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Abstract: We suggest a method for rendering a standard kernel density estima-

tor unimodal: tilting the empirical distribution. It is proposed that the amount

of tilting be chosen in order to minimise, subject to unimodality, the integrated

squared distance between a conventional density estimator and its tilted version.

This approach has an interesting data-compression aspect, in that the algorithm

often implicitly summarises the dataset in a relatively small subsample as part of

the process of enforcing unimodality. Another feature is that, no matter what the

chosen bandwidth, the algorithm produces (with probability 1, for each sample size)

a proper density estimate. Thus, it may be employed as an adjunct to any of the

many popular bandwidth selection rules for density estimation. We show theoreti-

cally that in classes of densities that are of practical interest, the method enhances

performance without suffering any deleterious first-order impact on asymptotic ac-

curacy, for example as reflected in integrated squared error. In such cases, and

except in places where the true density is virtually flat, the constrained density es-

timate is first-order equivalent to its unconstrained counterpart. The case where the

number of modes is constrained to equal a number greater than 1 is also considered.

Key words and phrases: Bandwidth, biased bootstrap, integrated squared error,

mode, nonparametric density estimation, order restricted inference, power diver-
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1. Introduction

Spurious modes in a nonparametric density estimate can convey a particu-
larly misleading impression of the underlying distribution. The person who views
the estimate will not necessarily appreciate that they are the result of eccentric-
ities of the estimator, rather than intrinsic features of the population. In this
paper we suggest a method for constructing kernel density estimators that are
constrained to be unimodal, or more generally to have k modes where k ≥ 1
is given. Put simply, our method involves reweighting, or tilting, the empirical
distribution in such a way that it differs as little as possible from its standard
form, subject to the constraint of unimodality (or multimodality, if that is our
goal) being satisfied. The resulting estimator is of the biased-bootstrap type,
suggested in a general context by Hall and Presnell (1999).
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There is of course a great deal of latitude in defining what is meant by “as
little as possible”, and in this respect our methods depart significantly from the
proposal of Hall and Presnell (1999). We give most emphasis to an L2 distance
function that is tailored specifically to the problem of density estimation. It de-
pends on the data, and is strongly influenced by choice of the bandwidth, h. One
of the advantages of our proposal over alternative methods is that the amount of
smoothing may be chosen without prejudice. The bandwidth can be selected
prior to imposing the unimodality constraint, and our technique produces a
uniquely defined, smooth unimodal density estimator based on that value of h.
For several other techniques the amount of smoothing is implicit in the method
and cannot be chosen separately. In particular, the method of Grenander (1956)
imposes its own level of smoothing, which is generally regarded as being too lit-
tle, especially in the neighbourhood of the mode of the density estimator. (This
method usually produces a density estimator with a very “spikey” mode. In
other senses too the estimator is quite rough.) Another approach, based on Sil-
verman’s (1981) test for unimodality, is to steadily increase the bandwidth until
the density estimator first becomes unimodal; here, the constrained estimator is
very closely linked to choice of bandwidth. In contrast to these methods, and
to newer techniques derived from them, our approach produces an estimator
which is intrinsically smooth and for which a virtually arbitrary bandwidth can
be chosen.

We demonstrate theoretically that our estimator is well-defined in very gen-
eral circumstances, and we derive L2 convergence rates. It is shown that in many
instances the L2 accuracy of our estimator is asymptotically equivalent to that
of its unconstrained counterpart, not just in terms of the order of magnitude
of the rate but the constant multiplier as well. Therefore, the main effect of
the constraint is to remove extraneous “wiggles”, the number of which may be
unboundedly large as sample size increases, without generally penalising overall
performance. Our theory focuses on the case of constrained unimodality, but
we note that virtually identical results are valid (with similar proofs) when the
number of modes is constrained to be equal to k, provided the true density also
has that number of modes. Our numerical work treats the cases k = 1 and 2.

The method of Grenander (1956) has been studied in depth by Bickel and
Fan (1996), Wang (1996) and Birgé (1997). An alternative approach to unimodal
density estimation has been suggested by Cheng, Gasser and Hall (1999). Tilt-
ing methods for ensuring monotonicity have been suggested by Hall and Huang
(2001a, b), but the results and techniques discussed there are of a very different
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nature from those developed here. In particular, an integrated squared error mea-
sure of distance is not attractive in those applications, and there is no analogue
of the influence of tail behaviour on unimodality. Moreover, the methodologies of
Hall and Huang (2001a, b) relate to monotone regression and monotone hazard
rate estimation, respectively, not unimodal density estimation as in the present
paper.

Our method has a data-compression effect, in that the effective size of the
sample is reduced by assigning zero weight to many data values. Of course,
information in the zero-weighted data is not lost; it is incorporated into weights
for the existing data, and into choice of the indices of those data. A similar
effect is observed for the method of Grenander (1956), where the distribution
function estimator corresponding to the unimodal density estimator is piecewise
continuous with knots at only a portion of the sample values.

It should be noted that in most settings, imposing a shape constraint such
as unimodality, based on slope, cannot be expected to asymptotically improve
performance in terms of mean integrated squared error (MISE), over and above
the level enjoyed by an unconstrained estimator. To appreciate why, note that
if n denotes sample size and we use a bandwidth of larger order than nε−1/3,
for some ε > 0, then the derivative of the estimator uniformly and consistently
estimates that of the true density. Indeed, Bernstein-type bounds show that
the probability that the gradient of the estimator is uniformly within δ of the
gradient of the true density, equals 1 − O(n−λ) for each δ, λ > 0. This means
that, on intervals where the true density is bounded away from zero, the gradient
of the density estimator has the same sign as that of the true density.

Thus, in the context of unimodal density estimation, and in large samples,
the conventional estimator requires modification only in the neighbourhood of
the mode and far out in the tails. The neighbourhood shrinks to zero, and the
distance out in the tails moves further out, as sample size increase. Improving
performance in these places, even reducing error to zero, will have only an asymp-
totically negligible effect on MISE. Our method admittedly alters the estimator
at other places too, but this is only an artifact of its construction; the other
changes result principally from the constraint

∑
i pi = 1.

Assuming that the bandwidth is of size nε−1/3 is of course a very mild con-
dition. In the context of our work, a bandwidth of size n−1/5 is optimal. More
generally, for other “second order” estimator types a construction which opti-
mises MISE performance ensures uniformly consistent estimation of gradients in
the sense discussed above, and so again the estimators enjoy no first-order MISE
gains in performance.
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2. Methodology

Let punif ≡ (1/n, . . . , 1/n) denote the conventional uniform-empirical weight
vector, and let D(p), possibly depending on the data, denote a measure of the
distance between punif and an element p = (p1, . . . , pn) of the class of n-variate
probability vectors p. Suppose we have determined a bandwidth h for a standard
kernel estimator f̂ of the density f of the sampled distribution. For example,
h might be defined using a plug-in rule, or cross-validation. Choose p = p̂ =
(p̂1, . . . , p̂n) to minimise D(p) subject to the modality constraint being satisfied,
and take the final estimator of f to be f̂ but with weight p̂i, instead of 1/n,
given to datum Xi in the sample X = {X1, . . . ,Xn}, for 1 ≤ i ≤ n. If p is to
be a probability vector then it is also necessary to impose the constraint that∑

i pi = 1.
Minimising D(p) subject to the constraint amounts to enforcing the modality

property subject to maximum fidelity to the data, where fidelity is measured
by D. Obvious candidates for D include those based on measures of distance
between distribution functions, for example the Kolmogorov-Smirnov distance

DKS(p) ≡ sup
x

|F̂ (x|p)− F̂ (x|punif)| ,

and the Cramér-Von Mises distance

DCM(p) ≡
∫

{F̂ (x|p)− F̂ (x|punif)}2 dx ,

where F̂ (x|p) denotes the “weighted bootstrap” distribution function that places
mass pi on Xi.

