
2−2A2

for some constant C ′′ > 0. This also holds when we drop the condition Σ > 0 in

the definition of G(0)
q (R). Combining this with Theorem 1, we find that the rate

R1/2 ((log p)/n)1/2−q/4 is optimal on the class G(0)
q (R) under the Frobenius norm

if Rnq/2 ≤ p2α with some α < 1. In particular, for q = 0 this optimality holds

under the condition k ≤ p2α with some α < 1.

Acknowledgement

Philippe Rigollet is supported in part by NSF grants DMS-0906424 and

CAREER-DMS-1053987. Alexandre B. Tsybakov is supported in part by ANR

grant “Parcimonie”.

References

Cai, T. and Zhou, H. (2012). Minimax estimation of large covariance matrices under ℓ1-norm.

Statist. Sinica 22, 1319-1378.

Johnstone, I. M. (2011). Gaussian Estimation: Sequence and Wavelet Models. Unpublished

Manuscript. http://www-stat.stanford.edu/~imj/.

Koltchinskii, V., Lounici, K. and Tsybakov, A. B. (2011). Nuclear-norm penalization and opti-

mal rates for noisy low-rank matrix completion. Ann. Statist. 39, 2302–2329.

Rigollet, P. (2012). Kullback-Leibler aggregation and misspecified generalized linear models.

Ann. Statist. 40, 639-665.

Rigollet, P. and Tsybakov, A. B. (2011). Exponential screening and optimal rates of sparse

estimation. Ann. Statist. 39, 731-771.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Springer, New York.

http://www-stat.stanford.edu/~imj/


MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES 1367

Department of Operations Research and Financial Engineering, Princeton University, Princeton,

NJ 08544, USA.

E-mail: rigollet@princeton.edu

Laboratoire de Statistique, CREST-ENSAE, 3, av. Pierre Larousse, F-92240 Malakoff Cedex,

France.

E-mail: Alexandre.Tsybakov@ensae.fr

(Received April 2012; accepted April 2012)

COMMENT

Peter J. Bickel1, Elizaveta Levina2, Adam J. Rothman3 and Ji Zhu2

1University of California, Berkeley, 2University of Michigan

and 3University of Minnesota

The authors offer insightful results on minimax rates for large covariance

matrix estimation under the matrix ℓ1-norm that add to the previously known

results on the matrix ℓ2-norm. Incidentally, we expect that some version of

the results on the ℓ1 and ℓ2 norms in this context can also be developed for

the Wiener norm (see Bickel and Lindner (2011) for more details), defined by

∥Σ∥W = maxk
∑

{|σij | : |i − j| = k}, particularly in the time series domain for

which it was introduced by Wiener.

Minimax risk is often used as a benchmark for the evaluation of an estimation

method, and having optimal tuning parameter rates is helpful for understanding

the behavior of various methods. However, there is also the issue of selecting

the tuning parameter in practice, mentioned in the paper as well, which cannot

be done using the theoretical bounds of this kind and requires cross-validation.

Since this paper studies the convergence in the matrix ℓ1-norm, and most of the

previous literature focuses on convergence in the matrix ℓ2-norm, we decided

to investigate the effect of using various norms for tuning parameter selection

via cross-validation, focusing on the thresholding estimator and the parameter

space P(Gq(ρ, cn,p)). Our expectation was that the empirical risk calculated via a

particular norm would be minimized by the tuning parameter selected by cross-

validation using the same norm, but this turned out not to be the case.

Specifically, we evaluated the performance of the random splitting method

for tuning parameter selection described in Bickel and Levina (2008a,b). The

n observations are randomly partitioned M times into a validation set of size

nva = n/ log n and a training set of size ntr = n − nva. Define the ℓ1-norm

rigollet@princeton.edu
Alexandre.Tsybakov@ensae.fr
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empirical risk R̂1, ℓ2-norm empirical risk R̂2, and Frobenius norm empirical risk
R̂F as follows:

R̂1(λ) =
1

M

M∑
m=1

∥Σ̂(tr,m)
λ − Σ̂(va,m)∥1,

R̂2(λ) =
1

M

M∑
m=1

∥Σ̂(tr,m)
λ − Σ̂(va,m)∥2,

R̂F (λ) =
1

M

M∑
m=1

∥Σ̂(tr,m)
λ − Σ̂(va,m)∥2F ,

where Σ̂
(tr,m)
λ is the sample covariance computed from the training set of the

m-th split and thresholded at λ, and Σ̂(va,m) is the sample covariance computed
from the validation set of the m-th split.