Throughout our theoretical and numerical work we focus on the case where
the data X are univariate, although at least formally there is no difficulty ex-
tending our methods and results to multivariate settings. In the univariate case
F̂ (x|p) = ∑n

i=1 pi I(Xi ≤ x) , and so, for example,

DCM(p) = n−2
n∑

i=1

n∑
j=1

(npi − 1) (npj − 1) min(Xi,Xj). (2.1)

In a univariate setting the weighted density estimator has the form

f̂(x|p) = 1
h

n∑
i=1

pi K
(x−Xi

h

)
,

where K is the kernel function and h denotes the bandwidth.
The approach above has a conceptual drawback, however, in that the dis-

tance measures DKS and DCM are not directly connected to the problem of
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density estimation. They measure “fidelity to the data” in a sense where fidelity
relates to estimating a distribution function. It is arguably more appropriate to
use smoothed-density versions of DKS and DCM:

dKS(p) ≡ sup
x

|f̂(x|p)− f̂(x|punif)| , dCM(p) ≡
∫

{f̂(x|p)− f̂(x|punif)}2 dx .

There are, however, numerical difficulties in performing constrained optimisation
using dKS, and moreover it measures fidelity in a way that is relatively uncom-
mon in nonparametric density estimation. In particular, optimisation of the
level of smoothing with respect to the uniform metric requires a bandwidth that
is generally larger, particularly for large samples, than that given by common
bandwidth-choice methods.

For these reasons we suggest using dCM in preference to dKS; we represent it
by I below, denoting integral distance-measure. Provided K is symmetric, I(p)
admits a formula analogous to (2.1):

I(p) =
∫

{f̂(x|p)− f̂(x|punif)}2 dx

= (n2h)−1
n∑

i=1

n∑
j=1

(npi − 1) (npj − 1)L
(Xi −Xj

h

)
, (2.2)

where the function L denotes the convolution of K with itself. In particular, if
K is the standard normal kernel, which is frequently used in practice, then L(x)
is proportional to e−x2/4 and so may be taken equal to this function.

In a numerical algorithm, unimodality may be enforced by insisting that
f̂(·|p) be monotone nondecreasing on the interval (−∞, θ) and monotone non-
increasing on (θ,∞), where θ is a candidate for the mode of f̂(·|p). Tilting the
empirical distribution so as to minimise D(p) subject to achieving this constraint
produces a probability vector p = p̂(θ) that depends on the suggested mode. We
would then select θ so as to minimise D{p̂(θ)}, although an alternative approach
would be to take θ equal to a pre-determined quantity such as the location of the
largest local maximum of f̂(·|punif), or to an alternative estimator such as that
suggested by Eddy (1980). The first of these options, at least, is a useful starting
point for algorithms that find the value of θ that minimises D{p̂(θ)}, and will be
used for that purpose in Section 4. The theory and numerical work in this paper
will concentrate on choosing θ = θ̂ to minimise D{p̂(θ)}, and so our weighted
kernel estimator will use the probability weights p̂(θ̂).

A minor drawback suffered by I(p), and shared by the distance measures
DKS(p), DCM(p) and dKS(p), is that they are well-defined even when one or
more components of p are negative. This means that simply minimising I(p)
with respect to p, subject to the modality constraint and

∑
i pi = 1, may not
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produce a true probability distribution. We need to add the restriction that each
pi ≥ 0, which requires an extra step in the numerical algorithm. Many of the
general distance measures suggested by Cressie and Read (1984) for probability
vectors are not well-defined unless all elements of p are nonnegative. Additionally,
the Cressie-Read “divergences” have ready interpretation in terms of measures of
information, or well-known statistical distances such as Hellinger distance. For
these reasons they merit consideration in this setting. They have the form

Dρ(p) =
1

ρ (1− ρ)

{
n−

n∑
i=1

(npi)ρ
}

for −∞ < ρ < ∞ and ρ �= 0, 1, and

D0(p) = −
n∑

i=1

log(npi) , D1(p) =
n∑

i=1

pi log(npi) .

The latter are both Kullback-Leibler divergences.
A major difference between I(p) and many of the distance measures Dρ(p) is

that I(p) suffers very little penalty for reducing some of the pi’s to zero. By way
of contrast, the conventional “likelihood-based” measure of distance D0(p), used
for example in Owen’s (1988, 1990) method of empirical likelihood, is infinite if
some pi vanishes. As a result, D0(p) is not suitable for enforcing unimodality.
The measure D1(ρ) suffers less, but still provides substantially greater resistance
to data compression (that is, to many of the pi’s being rendered equal to zero)
than I(p). Indeed, it is not unusual that between half and three-quarters of the
values of pi be set equal to zero when enforcing unimodality by minimising I(p)
for a sample of size about 50; see Section 4 for details. Of course, the information
in these data is not lost. It is incorporated into the selection of data that are
kept in the sample, and also into the values of nonzero weights pi.

The data compression property can be useful, since it greatly reduces the
amount of information that has to be retained in order to store a unimodal
approximation to the original density estimator. Moreover, numerical results
show that constraining by minimising I(p) generally produces better performance
than constraining by minimisingD1(p), since the former distance measure focuses
explicitly on minimising mean squared error.

In subsequent sections we take p̂ and p̄ = p̄(ρ) to be the values of p that
minimise I(p) and Dρ(p), respectively, subject to the constraint of unimodality
(or bimodality, in some numerical examples) and the condition

∑
i pi = 1.

3. Theoretical Properties

Our first result shows that under very weak conditions, in particular only
minimal assumptions about the bandwidth h, the probability vectors p̂ and p̄ =
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p̄(ρ) that confer unimodality are well defined and unique. By way of notation,
a continuously differentiable density will be said to be strictly unimodal if there
exists a unique point in the interior of its support at which f ′ vanishes. It follows
that that point gives a global maximum of f ; it is the mode of f . More generally,
the mode of a continuously differentiable density f is a point x where f ′ vanishes,
and where for some interval L containing x as an interior point, f(x) ≥ f(y) for
all y ∈ L, and f(x) > max{f(y1), f(y2)} for some y1, y2 ∈ L with y1 < x < y2.
In the theorem below, a “continuous distribution” is a distribution that has a
density.

Theorem 3.1. Assume K is a symmetric, continuously differentiable, compactly
supported, strictly unimodal density, that the data X are independent with a
common continuous distribution, and that in the distance measure Dρ we take
0 < ρ ≤ 1. Then for any value of h, with probability 1 there exists p = p̂ that
minimises I(p) subject to f̂(·|p) being unimodal, and also there exists p = p̄ = p̄(ρ)
that minimises Dρ(p) subject to f̂(·|p) being unimodal. If the support of K equals
the interval [−c, c], and if X(1) < · · · < X(n) denote the ordered sample values,
then conditional on sup1≤i≤n−2 (X(i+2) −X(i)) ≤ 4ch, the probability that p̂ and
p̄ are uniquely defined equals 1.

The last part of the theorem is tailored to the case where f is compactly
supported, on the interval [A,B] say. To appreciate its implications in this set-
ting, assume F (A+x) and F (B−x) decrease to zero like xa and xb, respectively,
as x ↓ 0; here a, b > 0. Then if h � n−1/5 and d ≡ max(a, b) < 5, the prob-
ability that sup1≤i≤n−2 (X(i+2) − X(i)) ≤ 4ch converges to 1 as n → ∞. This
result may be proved from Rényi’s representation for order statistics, noting that
X(i+2) − X(i) is approximately equal to the sum of two independent exponen-
tial random variables divided by n f(X(i)), and that the infimum of the latter
diverges to infinity like n1/d.

Theorem 3.1 continues to hold if we stipulate that f̂(·|p̂) have k modes, for
any fixed k ≥ 1, provided (a) k ≤ n, (b) the support of K equals [−c, c] for some
c > 0, and (c) 2ch is no larger than the supremum of the values of the smallest
interpoint distance in subsets of size k of the full dataset. Theorem 3.1 does not
hold if we measure distance using Dρ with ρ = 0. Only slightly altered versions
of Theorem 3.1 and the results below hold if we take K to be a Gaussian density.

The next theorem shows that under more restrictive but still quite weak
assumptions about h, and a very mild smoothness condition on f , the constrained
estimators f̂(·|p̂) and f̂(·|p̄) are consistent. We do not require f to be strictly
unimodal.
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Theorem 3.2. Assume the conditions of Theorem 3.1, and in addition that K

has two Hölder-continuous derivatives, h = h(n) → 0 and n(1/3)−εh → ∞ for
some ε > 0, and f is continuous and unimodal (not necessarily with a unique
mode). Then any probability vector p = p̂ that minimises I(p) subject to uni-
modality of f̂(·|p), has the property that with probability 1, f̂(·|p̂) → f in L2.
Furthermore, for any given B > 1, and with probability 1, for all sufficiently
large n there exists a unique p = p̄ = p̄(ρ) that minimises Dρ(p) subject to f̂(·|p)
being unimodal and supi p̄i ≤ Bn−1; and f̂(·|p̄) → f in L2.

Our next result describes convergence rates and related properties in the case
of twice-differentiable densities with nonvanishing curvature at the mode, and
for bandwidths of optimal size in the sense of the unconstrained estimator (i.e.,
h � n−1/5). The theorem accommodates a wide range of different tail behaviours
of the density f . Sharper and more detailed results may be developed in specific
cases.

Assume (i)K is a symmetric, compactly supported, strictly unimodal density
with two Hölder-continuous derivatives, (ii) h � n−1/5, (iii) f is strictly unimodal
with mode m and two bounded, square-integrable derivatives, and (iv) f ′′ is
continuous in a neighbourhood of m and f ′′(m) < 0. Without loss of generality,
the support of K is the interval [−1, 1]; we assume this below.

Let the interval (α, β) be contained within the support S of f , and suppose
α and β, which we take to be functions of n, converge to the left- and right-
hand extremities, respectively, of S as n → ∞ (one or both of the extremities
may be infinite), in such a way that (I) f(α + h)/f(α) and f(β)/f(β + h) are
bounded, (II) for some ε > 0 and all η > 0, f(x) = O{f ′(x)2n(2/5)−ε} uniformly
in x ∈ Tη ≡ (α,m−η)∪(m+η, β), and (III) nF (α) → ∞ and n{1−F (β)} → ∞.
(Under conditions (i)−(iv), sequences α, β with these properties always exist.)
Let F denote the distribution function corresponding to f , and (IV) put λ =
F (α) + 1− F (β) and

Λ =
∫ α

−∞
f(x) f(x+ 2h) dx +

∫ ∞

β
f(x) f(x− 2h) dx .

Let ‖ · ‖ denote the usual L2 norm for functions.

Theorem 3.3. Assume conditions (i)− (iv), and that α, β, λ, Λ satisfy (I)−
(IV ). (a) If p = p̂ minimises I(p) subject to unimodality of f̂(·|p), then

‖f̂(·|p̂)− f‖2 = Op(Λ + λ2 + n−4/5) . (3.1)

(b) If p = p̄ = p̄(ρ) minimises Dρ(p) subject to f̂(·|p) being unimodal and supi pi ≤
Bn−1, where B > 1 is arbitrary but fixed, then

‖f̂(·|p̄)− f‖2 = Op(h−1/2λ+ n−4/5) . (3.2)
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(c) Provided α, β, λ, Λ may be constructed such that Λ + λ2 = o(n−4/5), or
h−1/2λ = o(n−4/5), we have, respectively,

‖f̂(·|p̂)− f‖
‖f̂(·|punif)− f‖

→ 1 in probability, or (3.3)

‖f̂(·|p̄)− f‖
‖f̂(·|punif)− f‖

→ 1 in probability. (3.4)

In the cases of infinitely supported densities with standard exponential, stan-
dard normal, or regularly varying (with exponent −r) tails, appropriate values
of |α| and β are respectively (2

5 − ε) log n, {(4
5 − ε) log n}1/2 and n(2−ε)/{5(r+2)}

for some ε > 0. Corresponding values of λ and Λ are given by (IV) above. The
case of compactly supported f will be treated in detail shortly.

Results (3.1) and (3.2) provide upper bounds to convergence rates, while
(3.3) and (3.4) give greater detail – they show that, under suitable regularity con-
ditions, integrated squared errors of the constrained estimator f̂(·|p) (for p = p̂ or
p = p̄) and its conventional, unconstrained counterpart f̂(·|punif) are asymptoti-
cally identical. Thus, nothing is either gained or lost (in an asymptotic sense), in
terms of integrated squared error, by imposing the constraint of unimodality. Of
course, an obvious gain is guaranteed unimodality. In addition to (3.3) and (3.4)
it may be shown that, with p denoting either p̂ or p̄, and assuming the conditions
of part (c), ‖f̂(·|p)− f(·|punif)‖ = op(n−2/5).

It may be proved that if we define mean integrated squared error by MISE =
E{‖f̂(·|punif)− f‖2}, then, under conditions (i)−(iv), ‖f̂(·|punif)− f‖ divided by
the square root of MISE converges to 1 in probability. Therefore, we may use
MISE1/2 instead of ‖f̂(·|punif)− f‖ in the denominators on the left-hand sides of
(3.3) and (3.4), without affecting their validity.

Theorems 3.2 and 3.3 have straightforward analogues in contexts where the
number of modes is constrained to equal any fixed number k ≥ 1, rather than
simply k = 1. For example, in the case of k modes, regularity conditions (ii)
and (iii) imposed in Theorem 3.3 should be changed respectively to: (iii)′ f has
k uniquely-defined modes and two bounded, square-integrable derivatives, and
(iv)′ f ′′ is continuous in neighbourhoods of each of the k local maxima, where
it is strictly negative, and each of the k − 1 local minima, where both f and
f ′′ are strictly positive. Then, for the same definitions of a, β, λ, Λ as before,
Theorem 3.3 holds without change. The proofs are also virtually identical.