We generated an i.i.d. sample of size n from Np(0,Σ), where Σ has entries
σij = 0.4·I(|i−j| = 1)+I(i = j). Then we selected the tuning parameters λ̂1, λ̂2,
and λ̂F by minimizing the empirical risks R̂1(λ), R̂2(λ), R̂F (λ), respectively. For
each norm, we also computed the “oracle” tuning parameter λ̂0 = argminλ ∥Σ̂λ−
Σ∥. The performance of each of the tuning parameters was evaluated using the
squared L1 risk, the squared L2 risk and the squared Frobenius risk, defined
respectively as

Ê∥Σ̂λ̂ − Σ∥21, Ê∥Σ̂λ̂ − Σ∥22, and Ê∥Σ̂λ̂ − Σ∥2F p−1,

where Ê is the average over simulation replications.
We considered two scenarios, n < p and n > p. In the n < p scenario, we set

n = p/2, where p=30, 50, 100, 200 and 500. We used M=10 random splits to
estimate the empirical risk and a 200 point resolution for λ. We performed 500
independent replications for p ≤ 50 and 100 independent replications for p ≥ 100.
In the n > p scenario, everything was the same, except for n=60, 100, 200, 500,
1,000 and p = n/4.

In Figures D.1 (for n < p) and D.2 (for n > p) we plot the estimated em-
pirical risks. Each plot corresponds to one evaluation criterion, and the curves
on each plot correspond to different methods of selecting the tuning parameter.
Surprisingly, the Frobenius norm tuning is always the closest to the oracle, re-
gardless of the evaluation criterion. This is quite counter-intuitive as one would
expect, and as was also argued in the paper, that for different evaluation criteria
the optimal threshold should be different. Interestingly, however, the Frobenius
norm cross-validation tuning is the only one that was analyzed theoretically, in
Bickel and Levina (2008b). We may be observing a finite sample phenomenon,
but it would be interesting to connect this practical observation to the authors’
results on optimal thresholds.
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(a) L1-norm (b) L2-norm (c) Frobenius norm /
√
p

Figure D.1. The n < p scenario. Simulated risk for hard thresholding of
the sample covariance matrix with the threshold parameter λ̂0 (solid), λ̂1
(dots), λ̂2 (dash-dot), and λ̂F (dashes).

(a) L1-norm (b) L2-norm (c) Frobenius norm /
√
p

Figure D.2. The n > p scenario. Simulated risk for hard thresholding of
the sample covariance matrix with the threshold parameter λ̂0 (solid), λ̂1
(dots), λ̂2 (dash-dot), and λ̂F (dashes).
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COMMENT

Wei Biao Wu

University of Chicago

I congratulate Professor Cai and Professor Zhou for their timely and im-

portant contribution of sharp minimax convergence rates for estimating large

covariance matrices. The argument for proving the lower bound is quite sophis-

ticated and is of independent interest. As a useful property, for a class of sparse

covariance matrices (cf Gq(ρ, c) in their (1.1)), the well-known thresholded covari-

ance matrix estimate of Bickel and Levina (2008b) can achieve the minimax rate,

while for a class of covariance matrices with weakly correlations (cf Fα(ρ,M) in

(1.2) and Hα(ρ,M) in (1.3)), a tapered estimate can also have the minimax rate.

The paper provides, in the minimax sense, a rigorous justification of the use of

the thresholded and the tapered covariance matrix estimates.