For the sake of brevity we explore the consequences of Theorem 3.3 further
only in the case of the distance function I(p), and for a compactly supported
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density f that is polynomially decreasing at its boundaries. Specifically, assume
that in addition to satisfying conditions (iii) and (iv), f is compactly supported
with support interval [A,B], and for j = 0, 1, 2, the following condition (v) holds:

f (j)(x) � (x−A)a−j as x ↓ A, and f (j)(x) � (B − x)b−j as x ↑ B ,

where a, b ≥ 2 and the relation u(x) � v(x) means that u(x)/v(x) is bounded
away from zero and infinity as x ↑ B. (The assumption a, b ≥ 2 is necessary in
order for f to have two bounded derivatives, as required by assumption (iii).)
Beta (s, t) densities with s, t ≥ 3 are examples of densities that satisfy (iii), (iv)
and (v). We claim that, under conditions (i)−(v), (3.3) is true. Equivalently, the
integrated squared errors of the constrained estimator f̂(·|p̂) and its conventional,
unconstrained counterpart are asymptotically equal. Call this claim C1.

We also assert that if (i)−(v) hold then the distribution of the number of
modes, M = M(n) say, of the unconstrained estimator satisfies

lim inf
n→∞ P (M ≥ k) > 0 for all k ≥ 1. (3.5)

Moreover, if f decreases in one or both tails like a polynomial of degree greater
than or equal to 4 (that is, if max(a, b) ≥ 4, where a and b are as in condition (v)),
then

lim
n→∞ P (M ≥ k) = 1 for all k ≥ 1. (3.6)

We shall refer to these two results as claim C2. It follows from C2 that constraining
f̂ to be unimodal can make a substantial difference to its “wiggliness”, and so
to its appearance, even if it does not appreciably alter the value of integrated
squared error.

To verify C1, take A = 0 without loss of generality, and note that condi-
tion (I), applied at the left-hand end of the support interval, is satisfied if

α = α(n) → 0 in such a manner that h/α is bounded. (3.7)

Condition (II), again applied at the left-hand end of the support, is satisfied if,
for some ε ∈ (0, 2),

α ≥ αε ≡ n−(2−ε)/{5(a−2)}, (3.8)

where, since we are assuming in addition (3.7), we may interpret 1/(a − 2) as
+∞ if a = 2. We take α = n−aε , where 5aε ≡ min{1, (2 − ε)/(a − 2)}. Then
both (3.7) and (3.8) are satisfied. This choice of α also ensures that nF (α) → ∞,
which is property (III) in the left-hand tail.

Put λA ≡ F (α) � αa+1 and ΛA =
∫ α
0 f(x) f(x + 2h) dx � α2a+1. Then

λ2
A = o(ΛA), and for ε > 0 sufficiently small, ΛA is of smaller order than n−4/5
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if and only if either a = 2, or a > 2 and, for some ε′ ∈ (0, 2), (2a + 1) min(a −
2, 2 − ε′) > 4 (a − 2) . These conditions hold for all a ≥ 2. The analogous result
in the right-hand tail is also true. Therefore, we may choose α, β such that
Λ + λ2 = o(n−4/5), and so (3.3) holds, verifying claim C1.

To verify claim C2 we note that, using a slight modification of methods of
Mammen, Marron and Fisher (1992), it may be proved that if we modify (3.5)
by replacing M by the number, M1 say, of modes of the unconstrained estimator
in any sufficiently small neighbourhood of the origin, then (3.5) holds. (In fact,
M1 has a proper, nondegenerate asymptotic distribution.) Since M ≥ M1 then
the unmodified form of (3.5) must be true. To appreciate why (3.6) is correct,
observe that for each k ≥ 1, the spacings between adjacent values of the k + 1
smallest order statistics (in the left-hand tail of the distribution with density f)
may be represented as n−1/(a+1) ξi for 1 ≤ i ≤ k, where the random variables
ξi = ξi(n) satisfy

lim inf
n→∞ inf

1≤i≤k
P (ξi > x) > 0 for all x > 0 and each k . (3.9)

If a ≥ 4 then, since they are of size n−1/(a+1), the spacings in the left-hand tail
are of the same size as, or larger than, the bandwidth h, and so in view of (3.9),
the number of modes in the lower tail must diverge to infinity in probability. A
similar argument applies in the upper tail, and so (3.6) must hold if max(a, b) ≥ 4.

4. Numerical Properties

4.1. Implementation

In each of the simulated-data examples the sample size was n = 50, the
number of simulations was 500, and the bandwidth was chosen using the method
suggested by Sheather and Jones (1991). For simulated- and real-data exam-
ples alike, the Gaussian kernel was used and unimodality was enforced on the
interval (mini Xi − 2h,maxi Xi + 2h). (Choosing the range-overlap to equal 2h
accommodated the decay of the Gaussian kernel.)

Calculation of a unimodal density estimate, given a candidate value m0 for
the mode, was accomplished by selecting ν equally-spaced grid points, x1, . . . , xν ,
on (mini Xi−2h,maxi Xi+2h), and minimising distance subject to the constraint
that the derivatives at grid points were nonnegative if xj < m0 and nonpositive
if xj > m0, as well as enforcing the condition

∑
i pi = 1. A grid search was then

performed to locate the value m0 = m̂ that yielded the smallest value of distance.
We took ν = 100.

To calculate a bimodal density estimate, denote the modes by m0 and m2

and the antimode by m1, where m0 < m1 < m2. We chose p to minimise distance
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subject to the constraints f̂ ′(xj |p) ≥ 0 for xj ∈ (mini Xi − 2h,m0) ∪ (m1,m2)
and f̂ ′(xj |p) ≤ 0 for xj ∈ (m0,m1) ∪ (m2,maxi Xi + 2h), as well as

∑
i pi = 1;

and then we found m0, m1 and m2 by grid search.
The constraint of unimodality is the combination of two order conditions on

the density, and so is inherently nonlinear. It requires quadratic programming or
a similar procedure. We used the NAG routine E04, which was both stable and
fast.

To assess performance we approximated pointwise mean squared error,
MSE(x) = E{f̂(x|p̂) − f(x)}2, by the average over all simulations of the value
of {f̂(xj |p̂) − f(xj)}2, where (for that simulation) xj was the gridpoint nearest
to x. On this occasion we confined attention to those simulated datasets for
which p̂ �= punif ; this allowed us to more sharply delineate performance differences
between constrained and unconstrained estimators. Therefore, the expectation
in the definition of MSE(x) should be interpreted as being conditional on the
event that manipulation is necessary in order to achieve the desired number of
modes.

Our examples concentrate primarily on the distance measure I(p), which,
because it focuses explicitly on L2 fidelity, produces superior L2 performance
relative to Dρ(p). However, in some cases we give results for Dρ(p) for ρ = 1, in
order to illustrate the very different choices of weights that result.

4.2. Simulation study

In our first example the distribution was standard normal. There, just 147
out of the 500 simulated datasets required manipulation in order to produce uni-
modality. Panel (a) of Figure 1 depicts estimates computed from that sample
among the 500 that corresponded to the 475th largest value of I(p̂) (approxi-
mately the 95th percentile). The constrained estimate for the distance D1(p)
is also shown; the mode estimate for both was the same to two significant fig-
ures, m̂ = −0.28. Both constrained estimates correct for a second mode in the
right-hand tail.

The weight vectors p̂ that respectively minimise I(p) and D1(p) are very
different, as panels (c) and (d) of Figure 1 show. The majority of sample values
(36 out of n = 50) have been given zero weight after minimising I(p), effectively
compressing the dataset to a substantially smaller one that nevertheless provides
very effective estimation of the target density, as may be seen from panel (a).
Panel (b) plots pointwise MSE(x) for the constrained estimate based on minimis-
ing I(p) (solid line) or D1(p) (long-dashed line), and the unconstrained estimate
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(dotted line), conditional on manipulation being necessary to achieve unimodal-
ity.
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Figure 1. Result of enforcing unimodality for data simulated from standard nor-
mal distribution. For the simulated dataset whose value of I(p̂) = 5.04× 10−4

was at the 95th percentile, panel (a) shows the true density function (dashed
line), the unconstrained kernel estimate with h = 0.33 (dotted line), the con-
strained estimate minimising I(p) (solid line), and the version of this quantity
for distance measure D1(p) (long-dashed line). Panel (b) plots the pointwise
mean squared error for the constrained estimator minimising I(p) (solid line)
or D1(p) (long-dashed line), and the unconstrained estimator (dotted line).
Panels (c) and (d) show the values of p̂i and p̄i, as functions of Xi, after the
constraint has been achieved for distance measures I(p) andD1(p), respectively.

The slight but consistent reduction in mean squared error offered by the
constrained estimator based on minimising I(p) is clear from panel (b); it is still
more obvious if we average left- and right-hand sides of the figure, exploiting
the symmetry of the target distribution. The extent of improvement is least at
the mode and in the tails. By way of comparison, MSE performance for the
constrained estimator based on minimising D1(p) is inferior across the sample
space, and in relative terms the greatest decrease in accuracy occurs at the mode.
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A more detailed analysis shows this to be a consequence of the relatively high
bias of the corresponding constrained estimator.

Our second example, the Beta (2, 2) distribution, is of methodological in-
terest in that, unlike the normal, it is of the type addressed by regularity con-
ditions imposed by Silverman (1983) and Mammen, Marron and Fisher (1991)
in their studies of unimodality. Their asymptotic results show that, as sample
size increases and for a bandwidth of size n−1/5, such as that provided by the
Sheather-Jones (1991) method used in our study, the probability of there being
spurious modes in the tail of a density estimate converges to 0. Nevertheless we
found that 152 of the 500 simulated samples required manipulation in order to
achieve unimodality.

In this setting, the constrained estimator based on minimising I(p) produced
a marked reduction in pointwise MSE (conditional on manipulation being nec-
essary). This was most pronounced at the mode, but occurred across the range
of the sampled distribution. By way of comparison, the estimator based on
minimising D1(p) had similar MSE performance to the unconstrained estimator,
being slightly inferior at the mode and slightly superior elsewhere. In the case of
the dataset that produced the 475th largest value of I(p̂), the data-compression
phenomenon noted earlier resulted in effective sample size being reduced from 50
to 13. For brevity we do not give graphs here.

We also considered bimodal densities f where the respective components
were N(−1.5, σ2) and N(1.5, σ2); we took σ = 0.5 or 1. When σ = 0.5, f is
the normal mixture density #7 of Marron and Wand (1992), while when σ = 1
it is a density treated by Minnotte (1997), with less clearly separated modes.
When σ = 0.5, only 13 out of 500 datasets gave rise to a density estimate
that was not bimodal, but the number rose to 180 when σ = 1. Enforcing
bimodality slightly improved mean squared error performance in the first case,
and provided substantial improvement in the second. For the latter results, to
reduce computing time we took the modes and antimodes to be at their true
values. Again, for brevity we do not give graphs here.

4.3. Buffalo snowfall data

These data represent the snowfalls, measured in inches, at Buffalo, New
York, for each of the 63 winters from 1910/11 to 1972/73. Silverman ((1986),
p.45), discussed properties of unconstrained estimates, computed using either of
two bandwidths: h = 12, which gives a unimodal estimate, and h = 6, which
produces a trimodal estimate. In the latter case the additional modes are small,
and become “shoulders” of the unimodal estimate when h is increased to 12.
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Using our methods there is no difficulty enforcing unimodality when h = 6;
doing so has the effect of compressing sample size from 63 to 19. See Figure 2.
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Figure 2. Buffalo snowfall data. The dotted line, solid line, and long-dashed
line in panel (a) show the unconstrained kernel density estimate and its
unimodal-constrained counterparts minimising I(p) and D1(p), respectively,
when h = 6. Panel (b) depicts the values of weights p̂i on achieving the
constraint, and the envelope curve for p̄ (long-dashed line).

4.4. Chondrite data

The dataset consists of percentages of silica in 22 chondrite meteors. Min-
notte (1997) constructed a kernel density estimate having three modes, at 22.76,
27.44, and 33.40, when h = 0.7. He also gave an estimate that equalled the first
for x ≥ 27.44, and was closest in L1 distance to the first subject to the constraint
that the mode at 22.76 failed to be statistically significant. However, while this
estimate achieves the goal of removing the first mode, it has a flat section where
the first mode used to be, and for this reason is not entirely satisfactory. An
alternative approach is to remove the first mode by enforcing the constraint of
bimodality. The result is the density estimate depicted in Figure 3. For the
estimator based on minimising I(p), grid search produces modes at 27.4 and 33.5
and an antimode at 31.05.
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Figure 3. Chondrite data. Panel (a) shows the unconstrained kernel estimate
with h = 0.7 (dotted line), the constrained estimate minimising I(p) (solid line),
and the constrained estimate of Minnotte (1997) (dashed line). Panel (b) shows
the values of p̂i, plotted against Xi, after the constraint has been achieved.

5. Technical Arguments

Proof of Theorem 3.1. To prove the existence of p̂ and p̄ it suffices to show
that for some p, f̂(·|p) is unimodal. Now, by taking pi = 1 for some 1 ≤ i ≤ n,
and of course each other pi equal to 0, we obtain the unimodal estimator f̂(x|p) =
h−1K{(x−Xi)/h}. In the case of p̄ = p̄(ρ) we should note in addition that, since
ρ �= 0, this choice of p is legitimate; the corresponding value of Dρ(p) is not
infinite. Since the data have a continuous distribution then the configurations
that would prevent p̂ and p̄ from being unique arise with probability 0.

Proof of Theorem 3.2. Put f̂ = f̂(·|punif). The assumptions in the theorem
imply that sup |f̂ − f | → 0 with probability 1, which in turn implies that f̂ → f
in L2 with probability 1. If we show, in the case where distance is measured
using Dρ(p), that p̄ exists and satisfies

I(p̄) → 0 with probability 1 , (5.1)

then the theorem will be proved in that setting. (Uniqueness of p̄, given that it
exists, again follows from the fact that the data have a continuous distribution.)
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Moreover, since I(p̂) ≤ I(p̄), then we shall also have established the theorem in
the case where distance is measured using I(p).

Given 0 < ε < 1 and a probability vector p, let A = A(ε, p) denote the set
of indices 1 ≤ i ≤ n such that |npi − 1| ≤ ε, and let Ã equal the complement of
A in {1, . . . , n}. Note that, for each integer j ≥ 1,

Sj ≡ sup
−∞<x<∞

(nh)−1
n∑

i=1

L
(x−Xi

h

)j
= O(1) (5.2)

with probability 1. In view of (2.2), and provided pi ≤ C1 n
−1 for some C1 > 1,

I(p) ≤ ε2 S1+2 ε S1 n−1
∑
i∈Ã

|npi−1|+max(C1−1, 1)S1 n−1
∑
i∈Ã

|npi−1| . (5.3)

If 0 < ρ ≤ 1 then for each ε > 0 there exists a constant C2 = C2(ε, ρ) > 0
such that

n−1
∑
i∈Ã

|npi − 1| ≤ C2 Dρ(p) . (5.4)

For example, in the case ρ = 1, since
∑

i pi = 1,

Dρ(p) =
n∑

i=1

{
pi log(npi)− (pi − n−1)

}
= n−1

n∑
i=1

ψ(npi) ,

where ψ(x) ≡ x log(x/e) + 1. The function ψ is nonnegative, vanishes only at
x = 1, and satisfies ψ(x) = O{(x − 1)2} as x → 1, while C2(1, ε)ψ(x) ≥ |x − 1|
for a constant C2 > 0, uniformly in |x− 1| ≥ ε. These properties imply (5.4).