My primary concern is the time series application of the large-p-small-n

results from the multivariate setting of independent and identically distributed

p-variate random vectors. In many time series applications, one has only one real-

ization, n = 1. This covariance matrix estimation problem has been discussed by

Wu and Pourahmadi (2009), McMurry and Politis (2010), Bickel and Gel (2011),

and Xiao and Wu (2012). With n = 1, structural assumptions such as station-

arity are needed so that the covariance matrix is estimable. Here we propose a

possible link between these two settings via block sampling (Politis, Romano, and

Wolf (1999)). With observations X1, . . . , Xp from a stationary process (Xi)i∈Z,

we can consider the l = ⌊p/b⌋ blocks X1 = (X1, . . . , Xb)
′, X2 = (Xb+1, . . . , X2b)

′,

. . ., Xl = (X(l−1)b+1, . . . , Xlb)
′, with b the block size. Consider the estimation of

Σb, the b × b covariance matrix of X1. Assuming weak dependence, one would

expect that results similar to (1.5) in their paper can hold.

arothman@umn.edu
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As an alternative way to deal with stationary processes, one can use the

sample auto-covariance function γ̂k = p−1
∑p

i=1+k(Xi − X̄)(Xi−k − X̄), 0 ≤ k ≤
p − 1, where X̄ = p−1

∑p
i=1Xi. Using the operator or spectral norm, Xiao and

Wu (2012) obtained a sharp convergence rate for banded and tapered sample

covariance matrix estimators. That result parallels the optimal minimax rate

derived in Cai, Zhang, and Zhou (2010), though the settings are different.

If one indeed has n i.i.d. realizations of (Xi)
p
i=1, and γ̂

(l)
m is the lag-m sample

auto-covariance from the lth realization (Xli)
p
i=1, 1 ≤ l ≤ n, then it is expected

that the rates (1.5) and (1.6) can be substantially improved if one uses the aver-

aged sample auto-covariances

γ̄m = n−1
n∑

l=1

γ̂(l)m .

Specifically, assume that E(Xi) = 0 and that (Xi)i∈Z is short-memory in the

sense that its 4th order functional dependence measures δ4(i) (Wu (2005)) are

summable. For γ̂
(l)
m = p−1

∑p
i=1+mXliXl,i−m, following Lemma 1 in Wu and

Pourahmadi (2009), we have

E[(γ̂(l)m − Eγ̂(l)m )2] ≤ 4p−1κ2, where κ = [E(X4
1 )]

1/4
∞∑
i=0

δ4(i). (E.1)

Since γ
(l)
m , l = 1, . . . , n, are i.i.d., (E.1) implies

E[(γ̄m − Eγ̄m)2] ≤ 4κ2

np
. (E.2)

Consider the tapered covariance matrix estimate Σ̂ = (wij γ̄i−j)1≤i,j≤p, where

wij = wi−j are weights which can be chosen as are those in (3.9). Then

∥Σ̂− EΣ̂∥1 =max
i≤p

p∑
j=1

|wi−j γ̄i−j − γi−j |

≤ 2

p−1∑
j=0

|wj γ̄j − wjEγ̄j |+ 2

p−1∑
j=0

|wjEγ̄j − γj |.

If one uses the weights in (3.9), by (1.2), the stochastic part here satisfies

E
[ p−1∑
j=0

|wj γ̄j − wjEγ̄j |
]2

= O(
k2

(np)
),
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where we assume that k := ⌊(np)1/(2+2α)⌋ = o(p), allowing the high-dimensional
setting with n = o(p). Under the classes Fα(ρ,M) in (1.2), or Hα(ρ,M) in (1.3)
in Cai and Zhou’s paper, the bias

p−1∑
j=0

|wjEγ̄j − γj | =
k∑

j=0

|Eγ̄j − γj |+
p−1∑

j=1+k

|wjEγ̄j − γj |

=

k∑
j=0

O(
j|γj |
p

) +O(k−α) =

k∑
j=1

O(
j−α

p
) +O(k−α).

Hence E(∥Σ̂−EΣ̂∥21)=O((np)−α/(1+α)) if α ̸= 1 and E(∥Σ̂−EΣ̂∥21)=O((np)−1/2

+p−2 log2 p) if α = 1. It is not clear whether the above bound is optimal. A
minimax theory is needed and would be useful.