From (5.3) and (5.4) we deduce that I(p) ≤ ε2 S1+2 ε S1 C2 Dρ(p)+max(C1−
1, 1)S1 C2 Dρ(p) . Therefore, if we prove that for each fixed C1 > 1 and that with
probability 1 for all sufficiently large n,

there exists a value p̃ of p such that f̂(·|p̃) is uni-
modal, supi p̃i ≤ C1n

−1, and Dρ(p̃) → 0 as n → ∞, (5.5)

then (5.1) will be proved and Theorem 3.2 will follow.
To derive (5.5), note that in view of the conditions imposed on f , for each

0<δ≤ 1
2 there exists a strictly unimodal densityfδ that has support I=[a, b] for

some −∞<a<b<∞, is continuous and piecewise linear on I, is strictly monotone
on each subinterval of I where it is linear, and satisfies fδ(a+) fδ(b−)>0,

sup
−∞<x<∞

|f(x)− fδ(x)| ≤ δ and sup
−∞<x<∞

|fδ(x)f(x)−1 − 1| ≤ 1
2δ . (5.6)

(Thus, fδ has jump discontinuities at the ends of its support.) Let m ∈ (a, b) be
the mode of fδ. Put ri = fδ(Xi)/{nf(Xi)} and r = (r1, . . . , rn). The latter is not



982 PETER HALL AND LI-SHAN HUANG

necessarily a probability distribution,
∑

i ri may not equal 1, but nevertheless
f̂(·|r) is well-defined, and

E{f̂ (j)(x|r)} =
∫

K(y) f (j)
δ (x− hy) dy (5.7)

for j = 0, 1.
Without loss of generality, the support of K equals [−1, 1]. Using the proper-

ties (a) n(1/3)−εh → ∞ for some ε > 0, (b) f̂ (j)(x|r), for j = 1, 2, equals a sum of
independent random variables, and (c) K ′ and K ′′ are both Hölder-continuous,
it may be proved that with probability 1,

sup
−∞<x<∞

|f̂ ′(x|r)− E{f̂ ′(x|r)}| = O(n−ε1) , (5.8)

for some ε1 > 0, and

sup
−∞<x<∞

|f̂ ′′(x|r)− E{f̂ ′′(x|r)}| = O{(n1−ε2h5)−1/2} , (5.9)

for all ε2 > 0. Moreover, it may be shown from (5.7), and the fact that fδ is
strictly monotone on each subinterval of I where it is linear, that there exist
constants C3 > 0 and 0 < C4 < 1, depending only on K and fδ, such that
E{f̂ ′(x|r)} ≥ C3 for a + C4h ≤ x ≤ m − C4h and E{f̂ ′(x|r)} ≤ −C3 for
m + C4h ≤ x ≤ b− C4h. From these properties and (5.8) we deduce that, with
probability 1 for all sufficiently large n and for this value of C4,

inf
a+C4h≤x≤m−C4h

f̂ ′(x|r) > 0 , sup
m+C4h≤x≤b−C4h

f̂ ′(x|r) < 0 . (5.10)

Next we investigate f̂(·|r) in the neighbourhood of m, which without loss of
generality we take to equal 0. Put µ(x) = E{f̂ (x|r)}, and let γ1 and γ2 denote
the gradients of fδ immediately to the left and right, respectively, of 0. (Then,
γ2 < 0 < γ1.) It may be proved that for x in a sufficiently small neighbourhood
of 0, µ′′(x) = h−1(γ2 − γ1)K(x/h). From this property, the unimodality of K,
the fact that the support of K equals [−1, 1], the fact that the assumptions
on h imposed in Theorem 3.2 imply that if ε2 > 0 is sufficiently small then
(n1−ε2h5)−1/2 is of smaller order than h−1, and result (5.9), it may be proved
that, for each 0 < C4 < 1, and with probability 1 for all sufficiently large n,

sup
−C4h≤x≤C4h

f̂ ′′(x|r) < 0 . (5.11)

Results (5.10) and (5.11), and the continuity of f̂(·|r) imply that, with probabil-
ity 1 for all sufficiently large n, we have for some 0 < C4 < 1:

f̂(·|r) has a unique turning point, m̂ say, in [a+ C4h, b− C4h], and is

strictly increasing on [a+C4h, m̂) and strictly decreasing on (m̂, b−C4h]. (5.12)
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A similar argument may be used to prove that, if [â, b̂] denotes the support
of f̂(x|r), then with probability 1 for all sufficiently large n and for 0 < C4 < 1,

â < a < b < b̂, and f̂(·|r) is strictly increasing on
(â, a+ C4h] and strictly decreasing on [b− C4h, b̂). (5.13)

(To derive this result we make use of the fact that fδ has jump discontinuities at
the ends of its support.) Results (5.12) and (5.13) imply that

f̂(·|r) is strictly unimodal with mode m̂. (5.14)

Define r̄ = n−1 ∑
i ri and qi = (nr̄)−1ri. In view of (5.6), r̄ ≥ 1 − 1

2δ ≥
(1 + δ)−1 and r̄ ≤ 1 + δ ≤ (1− δ)−1, and so for all i,

(1− δ) ri ≤ qi ≤ (1 + δ) ri . (5.15)

(Hence, f̂(·|q) = r̄−1f̂(·|r) and (1−δ) f̂ (·|r) ≤ f̂(·|q) ≤ (1+δ) f̂ (·|r).) The vector
q = (q1, . . . , qn) is a proper probability vector. In view of (5.14), with proba-
bility 1 for all sufficiently large n, f̂(·|q) is unimodal. And by (5.6) and (5.15),
given η > 0 and C1 > 1, we may choose δ > 0 so small that for all sufficiently
large n, sup qi ≤ C1n

−1 and Dρ(q) ≤ η. Letting η = η(n) converge slowly to 0
as n → ∞, and taking p̃ = q, we obtain (5.5).

Proof of Theorem 3.3. Let M denote a symmetric, twice continuously dif-
ferentiable, compactly supported, strictly unimodal probability density, with the
property that M ′′ < 0 in a neighbourhood of the origin. Define MK to be the
density formed by convolving M with K, and let c1 > 0. By increasing the
scale of M sufficiently greatly we may ensure that M ′′

K(u) is bounded below 0
uniformly in |u| ≤ c1. Equivalently, if we define

ψj(u) =
∫

K(j)(v)M(u + v) dv, (5.16)

then
sup
|u|≤c1

ψ2(u) < 0 . (5.17)

Let m denote the true mode of f . Put p̌i = n−1[1+d+ c2h
2M{(m−Xi)/h}]

for all i, and let p̃i = p̌i if Xi ∈ (α, β), and p̃i = 0 otherwise, where c2 > 0 is a
constant to be chosen later, and d = d(α, β, c2) is a random variable chosen to
ensure that

∑
i p̃i = 1. Take p̌ = (p̌1, . . . , p̌n) and p̃ = (p̃1, . . . , p̃n); the former

will generally not be a probability distribution. Let α, β be as in the statement
of Theorem 3.3. Our first task is to prove that

for each ε > 0 we may select c1, c2 such that
lim inf
n→∞ P

{
f̂(·|p̌) has just one turning point, m̂ say, a local

maximum in (α, β), and is strictly increasing

in (α, m̂) and strictly decreasing in (m̂, β)
}
≥ 1− ε . (5.18)
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(Of course, choosing c1, c2 involves selection of the scale of M .)
Note that f̂(x|p̌) = (1 + d) f̂(x) + δ(x), where

δ(x) =
c2h

n

n∑
i=1

K
(x−Xi

h

)
M

(m−Xi

h

)
.