My other concern is the authors’ assumption that Xi is sub-gaussian in the
sense of (1.4). How do the minimax rates (1.5) and (1.6) change if one as-
sumes that Xi has only exponential or polynomial decaying tails? For the latter
case, Bickel and Levina (2008a) obtained convergence rates for banded covari-
ance matrix estimates. In the setting of estimating auto-covariance matrices of
stationary processes, Xiao and Wu (2012) showed that optimal convergence rates
can be reached under the milder polynomial moment conditions.
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COMMENT

Ming Yuan

Georgia Institute of Technology

Professors Cai and Zhou are to be congratulated for making yet another

important contribution to the development of theory and methodology for high-

dimensional covariance matrix estimation. In this article, hereafter referred to as

CZ, they considered large covariance matrix estimation under the matrix ℓ1 loss

for both sparse and bandable covariance matrices. As is common in the current

literature, the results from CZ are derived under the subgaussian assumption as

characterized by their (1.4). Thus far, it remains unknown how essential this

assumption is. To partially address this intriguing question, I shall illustrate

through a simple example that subgaussianity may not play a fundamental role

in determining the difficulty of estimating a large covariance matrix.

Consider here the problem of estimating a large scale matrix for elliptically

contoured distributions, a more general problem than estimating the covariance

matrix for multiavariate normal distributions. Let X ∈ Rp have an elliptically

contoured distribution in that there exist parameters µ ∈ Rp and Σ ∈ Rp×p such

that

X =d µ+ rAU,

where r ≥ 0 is a random variable, U is uniformly distributed over the unit sphere

in Rn and is independent of r, and A ∈ Rp×p is a constant matrix such that

AAFT = Σ. In particular when r has a density, the density of X is

f(x) = |Σ|−1/2g((x− µ)FTΣ−1(x− µ)), x ∈ Rp,

where g is the so-called kernel function uniquely determined by the distribution

of r. Notable examples of elliptically contoured distribution are the multivariate

normal, t, and the stable distributions. Note that many elliptically contoured

distributions are not subgaussian and some do not even have finite second mo-

ments. For brevity, we assume that µ = 0 and that Σ is a correlation-like matrix

with ones on its diagonal. Our goal is to estimate Σ given a sample X1, . . . , Xn

consisting of independent copies of X. To fix ideas, wel focus on estimating

sparse matrices. Write

G̃q(ρ, cn,p) = {Σ ∈ Gq(ρ, cn,p) : Σii = 1 ∀i}.

Denote by E(G̃q(ρ, cn,p)) the collection of centered elliptically contoured distri-

butions with Σ ∈ G̃q(ρ, cn,p). By the argument of CZ and Cai and Zhou (2011),
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inf
Σ̂

sup
L(X)∈E(G̃q(ρ,cn,p)

∥Σ̂− Σ∥2 & c2n,p

(
log p

n

)1−q

, (F.1)

where ∥ ·∥ is the matrix ℓα norm with any α ≥ 1. The question of interest here is

whether or not this lower bound remains tight despite the lack of subgaussianity

for many distributions from E(G̃q(ρ, cn,p). Interestingly, the answer is affirmative.

To this end, we need to construct a rate optimal estimator. We appeal to a

useful property of elliptically contoured distributions. Let Y = (Y1, Y2)
FT follow

an elliptically contoured distribution with

Σ =

(
1 σ

σ 1

)
.

Let τ = P {(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) > 0} − P {(Y1 − Y ∗
1 )(Y2 − Y ∗

2 ) < 0} be the popu-

lation version of Kendall’s τ statistic, where Y ∗ = (Y ∗
1 , Y

∗
2 )

FT is an independent

copy of Y . Then (see, e.g., Fang, Fang, and Kotz (2002))

τ =
2

π
arcsin(σ).

Using this fact, we can estimate Σ in three steps.

(1) Estimate τ(Xi, Xj) by the sample Kendall’s τ , denoted by τ̂ij .

(2) Estimate Σij by

Σ̃ij = sin
(π
2
τ̂ij

)
, ∀i ̸= j.

(3) Let Σ̃ii = 1 and apply thresholding to (Σ̃ij):

Σ̂ij = Σ̃ijI

(∣∣∣Σ̃ij

∣∣∣ ≥ c

√
log p

n

)
for some numerical constant c > 0.

We argue that the resulting estimate Σ̂ is indeed rate optimal. A careful

examination of the proof of CZ reveals that it suffices to establish bounds for

|Σ̃ij − Σij | similar to their (3.2). This, as shown in Liu et al. (2012), can be

achieved using Hoeffding’s inequality for U-statistics. More specifically, we have

P(|Σ̃ij − Σij | ≥ t) ≤ exp

(
− nt2

2π2

)
.