Given a random variable Z, write (1 − E)Z for Z − E(Z). Results of Komlós,
Major and Tusnády (1975) may be used to prove that the stochastic process
∆1(x) ≡ (1−E) f̂ ′′(x) may be approximated by a Gaussian process ξ = ξn, with
zero mean and covariance structure equal to the asymptote of that of ∆1, such
that for each C > 0,

sup
|u|≤C

|∆1(m + hu)− ξ(m+ hu)| → 0 in probability . (5.19)

In fact, the covariance of ξ(m+ hu1) and ξ(m+ hu2) equals γ(u1 − u2), where

γ(u) = (nh5)−1f(m)
∫

K ′′(v)K ′′(u+ v) dv .

Likewise it may be shown that ∆2(x) ≡ (1−E) δ′′(x) satisfies ∆2(m+hu) → 0 in
probability, uniformly in |u| ≤ C. Furthermore, E{f̂ ′′(m+ hu)} = f ′′(m) + o(1)
and E{δ′′(m + hu)} = g(u) + o(1), both uniformly in |u| ≤ C, where g(u) =
c2 f(m)ψ2(u) and ψ2 is as at (5.16).

Assume for the time being that

d → 0 in probability . (5.20)

Combining the results from (5.19) down, and noting (5.17), we see that if ε > 0
is given then by choosing c1, c2 sufficiently large, depending on C and the limit
infimum of nh5 as n → ∞, we may ensure that

lim inf
n→∞ P

{
(1 + d) f̂ ′′(x) + δ′′(x) < 0 for all |x−m| ≤ Ch

}
≥ 1− ε .

This implies that

lim inf
n→∞ P

{
f̂(·|p̌) has at most one turning point on [m− Ch,m+ Ch]

}
≥ 1− ε .

(5.21)
Observe too that if K is supported on [−1, 1], and if f is monotone on

[x− h, x+ h], then

|Ef̂ ′(x)| =
∫

|f ′(x− hu)|K(u) du ≥ 1
2 |f ′(x)| . (5.22)

Property (I), stated prior to Theorem 3.3, enables it to be proved that for each ε,
η > 0, P

{
|(1−E) f̂ ′(x)| ≤ f(x)1/2 n−(1/5)+ε for all x ∈ Tη

}
→1 as n→∞. (The
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set Tη was defined just prior to the statement of Theorem 3.3.) In conjunction
with property (II) and (5.22) this implies that

P
[
sgn {(m − x) f̂ ′(x)} > 0 for all x ∈ Tη

]
→ 1 (5.23)

as n → ∞. Note too that

P
{
f̂ ′(x|p̌) = (1 + d) f̂ ′(x) for all x ∈ Tη

}
→ 1 . (5.24)

Results of Komlós, Major and Tusnády (1975) may be used to show that for
η > 0 fixed but sufficiently small, and assuming (5.20) holds and C > 0,

lim inf
n→∞ P

[
(1 + d) f̂ ′(x) + δ′(x) > 0 for all x ∈ (m − η,m− Ch) ,

and (1 + d) f̂ ′(x) + δ′(x) < 0 for all x ∈ (m + Ch,m+ η)
]

≥ lim inf
n→∞ P

[
f̂ ′(x) > 0 for all x ∈ (m− η,m − Ch) ,

and f̂ ′(x) < 0 for all x ∈ (m+ Ch,m+ η)
]
→ 1 , (5.25)

where the last-stated convergence holds as C → ∞. We give only an outline
derivation. The last part of (5.25), i.e., the convergence result, was derived as part
of the technical arguments of Mammen, Marron and Fisher (1992). To appreciate
why the inequality between the two limit infima is valid, note that the pointwise
standard deviation of δ′(x) is, at O(h3), an order of magnitude smaller than that
of f̂ ′(x), which is O(h). Furthermore, we may write (1−E) f̂ ′(x) = h ζ(x)+op(h),
where ζ = ζn is a Gaussian process whose covariance equals that of f̂ ′. Note too
that, uniformly in x in a neighbourhood of the origin, E{f̂ ′(x)} = f ′(x) + o(h);
uniformly in |u| ≤ D for any D > 0, f ′(m+hu) = hu f ′′(m)+o(h); and uniformly
in −∞ < u < ∞, E{δ′(m + hu)} = c2 f(m)hψ1(u) + o(h) , where ψ1 is defined
at (5.16). Therefore, to derive the inequality between the limit infima at (5.25)
it suffices to show that, with u = u(x) = (x−m)/h,

lim inf
n→∞ P

[
ζ(x) + h−1 f ′(x) + c2 f(m)ψ1(u) > 0 for all x ∈ (m− η,m − Ch) ,

and ζ(x)+h−1 f ′(x)+c2 f(m)ψ1(u)<0 for all x∈(m+Ch,m+η)
]

≥ lim inf
n→∞ P

[
ζ(x) + h−1 f ′(x) > 0 for all x ∈ (m − η,m− Ch) ,

and ζ(x) + h−1 f ′(x) < 0 for all x ∈ (m + Ch,m+ η)
]
. (5.26)

Now, the function ψ1(u) is nonnegative for u < 0 and nonpositive for u > 0 (by
virtue of the fact that the convolution of K and M is unimodal with mode 0),
and so it shares the parity of the function f ′(x) = f ′(m+hu) appearing in (5.26).
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Therefore, adding the term c2 f(m)ψ1(u) to the argument of the probability on
the right-hand side of (5.26), thereby obtaining the probability on the left-hand
side, only increases the value of the probability in its limit.

Combining (5.20), (5.23), (5.24) and (5.25) we deduce that

lim inf
n→∞ P

{
f̂ ′(x|p̌) > 0 for all x ∈ (α,m − Ch) ,

and f̂ ′(x|p̌) < 0 for all x ∈ (m+ Ch, β)
}

≥ lim inf
n→∞ P

{
f̂ ′(x) > 0 for all x ∈ (α,m − Ch) ,

and f̂ ′(x) < 0 for all x ∈ (m+ Ch, β)
}
→ 1 ,

where the last-stated convergence holds as C → ∞. Combining this result with
(5.21) we deduce that (5.18) holds.

We still need to verify (5.20), however. To this end, let I = I(α, β) denote
the set of indices i, 1 ≤ i ≤ n, such that Xi /∈ (α, β), and write N = N(α, β) for
the number of elements of I. For all sufficiently large n, M{(m−Xi)/h} = 0 for
all Xi /∈ (α, β), and so with probability converging to 1,

1 =
n∑

i=1

p̃i =
(1 + d) (n−N)

n
+

c2h
2

n

n∑
i=1

M
(m−Xi

h

)
.