Using this in place of (3.2) of CZ, it can then be shown that

sup
L(X)∈E(G̃q(ρ,cn,p)

∥Σ̂− Σ∥2 ≤ sup
L(X)∈E(G̃q(ρ,cn,p)

∥Σ̂− Σ∥21 . c2n,p

(
log p

n

)1−q

. (F.2)
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Combining (F.1) and (F.2), we can conclude that

inf
Σ̂

sup
L(X)∈E(G̃q(ρ,cn,p)

∥Σ̂− Σ∥2 ≍ c2n,p

(
log p

n

)1−q

.

In this particular exercise, the subgaussian assumption is irrelevant. Of

course, it is also a very specific example. The exact role of subgaussianity in

high-dimensional covariance matrix estimation remains to be seen.
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REJOINDER

T. Tony Cai and Harrison H. Zhou

University of Pennsylvania and Yale University

We deeply appreciate the many thoughtful and constructive remarks and

suggestions made by the discussants of this paper. The discussants raise a num-

ber of specific points including selection of the tuning parameters (Bickel, Levina,

Rothman and Zhu), estimation under different norms (Bickel, Levina, Rothman

and Zhu, Sun and Zhang, and Rigollet and Tsybakov), covariance matrix estima-

tion for time series (Wu), subgaussian condition (Wu, and Yuan), and estimation

of covariance matrices with geometrically decaying entries (Xue and Zou). The
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discussion suggests that much work is still needed to gain deeper understand-

ing of various aspects of the covariance matrix estimation problems in the high

dimensional setting.

Professors Bickel, Levina, Rothman and Zhu raise the important issue of

tuning parameter selection. This issue arises in many statistical problems and

and is particularly relevant for estimating bandable covariance matrices where the

cutoff for the optimal tapering/banding estimators under the Frobenius norm,

matrix ℓ1 norm, and spectral norm are quite different. It is of significant interest

to see if cross-validation or other methods can lead to a theoretically justified

optimal choice of the tuning parameters under the ℓ1 norm or spectral norm

losses. An example is given in their discussion which shows that for estimating

a sparse covariance matrix using element-wise thresholding, the optimal choices

of the threshold for estimation under the Frobenius norm, matrix ℓ1 norm, and

spectral norm, are not significantly different from each other. This phenomenon is

in fact to be expected from the theory for estimating sparse covariance matrices.

It has been shown in Cai and Zhou (2012) and the present paper that a single

entrywise thresholding estimator is rate-optimal for estimating sparse covariance

matrices in Gq(ρ, cn,p) under a wide range of losses, including the matrix ℓw norm

for all 1 ≤ w ≤ ∞, which contain the ℓ1 norm and the spectral norm as special

cases, and a class of the Bregman divergence losses, which include as special cases

the squared Frobenius norm, Stein’s loss, and von Neumann divergence. In other

words, for estimating a sparse covariance matrix, a single thresholding estimator

can achieve the optimal rates convergence under a wide range of losses. The

optimal choice of the threshold is however not specified. In a recent paper, Cai

and Liu (2011) introduced a fully data driven adaptive thresholding estimator,

without the need of choosing a tuning parameter, that achieves the optimal rate

of convergence over a larger class of sparse covariance matrices.

Professor Wu raises an interesting question on estimating covariance matrices

for stationary time series. This is indeed an important problem. The setting and

the techniques used in the analysis are quite different from the problem considered

in the present paper. See, for example, Cai, Ren, and Zhou (2012), where optimal

estimation of Toeplitz covariance matrices is considered. In the case of observing

n i.i.d. realizations of a stationary time series, Professor Wu suggests to construct

an estimator by tapering the average of the n auto-covariance matrices. An upper

bound of order (np)−α/(1+α) (for α ̸= 1) is obtained under the squared matrix ℓ1
norm. This bound can indeed be shown to be rate optimal. A matching lower

bound can be obtained by applying Assouad’s Lemma to a suitably constructed

subset of the parameter space. We shall report the technical details elsewhere.

Estimation under a variety of other norms including the Frobenius norm, ma-

trix ℓw operator norm, and Wiener norm, is raised by several discussants. This
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is an interesting question. Among these norms, estimation under the squared

Frobenius norm is perhaps technically the easiest in typical settings as the prob-

lem is very similar to the usual Gaussian sequence estimation problems. This

is true both for the construction of the optimal procedures and for the lower

bound techniques. What sets matrix estimation apart from the usual vector es-

timation is the problem of estimating under the matrix operator norm losses,

especially under the spectral norm loss which is highly non-additive in terms

of the entrywise errors. For estimation under the matrix ℓw operator norm for

1 ≤ w ≤ ∞, Cai and Zhou (2012) considered this class of losses for estimating

sparse covariance matrices and established the minimax rate of convergence for

all 1 ≤ w ≤ ∞.

The difficult and intriguing case is that of estimating bandable covariance

matrices under the matrix ℓw norm for 1 ≤ w ≤ ∞. The minimax rate is still

unknown in this case, except for w = 1, 2 and ∞. The major technical difficulties

appear to be in the derivation of a rate-sharp minimax lower bound. An upper

bound can be easily obtained by applying the Riesz-Thorin Interpolation The-

orem to the variance part together with the known results for w = 1, 2 and ∞.

Whether this upper bound is optimal remains an interesting open problem. We

believe that the upper bound is rate optimal under the ℓw operator norm loss for

1 ≤ w ≤ ∞, but are so far not able to establish the matching lower bound for a

general value of w.

In many statistical applications, the object of direct interest is often a low-

dimensional functional of the covariance matrix instead of the whole matrix itself.

As in many nonparametric function estimation problems, it is true that a rate-

optimal estimate of a large covariance matrix does not automatically yield rate-

optimal estimates of its low-dimensional functionals. Sun and Zhang consider

estimation of a regular Lipschitz functional τ which includes the partial corre-

lation as an example. In particular, asymptotic normality of the scale LASSO

estimator is established. This is an interesting result. The optimal rate of con-

vergence for estimating these regular functionals is the usual parametric rate
√
n.

It is of significant interest to consider estimation of other functionals which has

a nonparametric minimax rate.

The subgaussianity condition used in the paper is for technical convenience.

Professor Yuan considers estimation of a covariance matrix for elliptically con-

toured distributions and shows that the same results hold for this more general

class of distributions. Professor Wu asks if the same results continue to hold un-

der weaker conditions on the tails of the distributions. The same lower bounds

clearly hold for the larger class of distributions. The question is whether the

upper bounds continue to hold. In many cases this is indeed true. It is interest-

ing to characterize the precise conditions under which the same upper bounds
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remain valid. When the upper bound fails, it is important to establish the new
minimax rate of convergence for the class of distributions with heavy tails.

In addition to the three parameter spaces considered in the present paper,
other classes of matrices can be studied as well. Xue and Zou obtain the optimal
rate of convergence for a class of covariance matrices with geometrically decaying
entries. In this case the minimax rate is within a log factor of the parametric
rate as the rate of decay of the entries is much faster than the polynomial rate of
decay considered in our paper. As observed by Xue and Zou the “effective” model
size for the geometric decay case is of order log n while for the polynomial rate
of decay the “effective” model size is a power of the sample size n. The double
thresholding procedure is intrinsically connected to a different class of matrices.
It is not clear to us for what class of matrices the double thresholding estimator
can be justified theoretically better than both simple entrywise thresholding and
tapering/banding estimators.

When the covariance matrix is in the sparse class G0(ρ, k), we are pleased
to see that Professors Rigollet and Tsybakov extend our results by relaxing our
assumption p > nv to p > kv for some v > 1. An alternative way to relax
the assumption is to use the new lower bound argument developed in Cai and
Zhou (2012, Lemma 3). One can use a subset of the parameter space defined by
Equation (2.3) in Section 2.1 by dividing the first row of H into k blocks with
the size of order p/k, then an application of Corollary 3 of Cai and Zhou (2012)
leads to the desired lower bound. The proof is not very much involved due to
the simplicity of the construction.

Finally, we would like to thank the discussants again for a constructive and
engaging discussion of a number of important issues on covariance matrix esti-
mation. We are grateful for the opportunity to have learned so much from these
distinguished colleagues.
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