The last-written term is Op(h3). Therefore, solving the displayed equation for d,
and noting that E(N/n) = λ → 0, we deduce that

d = n−1N +Op(h3) = Op(λ+ h3) , (5.27)

which establishes (5.20).
It follows from the unimodality of K that if (5.18) holds then it remains true

when f̂(·|p̌) is replaced by f̂(·|p̃) and α, β are replaced by the lower and upper
extremities, α̂ and β̂ say, of the support of f̂(·|p̃):

for each ε > 0 we may choose c1, c2 such that

lim inf
n→∞ P

{
f̂(·|p̃) is strictly unimodal in (α̂, β̂)

}
≥ 1− ε . (5.28)

Indeed, if K is supported on [−1, 1] then, with probability converging to 1 as
n → ∞, α̂ < α < β < β̂ and f̂(·|p̌) = f̂(·|p̃) on (α+h, β−h). (The former result
follows from (III).) Furthermore, with probability 1, f̂ ′(·|p̌) ≤ f̂ ′(·|p̃) on (α,α+h)
(since f̂ ′(·|p̃) differs from f̂ ′(·|p̌) only in that, in this range, some of the kernel
components that contribute negative gradients are missing from the former), and
f̂ ′(·|p̃) > 0 on (α̂, α) (since all the kernel components that contribute to f̂(·|p̃) in
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this range have strictly positive gradients). These results have obvious analogues
in the upper tail.

Let J be the set of indices i such that (m−Xi)/h lies in the support of M .
(Then, for all sufficiently large n, J is a subset of the complement of I.) In view
of (5.27) and the definition of p̃i, |np̃i − 1| = 1 for i ∈ I, |np̃i − 1| = Op(λ+ h2)
uniformly in i ∈ J , and |np̃i − 1| = Op(λ+ h3) uniformly in i /∈ I ∪J . Since the
numbers of elements of I and J equal Op(nλ) and Op(nh), respectively, then,
for 0 < ρ ≤ 1,

Dρ(p̃) = Op

[
n−1

n∑
i=1

min {|np̃i − 1|, (np̃i − 1)2}
]

≤ Op{λ+ h (λ+ h2)2 + (λ+ h3)2} = Op(λ+ n−1) . (5.29)

Similarly, if K denotes the complement of I∪J in {1, . . . , n}, and S(H1,H2)
represents the sum of Lij ≡ L{(Xi − Xj)/h} over i ∈ H1 and j ∈ H2, where H1

and H2 range over I, J , K, then we may show from (2.2) and the definition of
p̃ that

I(p̃) = Op

[
(n2h)−1{S(I,I) + (λ+ h2)2 S(J ,J ) + (λ+ h3)2 S(K,K)

+(λ+ h2)S(I,J ) + (λ+ h3)S(I,K) + (λ+ h2) (λ+ h3)S(J ,K)}
]
.

The number of elements of J equals Op(nh), and so S(J ,J ) = Op(n2h2). The
expected value (conditional on Xi) of the sum of Lij over j ∈ K with j �= i

equals Op(nh), uniformly in i, and so S(K,K) = Op(n2h+ n) = Op(n2h). Also,
S(I,J ) = 0 for all sufficiently large n, since L is compactly supported. The
expected value (conditional on Xi) of the sum of Lij over j ∈ K, with j �= i,
equals Op(nh), uniformly in i, and the expected number of elements of I equals
O(nλ), so S(I,K) = Op(n2λh). Likewise, since the expected number of elements
of J equals nh, S(J ,K) = Op(n2h2). Combining the results in this paragraph
we deduce that

I(p̃) = Op{(n2h)−1 S(I,I) + λ2 + n−1} . (5.30)

Let IA, IB denote the sets of indices i such that Xi ≤ α,Xi ≥ β, respectively,
and note that L is supported on [−2, 2]. Then the sum of the off-diagonal terms
in E{S(IA,IA)} is bounded above by

n2h

∫ α

−∞
f(x) dx

∫ ∞

−∞
L(u) f(x− hu) du ≤ n2h

∫ α

−∞
f(x) f(x+ 2h) dx ≤ n2hΛ .

The sum of the diagonal terms is of no more than this order. The expected value
of the off-diagonal terms in E{S(IB ,IB)} may be bounded analogously, as n2h

times the integral from β to ∞ of f(x) f(x − 2h), and the sum of the diagonal
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terms is not of larger order. Since K is compactly supported, E{S(IA,IB)} =
E{S(IB ,IA)} = 0 for all sufficiently large n. Combining these results we deduce
that E{S(I,I)} = O(n2hΛ), and hence, from (5.30), that

I(p̃) = Op(Λ + λ2 + n−1) . (5.31)

Note too that, using (5.20) and the definition of p̃,

sup
i

np̃i → 1 in probability . (5.32)

Define S2 as at (5.2). We may prove from (2.2), using the Cauchy-Schwarz
inequality, that for any probability distribution p,

I(p) ≤ (n2h)−1
{ n∑

i=1

n∑
j=1

(npi − 1)2 (npj − 1)2
}1/2 { n∑

i=1

n∑
j=1

L
(Xi −Xj

h

)2
}1/2

≤ S
1/2
2 h−1/2 n−1

n∑
i=1

(npi − 1)2 .

If supi npi ≤ C1 for a fixed constant C1 > 1, then n−1 ∑
i (npi−1)2 is dominated

by C2 Dρ(p), where C2 = C2(C1, ρ) does not depend on n or otherwise on p.
Therefore,

I(p) ≤ C2 S
1/2
2 h−1/2 Dρ(p) . (5.33)

From (5.28), (5.29) and (5.32) we deduce that a unimodal probability density
is achievable by weighting using a probability vector p̃ for which both Dρ(p̃) =
Op(λ + n−1) and supi np̃i → 1 in probability. Therefore, the distribution p = p̄

that minimises Dρ(p) subject to unimodality and supi np̄i ≤ C1 must satisfy
Dρ(p̄) = Op(λ + n−1). From this result, taking p = p̄ in (5.33) and using (5.2),
we deduce that

I(p̄) = Op{h−1/2(λ+ n−1)} . (5.34)

More simply, if p = p̂ minimises I(p) subject to unimodality of f̂(·|p) then,
by (5.31),

I(p̂) = Op(Λ + λ2 + n−1) . (5.35)

Note that ∣∣∣ ‖f̂(·|p)− f‖ − ‖f̂(·|punif)− f‖
∣∣∣ ≤ I(p)1/2 . (5.36)

Since f ′′ is square-integrable then the mean integrated squared error of f̂(·|punif),
MISE say, equals O(n−4/5). Indeed, writing κ and φ for the respective charac-
teristic functions of K and f we have

MISE ≤ (nh)−1
∫

K2 + (2π)−1
∫
{κ(ht) − 1}2 |φ(t)|2 dt = O{(nh)−1 + h4} .
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Therefore,
‖f̂(·|punif)− f‖ = Op(n−2/5) . (5.37)

A longer argument may be used to prove that

MISE−1 ‖f̂(·|punif)− f‖2 → 1 in probability, and MISE � n−4/5 ; (5.38)

the methods of Hall (1984) are employed to derive the first of these properties. By
(5.35), (5.36) [ with p = p̂ ] and (5.37), we have ‖f̂(·|p̂)−f‖2 = Op(Λ+λ2+n−4/5),
which is result (3.1) in Theorem 3.3. Similarly, (3.2) follows from (5.34), (5.36)
[ with p = p̄ ] and (5.37). Using (5.38) instead of (5.37) in these arguments we
obtain (3.3) and (3.4).
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